0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADA4610-1ARJZ-RL

ADA4610-1ARJZ-RL

  • 厂商:

    AD(亚德诺)

  • 封装:

    SOT23-5

  • 描述:

    ICOPAMPJFETRROSOT23-5

  • 数据手册
  • 价格&库存
ADA4610-1ARJZ-RL 数据手册
FEATURES PIN CONFIGURATION Low offset voltage B grade: 0.4 mV maximum (ADA4610-1/ADA4610-2 only) A grade: 1 mV maximum Low offset voltage drift B grade: 2 µV/°C maximum (ADA4610-1/ADA4610-2 only) A grade: 8 µV/°C maximum (SOIC, MSOP, LFCSP packages) Low input bias current: 5 pA typical Dual-supply operation: ±5 V to ±15 V Low voltage noise: 0.45 µV p-p at 0.1 Hz to 10 Hz Voltage noise density: 7.30 nV/√Hz at f = 1 kHz Low THD + N: 0.00025% No phase reversal Rail-to-rail output Unity-gain stable Long-term offset voltage drift (10,000 hours): 5 µV typical Temperature hysteresis: 8 µV typical OUT A 1 –IN A 2 +IN A 3 V– 4 8 V+ ADA4610-2 7 TOP VIEW (Not to Scale) OUT B 6 –IN B 5 +IN B 09646-002 Data Sheet Low Noise, Precision, Rail-to-Rail Output, JFET Single/Dual/Quad Op Amps ADA4610-1/ADA4610-2/ADA4610-4 Figure 1. ADA4610-2 8-Lead SOIC (R Suffix); for Additional Packages and Models, See the Pin Configurations and Function Descriptions Section APPLICATIONS Instrumentation Medical instruments Multipole filters Precision current measurement Photodiode amplifiers Sensors Audio GENERAL DESCRIPTION The ADA4610-1/ADA4610-2/ADA4610-4 are precision junction field effect transistor (JFET) amplifiers that feature low input noise voltage, current noise, offset voltage, input bias current, and rail-torail output. The ADA4610-1 is a single amplifier, the ADA4610-2 is a dual amplifier, and the ADA4610-4 is a quad amplifier. performance filters. Low input bias currents, low offset, and low noise result in a wide dynamic range for photodiode amplifier circuits. Low noise and distortion, high output current, and excellent speed make the ADA4610-1/ADA4610-2/ ADA4610-4 great choices for audio applications. The combination of low offset, noise, and very low input bias current makes these amplifiers especially suitable for high impedance sensor amplification and precise current measurements using shunts. With excellent dc precision, low noise, and fast settling time, the ADA4610-1/ADA4610-2/ADA4610-4 provide superior accuracy in medical instruments, electronic measurement, and automated test equipment. Unlike many competitive amplifiers, the ADA4610-1/ADA4610-2/ADA4610-4 maintain fast settling performance with substantial capacitive loads. Unlike many older JFET amplifiers, the ADA4610-1/ADA4610-2/ ADA4610-4 do not suffer from output phase reversal when input voltages exceed the maximum common-mode voltage range. The ADA4610-1/ADA4610-2/ADA4610-4 are specified over the −40°C to +125°C extended industrial temperature range. The fast slew rate and great stability with capacitive loads make the ADA4610-1/ADA4610-2/ADA4610-4 ideal for high Rev. I The ADA4610-1 is available in an 8-lead SOIC package and in a 5-lead SOT-23 package. The ADA4610-2 is available in 8-lead SOIC, 8-lead MSOP, and 8-lead LFCSP packages. The ADA4610-4 is available in a 14-lead SOIC package and in a 16-lead LFCSP. Table 1. Related Precision JFET Operational Amplifiers Single AD8510 AD8610 AD820 ADA4627-1/ADA4637-1 Not applicable Dual AD8512 AD8620 AD822 Not applicable ADA4001-2 Quad AD8513 Not applicable AD824 Not applicable Not applicable Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2011–2019 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADA4610-1/ADA4610-2/ADA4610-4 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Comparative Voltage and Variable Voltage Graphs ............... 17 Applications ....................................................................................... 1 Theory of Operation ...................................................................... 20 Pin Configuration ............................................................................. 1 Applications Information .............................................................. 21 General Description ......................................................................... 1 Input Overvoltage Protection ................................................... 21 Revision History ............................................................................... 3 Peak Detector .............................................................................. 21 Specifications..................................................................................... 4 Current to Voltage (I to V) Conversion Applications ........... 21 Electrical Characteristics ............................................................. 5 Comparator Operation .............................................................. 22 Absolute Maximum Ratings ............................................................ 7 Long-Term Drift ......................................................................... 23 Thermal Resistance ...................................................................... 7 Temperature Hysteresis ............................................................. 23 ESD Caution .................................................................................. 7 Outline Dimensions ....................................................................... 24 Pin Configurations and Function Descriptions ........................... 8 Ordering Guide .......................................................................... 27 Typical Performance Characteristics ........................................... 11 Rev. I | Page 2 of 27 Data Sheet ADA4610-1/ADA4610-2/ADA4610-4 REVISION HISTORY 6/2019—Rev. H to Rev. I Change to Features Section .............................................................. 1 Change to Offset Voltage Drift, B Grade (ADA4610-1/ ADA4610-2) Parameter, Table 2 ..................................................... 4 Change to Offset Voltage Drift, B Grade (ADA4610-1/ ADA4610-2) Parameter, Table 3 ..................................................... 5 Replaced Figure 10 and Figure 13 .................................................11 Change to Theory of Operation Section ......................................20 5/2017—Rev. G to Rev. H Changed CP-8-21 to CP-8-11 ...................................... Throughout Changes to Features Section ............................................................ 1 Changes to Figure 15 Caption, Figure 16 Caption, Figure 18 Caption, and Figure 19 Caption ....................................................12 Changed Functional Description Section to Theory of Operation Section ...........................................................................20 Added Long-Term Drift Section, Temperature Hysteresis Section, Figure 61, Figure 62, and Figure 63; Renumbered Sequentially .....23 Updated Outline Dimensions ........................................................24 Changes to Ordering Guide ...........................................................27 5/2016—Rev. F to Rev. G Changed CP-8-20 to CP-8-21 ...................................... Throughout Changes to Figure 23 Caption and Figure 26 Caption ...............13 Updated Outline Dimensions ........................................................24 Changes to Ordering Guide ...........................................................25 1/2016—Rev. E to Rev. F Added 5-Lead SOT-23 ....................................................... Universal Changed CP-8-9 to CP-8-20 ........................................ Throughout Change to Features Section .............................................................. 1 Added Figure 3 and Table 7; Renumbered Sequentially .............. 8 Updated Outline Dimensions ........................................................23 Changes to Ordering Guide ...........................................................25 4/2015—Rev. D to Rev. E Added ADA4610-1 ............................................................ Universal Added 16-Lead LFCSP_WQ ............................................. Universal Deleted Figure 1 and Figure 3; Renumbered Sequentially .......... 1 Changes to Features Section ............................................................ 1 Changes to Table 2 ............................................................................ 4 Changes to Table 3 ............................................................................. 5 Added Figure 2 and Table 6; Renumbered Sequentially .............. 7 Added Figure 4 .................................................................................. 8 Added Figure 7 .................................................................................. 9 Changes to Table 8 ............................................................................ 9 Changes to Figure 10 Caption and Figure 13 Caption ...............10 Changes to Figure 14 Caption, Figure 15, Figure 17 Caption, and Figure 18 ...................................................................................11 Changes to Figure 22 and Figure 25 .............................................12 Changes to Figure 26 to Figure 31 ................................................13 Changes to Figure 32 and Figure 35 ............................................. 14 Changes to Figure 38 and Figure 40 ............................................. 15 Changes to Figure 42 to Figure 46 ................................................ 16 Changes to Figure 48, Figure 50, and Figure 53 .......................... 17 Changes to Figure 54 and Figure 55 ............................................. 18 Changes to Figure 57 and Figure 58 ............................................. 20 Updated Outline Dimensions........................................................ 22 Added Figure 64 .............................................................................. 23 Changes to Ordering Guide ........................................................... 24 11/2014—Rev. C to Rev. D Change to Figure 56 ........................................................................ 19 5/2014—Rev. B to Rev. C Added ADA4610-4 and 14-Lead SOIC ........................... Universal Added Voltage Noise Density to Features Section, Figure 3, and Table 1; Renumbered Sequentially.................................................. 1 Changes to Table 2 ............................................................................ 3 Changes to Table 3 ............................................................................ 4 Changes to Table 4 ............................................................................ 6 Added Pin Configurations and Function Descriptions Section, Figure 4 to Figure 6, Table 6, and Table 7 ....................... 7 Changes to Typical Performance Characteristics Section ........... 8 Added Functional Description Section ........................................ 17 Added Input Overvoltage Protection Section, Peak Detector Section, I to V Conversion Applications Section, and Photodiode Circuits Section .......................................................... 18 Change to Figure 56 ........................................................................ 18 Added Figure 62, Outline Dimensions ........................................ 20 Changes to Ordering Guide ........................................................... 20 8/2012—Rev. A to Rev. B Changes to Figure 9 .......................................................................... 8 5/2012—Rev. 0 to Rev. A Changes to Data Sheet Title and General Description Section .. 1 Changed Input Impedance Parameter, Differential to Input Capacitance Parameter, and Differential Parameter, Table 1 ...... 3 Added Input Resistance in Table 1.................................................. 3 Changed Input Impedance, Differential Parameter to Input Capacitance, Differential Parameter, Table 2 ................................ 4 Added Input Resistance Parameter, Table 2 .................................. 4 Added Figure 9, Figure 10, and Figure 14; Renumbered Sequentially ........................................................................................ 8 Added Figure 15 ................................................................................ 9 Updated Outline Dimensions........................................................ 16 Changes to Ordering Guide ........................................................... 17 12/2011—Revision 0: Initial Version Rev. I | Page 3 of 27 ADA4610-1/ADA4610-2/ADA4610-4 Data Sheet SPECIFICATIONS VSY = ±5 V, VCM = 0 V, TA = 25°C, unless otherwise noted. Table 2. Parameter INPUT CHARACTERISTICS Offset Voltage B Grade (ADA4610-1/ADA4610-2) Symbol Test Conditions/Comments Min Typ Max Unit 0.2 0.4 0.8 1 1.8 mV mV mV mV 2 8 12 25 1.5 20 0.25 +2.5 µV/°C µV/°C µV/°C pA nA pA nA V dB dB VOS −40°C < TA < +125°C A Grade 0.4 −40°C < TA < +125°C Offset Voltage Drift B Grade (ADA4610-1/ADA4610-2) 1 A Grade1 (SOIC, MSOP, LFCSP) A Grade1 (SOT-23) Input Bias Current ΔVOS/ΔT IB Input Offset Current IOS 0.5 1 1 5 −40°C < TA < +125°C 2 −40°C < TA < +125°C Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain ADA4610-2 CMRR AVO VCM = −2.5 V to +2.5 V −40°C < TA < +125°C RL = 2 kΩ, VOUT = −3.5 V to +3.5 V −40°C < TA < +125°C ADA4610-1/ADA4610-4 Input Capacitance Differential Common-Mode Input Resistance OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Current POWER SUPPLY Power Supply Rejection Ratio −40°C < TA < +125°C VCM = 0 V 98 86 96 84 VCM = 0 V VOH VOL RL = 2 kΩ −40°C < TA < +125°C RL = 600 Ω −40°C < TA < +125°C RL = 2 kΩ −40°C < TA < +125°C RL = 600 Ω −40°C < TA < +125°C 4.85 4.60 4.60 4.05 PSRR 100 dB dB dB dB 98 3.1 4.8 >1013 pF pF Ω 4.90 V V V V V V V V mA 4.89 −4.90 −4.90 −4.75 −4.80 −4.40 ±63 VSY = ±4.5 V to ±18 V −40°C < TA < +125°C ADA4610-1/ADA4610-4 ISY 110 −4.95 ISC ADA4610-2 Supply Current per Amplifier −2.5 94 86 −40°C < TA < +125°C IOUT = 0 mA −40°C < TA < +125°C Rev. I | Page 4 of 27 106 103 104 100 125 117 1.50 1.70 1.85 dB dB dB dB mA mA Data Sheet Parameter DYNAMIC PERFORMANCE Slew Rate Rising Falling Gain Bandwidth Product Unity-Gain Crossover Phase Margin −3 dB Closed-Loop Bandwidth Total Harmonic Distortion + Noise NOISE PERFORMANCE Voltage Noise Voltage Noise Density 1 ADA4610-1/ADA4610-2/ADA4610-4 Symbol Test Conditions/Comments ±SR RL = 2 kΩ, AV = 1 Min Typ 151 151 V/µs V/µs MHz MHz Degrees MHz % µV p-p nV/√Hz nV/√Hz nV/√Hz nV/√Hz GBP UGC φM −3 dB THD + N VIN = 5 mV p-p, RL = 2 kΩ, AV = 100 VIN = 5 mV p-p, RL = 2 kΩ, AV = 1 AV = 1, VIN = 5 mV p-p 1 kHz, AV = 1, RL = 2 kΩ, VIN = 1 V rms 21 46 15.4 9.3 61 10.6 0.00025 en p-p en 0.1 Hz to 10 Hz f = 10 Hz f = 100 Hz f = 1 kHz f = 10 kHz 0.45 14 8.20 7.30 7.30 Max Unit Guaranteed by design and characterization. ELECTRICAL CHARACTERISTICS VSY = ±15 V, VCM = 0 V, TA = 25°C, unless otherwise noted. Table 3. Parameter INPUT CHARACTERISTICS Offset Voltage B Grade (ADA4610-1/ADA4610-2) Symbol Test Conditions/Comments Min Typ Max Unit 0.2 0.4 0.8 1 1.8 mV mV mV mV 2 8 12 25 1.50 20 0.25 +12.5 µV/°C µV/°C µV/°C pA nA pA nA V dB dB VOS −40°C < TA < +125°C A Grade 0.4 −40°C < TA < +125°C Offset Voltage Drift B Grade (ADA4610-1/ADA4610-2) 1 A Grade1 (SOIC, MSOP, LFCSP) A Grade1 (SOT-23) Input Bias Current ΔVOS/ΔT Input Offset Current IOS 0.5 1 1 5 IB −40°C < TA < +125°C 2 −40°C < TA < +125°C Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain ADA4610-2 CMRR AVO VCM = −12.5 V to +12.5 V −40°C < TA < +125°C RL = 2 kΩ, VOUT = ±13.5 V −40°C < TA < +125°C ADA4610-1/ADA4610-4 Input Capacitance Differential Common-Mode Input Resistance −40°C < TA < +125°C VCM = 0 V VCM = 0 V Rev. I | Page 5 of 27 −12.5 100 96 104 91 102 86 115 107 104 3.1 4.8 >1013 dB dB dB dB pF pF Ω ADA4610-1/ADA4610-2/ADA4610-4 Parameter OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Current POWER SUPPLY Power Supply Rejection Ratio ADA4610-2 Data Sheet Symbol Test Conditions/Comments Min Typ VOH RL = 2 kΩ −40°C < TA < +125°C RL = 600 Ω −40°C < TA < +125°C RL = 2 kΩ −40°C < TA < +125°C RL = 600 Ω −40°C < TA < +125°C 14.80 14.65 14.25 13.35 14.90 VOL PSRR 1 Unit V V V V V V V V mA VSY = ±4.5 V to ±18 V ADA4610-1/ADA4610-4 DYNAMIC PERFORMANCE Slew Rate Rising Falling Gain Bandwidth Product Unity-Gain Crossover Phase Margin −3 dB Closed-Loop Bandwidth Total Harmonic Distortion + Noise NOISE PERFORMANCE Peak-to-Peak Voltage Noise Voltage Noise Density −14.68 −14.85 −14.75 −14.60 −14.30 ±79 −40°C < TA < +125°C Supply Current per Amplifier 14.47 −14.90 ISC Max ISY −40°C < TA < +125°C IOUT = 0 mA −40°C < TA < +125°C ±SR RL = 2 kΩ, AV = +1 106 103 104 100 125 117 1.60 171 171 GBP UGC φM −3 dB THD + N VIN = 5 mV p-p, RL = 2 kΩ, AV = 100 VIN = 5 mV p-p, RL = 2 kΩ, AV = 1 AV = 1, VIN = 5 mV p-p 1 kHz, AV = 1, RL = 2 kΩ, VIN = 5 V rms 25 61 16.3 9.3 66 9.5 0.00025 en p-p en 0.1 Hz to 10 Hz bandwidth f = 10 Hz f = 100 Hz f = 1 kHz f = 10 kHz 0.45 14 8.50 7.30 7.30 Guaranteed by design and characterization. Rev. I | Page 6 of 27 1.85 2.0 dB dB dB dB mA mA V/µs V/µs MHz MHz Degrees MHz % µV p-p nV/√Hz nV/√Hz nV/√Hz nV/√Hz Data Sheet ADA4610-1/ADA4610-2/ADA4610-4 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 4. Parameter Supply Voltage Input Voltage Input Current1 Storage Temperature Range Operating Temperature Range Junction Temperature Range Lead Temperature (Soldering, 10 sec) Electrostatic Discharge (ESD) Human Body Model (HBM)2 Field Induced Charge Device Model (FICDM)3 Rating ±18 V ±VS ±10 mA −65°C to +150°C −40°C to +125°C −65°C to +150°C 300°C 2500 V 1250 V Table 5. Thermal Resistance Package Type 5-Lead SOT-23 8-Lead SOIC 8-Lead LFCSP 8-Lead MSOP 14-Lead SOIC 16-Lead LFCSP 1 The input pins have clamp diodes connected to the power supply pins. Limit the input current to 10 mA or less whenever input signals exceed the power supply rail by 0.3 V. 2 ESDA/JEDEC JS-001-2011 applicable standard. 3 JESD22-C101 (ESD FICDM standard of JEDEC) applicable standard. 1 θJA1 219.4 120 57 142 115 65 θJC 155.6 43 12 45 36 3.2 Unit °C/W °C/W °C/W °C/W °C/W °C/W θJA is specified for worst-case conditions, that is, θJA is specified for a device soldered in a circuit board for surface-mount packages. ESD CAUTION Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. Rev. I | Page 7 of 27 ADA4610-1/ADA4610-2/ADA4610-4 Data Sheet NIC 1 –IN 2 +IN 3 V– 8 NIC ADA4610-1 7 V+ TOP VIEW (Not to Scale) 6 OUT 5 NIC 4 NOTES 1. NIC = NOT INTERNALLY CONNECTED. 09646-101 PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS Figure 2. ADA4610-1 Pin Configuration, 8-Lead SOIC (R Suffix) Table 6. ADA4610-1 Pin Function Descriptions, 8-Lead SOIC Pin No. 1, 5, 8 2 3 4 6 7 Mnemonic NIC −IN +IN V− OUT V+ Description Not Internally Connected. Inverting Input. Noninverting Input. Negative Supply Voltage. Output. Positive Supply Voltage. OUT 1 5 V+ 4 –IN ADA4610-1 TOP VIEW (Not to Scale) +IN 3 09646-100 V– 2 Figure 3. ADA4610-1 Pin Configuration, 5-Lead SOT-23 (RJ Suffix) Table 7. ADA4610-1 Pin Function Descriptions, 5-Lead SOT-23 Pin No. 1 2 3 4 5 Mnemonic OUT V− +IN −IN V+ Description Output. Negative Supply Voltage. Noninverting Input. Inverting Input. Positive Supply Voltage. Rev. I | Page 8 of 27 Data Sheet ADA4610-1/ADA4610-2/ADA4610-4 –IN A 2 +IN A 3 V+ 8 ADA4610-2 7 TOP VIEW (Not to Scale) OUT B 6 –IN B 5 +IN B V– 4 09646-104 OUT A 1 OUT A 1 8 V+ –IN A 2 ADA4610-2 7 OUT B +IN A 3 TOP VIEW (Not to Scale) 6 –IN B 5 +IN B V– 4 09646-102 Figure 4. ADA4610-2 Pin Configuration, 8-Lead SOIC (R Suffix) Figure 5. ADA4610-2 Pin Configuration, 8-Lead MSOP (RM Suffix) OUT A 1 +IN A 3 V– 4 8 V+ ADA4610-2 TOP VIEW (Not to Scale) 7 OUT B 6 –IN B 5 +IN B NOTES 1. THE EXPOSED PAD MUST BE CONNECTED TO V–. 09646-105 –IN A 2 Figure 6. ADA4610-2 Pin Configuration, 8-Lead LFCSP (CP Suffix) Table 8. ADA4610-2 Pin Function Descriptions, 8-Lead SOIC, 8-Lead MSOP, and 8-Lead LFCSP Pin No. 1 2 3 4 5 6 7 8 Mnemonic OUT A −IN A +IN A V− +IN B −IN B OUT B V+ EPAD Description Output Channel A. Inverting Input Channel A. Noninverting Input Channel A. Negative Supply Voltage. Noninverting Input Channel B. Inverting Input Channel B. Output Channel B. Positive Supply Voltage. Exposed Pad for the 8-Lead LFCSP (CP Suffix). The exposed pad must be connected to V−. Rev. I | Page 9 of 27 13 NIC 14 OUT D 16 NIC Data Sheet 15 OUT A ADA4610-1/ADA4610-2/ADA4610-4 –IN A 1 –IN D ADA4610-4 12 +IN D TOP VIEW (Not to Scale) 11 V– 10 +IN C –IN B 6 9 –IN C OUT B 7 8 OUT C +IN A 3 V+ 4 +IN B 5 11 +IN D 10 V– 9 +IN B 4 +IN C –IN C 8 13 OUT C 7 –IN A 2 TOP VIEW V+ 3 –IN B 5 OUT D OUT B 6 14 09646-106 OUT A 1 12 –IN D ADA4610-4 NOTES 1. NIC = NOT INTERNALLY CONNECTED. 2.THE EXPOSED PAD MUST BE CONNECTED TO V–. Figure 7. ADA4610-4 Pin Configuration, 14-Lead SOIC (R Suffix) Figure 8. ADA4610-4 Pin Configuration, 16-Lead LFCSP (CP Suffix) Table 9. ADA4610-4 Pin Function Descriptions, 14-Lead SOIC and 16-Lead LFCSP 14-Lead SOIC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Not applicable Not applicable Pin No. 16-Lead LFCSP 15 1 2 3 4 5 6 7 8 9 10 11 12 14 13, 16 Mnemonic OUT A −IN A +IN A V+ +IN B −IN B OUT B OUT C −IN C +IN C V− +IN D −IN D OUT D NIC EPAD 09646-107 +IN A 2 Description Output Channel A. Inverting Input Channel A. Noninverting Input Channel A. Positive Supply Voltage. Noninverting Input Channel B. Inverting Input Channel B. Output Channel B. Output Channel C. Inverting Input Channel C. Noninverting Input Channel C. Negative Supply Voltage. Noninverting Input Channel D. Inverting Input Channel D. Output Channel D. Not Internally Connected. Exposed Pad. The exposed pad must be connected to V−. Rev. I | Page 10 of 27 Data Sheet ADA4610-1/ADA4610-2/ADA4610-4 TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted. 400 400 SOIC 350 350 300 300 NUMBER OF CHANNELS 250 200 150 100 250 200 150 100 0 –1000 –800 –600 –400 –200 0 200 400 600 OFFSET VOLTAGE (µV) 09646-003 0 –1000 –800 –600 –400 –200 0 200 400 600 OFFSET VOLTAGE (µV) 800 1000 1200 Figure 9. Input Offset Voltage Distribution, VSY = ±5 V 70 SOIC SOIC 60 50 40 30 20 50 40 30 20 10 0 0 TCVOS (µV/°C) Figure 10. Input Offset Voltage Drift (TCVOS) Distribution, VSY = ±5 V Figure 13. TCVOS Distribution, VSY = ±15 V 1500 1000 1000 INPUT OFFSET VOLTAGE (uV) 1500 500 0 –500 MEAN MEAN + 3σ MEAN – 3σ –1500 –5 –4 –3 –2 –1 0 1 VCM (V) 0 –500 MEAN MEAN + 3σ MEAN – 3σ –1000 2 3 4 5 –1500 –15 09646-005 –1000 500 Figure 11. Input Offset Voltage vs. Common-Mode Input Voltage (VCM), VSY = ±5 V, RL = ∞ –10 –5 0 VCM (V) 5 10 15 09646-008 TCVOS (µV/°C) 09646-004 10 09646-007 NUMBER OF CHANNELS 60 –8.0 –7.5 –7.0 –6.5 –6.0 –5.5 –5.0 –4.5 –4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 NUMBER OF CHANNELS 800 1000 1200 Figure 12. Input Offset Voltage Distribution, VSY = ±15 V 70 INPUT OFFSET VOLTAGE (µV) 09646-006 50 50 –8.0 –7.5 –7.0 –6.5 –6.0 –5.5 –5.0 –4.5 –4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 NUMBER OF CHANNELS SOIC Figure 14. Input Offset Voltage vs. Input Common-Mode Voltage (VCM), VSY = ±15 V, RL = ∞ Rev. I | Page 11 of 27 Data Sheet 50 40 40 30 30 20 10 0 –10 MEAN MEAN + 3σ MEAN – 3σ –20 20 10 0 –10 –30 –30 –40 –40 –4 –3 –2 –1 0 1 2 3 4 5 VCM (V) –50 –15 –10 15 100k SOIC SOIC 10k 10k 1k INPUT BIAS CURRENT (pA) +125°C 100 10 +25°C 1 –40°C 1k +125°C 100 10 +25°C 1 0.1 –40°C –3 –2 –1 0 1 2 3 4 5 VCM (V) 0.1 –15 09646-056 –4 –10 –5 0 5 15 10 VCM (V) Figure 16. Input Bias Current vs. Common-Mode Input Voltage (VCM), Three Temperatures, VSY = ±5 V, RL = ∞ Figure 19. Input Bias Current vs. Common-Mode Input Voltage (VCM), Three Temperatures, VSY = ±15 V, RL = ∞ 100 INPUT BIAS CURRENT (pA) 100 10 1 –25 0 25 50 TEMPERATURE (°C) 75 100 125 1 0.1 –50 09646-009 0.1 –50 10 Figure 17. Input Bias Current vs. Temperature, VSY = ±5 V –25 0 25 50 TEMPERATURE (°C) 75 100 125 Figure 20. Input Bias Current vs. Temperature, VSY = ±15 V Rev. I | Page 12 of 27 09646-012 INPUT BIAS CURRENT (pA) 10 5 Figure 18. Input Bias Current vs. Common-Mode Input Voltage (VCM), Mean and Three Standard Deviations, VSY = ±15 V, RL = ∞ 100k INPUT BIAS CURRENT (pA) 0 VCM (V) Figure 15. Input Bias Current vs. Common-Mode Input Voltage (VCM), Mean and Three Standard Deviations, VSY = ±5 V, RL = ∞ 0.01 –5 –5 09646-058 –50 –5 MEAN MEAN + 3σ MEAN – 3σ –20 09646-057 INPUT BIAS CURRENT (pA) 50 09646-055 INPUT BIAS CURRENT (pA) ADA4610-1/ADA4610-2/ADA4610-4 Data Sheet ADA4610-1/ADA4610-2/ADA4610-4 0.1 0.01 0.1 1 10 IOUT SOURCE (mA) 100 0.1 0.01 0.1 100 10 (VOUT – V–) (V) 10 1 1 10 100 IOUT SINK (mA) 0.01 0.01 0.1 1 IOUT SINK (mA) 10 100 Figure 25. Dropout Voltage (VOUT − V−) vs. IOUT Sink, VSY = ±15 V Figure 22. Dropout Voltage (VOUT − V−) vs. IOUT Sink, VSY = ±5 V 225 100 80 180 80 180 60 135 60 135 GAIN 40 PHASE 90 20 45 0 0 –20 –40 10 100 1k 10k 100k FREQUENCY (Hz) 1M 10M –90 100M 270 225 GAIN 40 PHASE 90 20 45 0 0 –45 –20 –45 09646-016 100 GAIN (dB) 120 PHASE (Degrees) 270 120 –40 10 100 1k 10k 100k FREQUENCY (Hz) 1M 10M –90 100M Figure 26. Open-Loop Gain and Phase Margin vs. Frequency, VSY = ±15 V, RL = 2 kΩ, VIN = 5 mV Figure 23. Open-Loop Gain and Phase Margin vs. Frequency, VSY = ±5 V, RL = 2 kΩ, VIN = 5 mV Rev. I | Page 13 of 27 PHASE (Degrees) 1 09646-015 0.01 0.1 09646-018 0.1 0.1 09646-019 (VOUT – V–) (V) 10 IOUT SOURCE (mA) Figure 24. Dropout Voltage (V+ − VOUT) vs. IOUT Source, VSY = ±15 V Figure 21. Dropout Voltage (V+ − VOUT) vs. IOUT Source, VSY = ±5 V GAIN (dB) 1 09646-014 (V+ – VOUT) (V) 1 09646-011 (V+ – VOUT) (V) 1 ADA4610-1/ADA4610-2/ADA4610-4 Data Sheet 60 60 AV = +100 AV = +100 40 40 AV = +10 GAIN (dB) AV = +1 0 20 AV = +1 0 10k 100k 1M FREQUENCY (Hz) 10M 100M –40 1k 09646-017 1k 1k 100 100 10 AV = +100 1 AV = +100 1 0.1 10k 100k 1M FREQUENCY (Hz) 10M 100M 1k 10k 100k 1M FREQUENCY (Hz) 10M 100M Figure 31. Closed-Loop Output Impedance (ZOUT) vs. Frequency, VSY = ±15 V 120 120 100 100 80 80 PSRR (dB) PSRR– 60 40 PSRR– 60 40 PSRR+ PSRR+ 20 20 0 0 1k 10k 100k FREQUENCY (Hz) 1M 10M –20 100 09646-022 PSRR (dB) AV = +1 0.01 100 09646-021 1k Figure 28. Closed-Loop Output Impedance (ZOUT) vs. Frequency, VSY = ±5 V –20 100 100M AV = +10 AV = +1 0.01 100 10M 10 AV = +10 0.1 100k 1M FREQUENCY (Hz) Figure 30. Closed-Loop Gain vs. Frequency, VSY = ±15 V ZOUT (Ω) ZOUT (Ω) Figure 27. Closed-Loop Gain vs. Frequency, VSY = ±5 V 10k 09646-024 –40 1k 09646-020 –20 –20 Figure 29. PSRR vs. Frequency, VSY = ±5 V 1k 10k 100k FREQUENCY (Hz) 1M Figure 32. PSRR vs. Frequency, VSY = ±15 V Rev. I | Page 14 of 27 10M 09646-025 GAIN (dB) AV = +10 20 ADA4610-1/ADA4610-2/ADA4610-4 120 120 100 100 CMRR (dB) 140 80 60 80 60 40 40 20 20 0 100 1k 10k 100k FREQUENCY (Hz) 1M 10M 0 100 09646-023 3 12 2 8 1 0 –1 1M 10M 4 0 –4 0 1 2 3 4 5 6 TIME (µs) 7 8 9 10 –12 09646-027 –3 0 1 2 3 4 5 6 TIME (µs) 7 8 9 10 09646-030 –8 –2 Figure 37. Large Signal Transient Response, VSY = ±15 V, AV = 1, RL = 2 kΩ, CL = 100 pF Figure 34. Large Signal Transient Response, VSY = ±5 V, AV = 1, RL = 2 kΩ, CL = 100 pF 75 50 50 OUTPUT VOLTAGE (mV) 75 25 0 –25 25 0 –25 –50 –50 –75 0 1 2 3 4 5 6 TIME (µs) 7 8 9 10 –75 09646-028 OUTPUT VOLTAGE (mV) 10k 100k FREQUENCY (Hz) Figure 36. CMRR vs. Frequency, VSY = ±15 V OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) Figure 33. CMRR vs. Frequency, VSY = ±5 V 1k 0 1 2 3 4 5 6 TIME (µs) 7 8 9 10 Figure 38. Small Signal Transient Response, VSY = ±15 V, AV = 1, RL = 2 kΩ, CL = 100 pF Figure 35. Small Signal Transient Response, VSY = ±5 V, AV = 1, RL = 2 kΩ, CL = 100 pF Rev. I | Page 15 of 27 09646-031 CMRR (dB) 140 09646-026 Data Sheet ADA4610-1/ADA4610-2/ADA4610-4 Data Sheet 10 1 1 10 100 1k FREQUENCY (Hz) 10k 100k 10 1 1 Figure 39. Voltage Noise Density vs. Frequency, VSY = ±5 V 10 100 1k FREQUENCY (Hz) 10k 09646-036 VOLTAGE NOISE DENSITY (nV/ Hz) 100 09646-033 VOLTAGE NOISE DENSITY (nV/ Hz) 100 Figure 41. Voltage Noise Density vs. Frequency, VSY = ±15 V 50 50 40 40 OVERSHOOT (%) 30 OS– 10 0 0.01 OS+ 30 20 OS– 10 0.1 LOAD CAPACITANCE (nF) 1 0 0.01 Figure 40. Overshoot vs. Load Capacitance, VSY = ±5 V, AV = 1, RL = 2 kΩ, VIN = 100 mV p-p 0.1 LOAD CAPACITANCE (nF) 1 Figure 42. Overshoot vs. Load Capacitance, VSY = ±15 V, AV = 1, RL = 2 kΩ, VIN = 100 mV p-p Rev. I | Page 16 of 27 09646-037 20 09646-034 OVERSHOOT (%) OS+ Data Sheet ADA4610-1/ADA4610-2/ADA4610-4 COMPARATIVE VOLTAGE AND VARIABLE VOLTAGE GRAPHS 10 10 VSY = ±5V RL = 2kΩ fIN = 1kHz 1 80kHz FILTER 1 0.1 THD + N (%) 0.1 0.01 0.001 0.001 0.0001 0.0001 0.00001 0.01 0.1 1 0.00001 0.001 AMPLITUDE (V rms) Figure 46. THD + N vs. Amplitude, VSY = ±15 V 1 VSY = ±5V VIN = 1.5V rms 0.1 THD + N (%) 10 1 AMPLITUDE (V rms) Figure 43. THD + N vs. Amplitude, VSY = ±5 V 1 0.1 0.01 09646-040 0.01 09646-205 THD + N (%) VSY = ±15V RL = 2kΩ fIN = 1kHz 80kHz FILTER VSY = ±15V VIN = 5V rms 0.1 0.001 500kHz BAND-PASS FILTER 0.0001 80kHz BAND-PASS FILTER THD + N (%) 0.01 0.01 0.001 500kHz BAND-PASS FILTER 0.0001 10 100 1k 10k 09646-204 0.00001 100k FREQUENCY (Hz) 0.00001 10 100 1k 100k 10k FREQUENCY (Hz) Figure 44. THD + N vs. Frequency, VSY = ±5 V 09646-141 80kHz BAND-PASS FILTER Figure 47. THD + N vs. Frequency, VSY = ±15 V 16 –40 12 8 VOLTAGE (V) –80 –100 4 0 –4 –120 –8 –140 –160 100 1k 10k FREQUENCY (Hz) Figure 45. Channel Separation vs. Frequency 100k –16 0 0.1 0.2 0.3 0.4 0.5 0.6 TIME (ms) 0.7 0.8 0.9 1.0 09646-042 OUTPUT INPUT –12 09646-039 CHANNEL SEPARATION (dB) –60 Figure 48. No Phase Reversal, VSY = ±15 V, AV = +1, RL = 2 kΩ, CL = 100 pF Rev. I | Page 17 of 27 ADA4610-1/ADA4610-2/ADA4610-4 Data Sheet 300 ISY PER AMPLIFIER (mA) 100 0 –100 –200 –400 0 1 2 3 4 5 6 TIME (Seconds) 7 8 9 10 09646-043 –300 Figure 49. Voltage Noise, 0.1 Hz to 10 Hz +25°C –40°C 0 5 12 12 10 10 15 20 VSY (V) 25 30 35 STEP SIZE (V) 8 0.1% 6 0.01% 4 0.01% 0.1% 6 4 2 0.2 0.4 0.6 0.8 1.0 SETTLING TIME (µs) 1.2 1.4 0 09646-044 0 0 0.2 Figure 50. Positive Step Settling Time 1.4 VOUT = 7.3 × VIN 2 0 12 –2 10 –4 VOUT (V) 14 8 6 4 VIN –6 –8 –10 2 –12 VIN 0 –14 –2 –16 0 0.5 1.0 1.5 2.0 TIME (µs) 2.5 3.0 –18 –0.5 09646-200 –4 –0.5 1.2 4 VOUT = 7.3 × VIN VOUT 0.6 0.8 1.0 SETTLING TIME (µs) Figure 53. Negative Step Settling Time 18 16 0.4 09646-045 2 0 VOUT (V) 10 Figure 52. Supply Current (ISY) per Amplifier vs. Supply Voltage (VSY) at Various Temperatures 8 STEP SIZE (V) +125°C +85°C VOUT 0 0.5 1.0 1.5 2.0 TIME (µs) Figure 51. Positive Overload Recovery Figure 54. Negative Overload Recovery Rev. I | Page 18 of 27 2.5 3.0 09646-201 VOLTAGE (nV) 200 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 09646-047 400 Data Sheet ADA4610-1/ADA4610-2/ADA4610-4 3 15 VSY = ±5V VIN = ±2V AV = +1 RL = 2kΩ CL = 100pF 2 10 INPUT 0 OUTPUT VOUT 0 –1 –5 –2 –10 –3 –0.2 0 0.2 0.4 0.6 0.8 1.0 TIME (µs) 1.2 1.4 1.6 1.8 –15 –2.0 –1.5 –1.0 –0.5 TIME (µs) Figure 55. Positive and Negative Slew Rate (VSY = ±5 V, AV = 1, RL = 2 kΩ) 0 0.5 1.0 09646-202 VOLTAGE (V) 5 09646-203 VOLTAGE (V) 1 VSY = ±15V VIN = ±10V AV = +1 RL = 2kΩ CL = 100 pF VIN Figure 56. Positive and Negative Slew Rate (VSY = ±15 V, AV = 1, RL = 2 kΩ) Rev. I | Page 19 of 27 ADA4610-1/ADA4610-2/ADA4610-4 Data Sheet THEORY OF OPERATION The ADA4610-1/ADA4610-2/ADA4610-4 are manufactured using the Analog Devices, Inc., iPolar® process, a 36 V dielectrically isolated (DI) process with P-channel JFET technology. The unique architecture of the ADA4610-1/ADA4610-2/ADA4610-4 makes it possible to combine high precision and high speed characteristics into a high voltage, low power op amp. A simplified schematic for the ADA4610-1/ADA4610-2/ADA4610-4 is shown in Figure 57. The JFET input stage architecture offers advantages of low input bias current, high bandwidth, high gain, low noise, and no phase reversal when the applied input signal exceeds the common-mode voltage range. The output stage is rail-to-rail with high drive characteristics and low dropout voltage for both sinking and sourcing currents. The ADA4610-1/ADA4610-2 B grades achieve less than 0.4 mV of offset and 2 μV/°C of offset drift; these characteristics are usually associated with very high precision bipolar input amplifiers. The gate current of a typical JFET doubles every 10°C, resulting in a similar increase in input bias current over temperature. The low power consumption characteristic of the ADA4610-1/ADA4610-2/ADA4610-4 minimizes the die temperature, which warrants low input bias currents even at elevated ambient temperatures, making the amplifiers ideal for applications that require low leakage specifications without active cooling. Ensure proper printed circuit board (PCB) layout to minimize leakage currents between PCB traces. Improper layout and board handling can generate leakage currents exceeding the bias currents of the operational amplifier. The ADA4610-1/ADA4610-2/ADA4610-4 are unconditionally stable for all gain configurations, even with capacitive loads well in excess of 1 nF. The devices have internal protective circuitry that allows voltages as high as 0.3 V beyond the supplies to be applied at the input of either terminal without causing damage (for higher input voltages, refer to the Input Overvoltage Protection section). The ADA4610-1/ADA4610-2/ADA4610-4 are fully specified with supply voltages from ±5 V to ±15 V over the extended industrial temperature range of −40°C to +125°C. The ADA4610-1 is available in an 8-lead SOIC. The ADA4610-2 is available in an 8-lead MSOP, an 8-lead SOIC, and an 8-lead LFCSP. The ADA4610-4 is available in a 14-lead SOIC and a 16-lead LFCSP. All these packages are surface-mount type. V+ R6 D31 R7 C3 Q30 Q8 R16 Q29 Q9 Q28 + – 1+ Q12 A1 Q14 Q15 Q18 C2 RC4 DE5 C4 A2 DE1 R10 Q1 DE3 Q4 R2 VIN+ J1 R11 Q5 Q23 Q13 Q16 Q17 VOUT R3 J2 R5 DE6 VIN– Q7 C1 Q6 Q27 DE2 I2 I3 Q24 Q25 I4 R15 D26 V– Figure 57. Simplified Schematic Rev. I | Page 20 of 27 09646-054 DE4 Data Sheet ADA4610-1/ADA4610-2/ADA4610-4 APPLICATIONS INFORMATION INPUT OVERVOLTAGE PROTECTION The ADA4610-1/ADA4610-2/ADA4610-4, shown in Figure 58, are ideal for building a peak detector because U2A requires dc precision and high output current during fast peaks, and U2B requires low input bias current (IB) to minimize capacitance discharge between peaks. A low leakage and low dielectric absorption capacitor, such as polystyrene or polypropylene, is required for C3. Reversing the diode directions causes the circuit to detect negative peaks. The ADA4610-1/ADA4610-2/ADA4610-4 have internal protective circuitry that allows voltages as high as 0.3 V beyond the supplies to be applied at the input of either terminal without causing damage. For higher input voltages, a series resistor is necessary to limit the input current. Determine the resistor value by ≤ 10 mA RS CURRENT TO VOLTAGE (I TO V) CONVERSION APPLICATIONS where: VIN is the input voltage. VS is the voltage of either V+ or V−. RS is the series resistor. Photodiode Circuits Common applications for I to V conversion include photodiode circuits where the amplifier converts a current emitted by a diode placed at the negative input terminal into an output voltage. With a very low bias current of RF, the circuit behavior is not impacted by the effect of the junction resistance. The maximum signal bandwidth (fMAX) is ft 2R F CT where ft is the unity-gain frequency of the op amp. Calculate CF by CF  CT 2RF ft 9 COMPARATOR, VOUT = HIGH where ft is the unity-gain frequency of the op amp, and achieves a phase margin, φM, of approximately 45°. ISY FOR ALL CHANNELS (mA) 8 Increase the CF value to obtain a higher phase margin. Setting CF to twice the previous value yields approximately φM = 65° and a maximal flat frequency response, but it reduces the maximum signal bandwidth by 50%. Using the previous parameters with a CF ≈ 7 pF, the signal bandwidth is approximately 250 kHz. COMPARATOR, VOUT = LOW 7 6 FOLLOWER 5 4 3 2 1 0 0 5 10 15 20 VSY (V) 25 30 35 40 09646-053 f MAX  Although op amps are quite different from comparators, occasionally an unused section of a dual or a quad op amp can be used as a comparator; however, this is not recommended for rail-to-rail output op amps. For rail-to-rail output op amps, the output stage is generally a ratioed current mirror with bipolar or MOSFET transistors. With the device operating in open-loop mode, the second stage increases the current drive to the ratioed mirror to close the loop. However, the second stage cannot close the loop, which results in an increase in supply current. With the ADA4610-1/ADA4610-2/ADA4610-4 op amps configured as comparators, the supply current can be significantly higher (see Figure 60 for the supply current vs. the supply voltage for the ADA4610-4). Configuring an unused section as a voltage follower with the noninverting input connected to a voltage within the input voltage range is recommended. The ADA4610-1/ADA4610-2/ ADA4610-4 have a unique output stage design that reduces the excess supply current but does not entirely eliminate this effect when the op amp is operating in open-loop mode. Figure 60. Supply Current (ISY) vs. Supply Voltage (VSY) for the ADA4610-4 Only Rev. I | Page 22 of 27 Data Sheet ADA4610-1/ADA4610-2/ADA4610-4 LONG-TERM DRIFT TEMPERATURE HYSTERESIS The stability of a precision signal path over its lifetime or between calibration procedures is dependent on the long-term stability of the analog components in the path, such as op amps, references, and data converters. To help system designers predict the long-term drift of circuits that use the ADA4610-1/ ADA4610-2/ADA4610-4, Analog Devices measured the offset voltage of multiple units for 10,000 hours (more than 13 months) using a high precision measurement system, including an ultrastable oil bath. To replicate real-world system performance, the devices under test (DUTs) were soldered onto an FR4 PCB using a standard reflow profile (as defined in the JEDEC J-STD020D standard), as opposed to testing them in sockets. This manner of testing is important because expansion and contraction of the PCB can apply stress to the integrated circuit (IC) package and contribute to shifts in the offset voltage. In addition to stability over time as described in the Long-Term Drift section, it is useful to know the temperature hysteresis, that is, the stability vs. cycling of temperature. Hysteresis is an important parameter because it tells the system designer how closely the signal returns to its starting amplitude after the ambient temperature changes and subsequent return to room temperature. Figure 62 shows the change in input offset voltage as the temperature cycles three times from room temperature to +125°C to −40°C and back to room temperature. The dotted line is an initial preconditioning cycle to eliminate the original temperature-induced offset shift from exposure to production solder reflow temperatures. In the three full cycles, the offset hysteresis is typically only 8 µV, or 1% of its 800 µV maximum offset voltage over the full operating temperature range. The histogram in Figure 63 shows that the hysteresis is larger when the device is cycled through only a half cycle, from room temperature to 125°C and back to room temperature. 40 20 0 100 50 0 –50 –100 –150 –40 –20 –20 0 20 40 60 80 100 120 TEMPERATURE (°C) SAMPLE 1 SAMPLE 2 SAMPLE 3 –40 Figure 62. Change in Offset Voltage over Three Full Temperature Cycles VSY = 10V 27 UNITS TA = 25°C NUMBER OF DEVICES 10,000 09646-061 9000 8000 7000 6000 5000 4000 3000 2000 1000 0 –60 TIME (Hours) 09646-062 MEAN MEAN PLUS ONE STANDARD DEVIATION MEAN MINUS ONE STANDARD DEVIATION PRECONDITION CYCLE 1 CYCLE 2 CYCLE 3 VSY = 10V Figure 61. Measured Long-Term Drift of the ADA4610-1/ADA4610-2/ ADA4610-4 Offset Voltage over 10,000 Hours 50 45 VSY = 10V 27 UNITS × 3 CYCLES 40 HALF CYCLE = +26°C, +125°C, +26°C 35 FULL CYCLE = +26°C, +125°C, +26°C, –40°C, +26°C 30 25 20 15 10 5 0 50 45 40 35 30 25 20 15 10 5 0 –80 –64 –48 –32 –16 0 16 32 HALF CYCLE FULL CYCLE 48 OFFSET VOLTAGE HYSTERESIS (µV) 64 80 09646-063 CHANGE IN OFFSET VOLTAGE (µV) 60 150 CHANGE IN OFFSET VOLTAGE (µV) The ADA4610-1/ADA4610-2/ADA4610-4 have extremely low long-term drift, as shown in Figure 61. The red, blue, and green traces show sample units. Note that the ADA4610-1/ADA4610-2/ ADA4610-4 (B-grade) have a mean drift over 10,000 hours of approximately 5 µV, or less than 2% of their maximum specified offset voltage of 400 µV at room temperature. Figure 63. Histogram Showing the Temperature Hysteresis of the Offset Voltage over Three Full Cycles and over Three Half Cycles Rev. I | Page 23 of 27 ADA4610-1/ADA4610-2/ADA4610-4 Data Sheet OUTLINE DIMENSIONS 5.00 (0.1968) 4.80 (0.1890) 8 4.00 (0.1574) 3.80 (0.1497) 5 1 6.20 (0.2441) 5.80 (0.2284) 4 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) 1.75 (0.0688) 1.35 (0.0532) 0.51 (0.0201) 0.31 (0.0122) COPLANARITY 0.10 SEATING PLANE 0.50 (0.0196) 0.25 (0.0099) 45° 8° 0° 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) 012407-A COMPLIANT TO JEDEC STANDARDS MS-012-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 64. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches) 3.20 3.00 2.80 8 3.20 3.00 2.80 1 5.15 4.90 4.65 5 4 PIN 1 IDENTIFIER 0.65 BSC 0.95 0.85 0.75 15° MAX 1.10 MAX 0.40 0.25 6° 0° 0.23 0.09 COMPLIANT TO JEDEC STANDARDS MO-187-AA Figure 65. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters Rev. I | Page 24 of 27 0.80 0.55 0.40 10-07-2009-B 0.15 0.05 COPLANARITY 0.10 Data Sheet ADA4610-1/ADA4610-2/ADA4610-4 3.00 2.90 2.80 1.70 1.60 1.50 5 1 4 2 3.00 2.80 2.60 3 0.95 BSC 1.90 BSC 1.45 MAX 0.95 MIN 0.15 MAX 0.05 MIN 0.50 MAX 0.35 MIN 0.20 MAX 0.08 MIN 10° 5° 0° SEATING PLANE 0.55 0.45 0.35 0.60 BSC 11-01-2010-A 1.30 1.15 0.90 COMPLIANT TO JEDEC STANDARDS MO-178-AA Figure 66. 5-Lead Small Outline Transistor Package [SOT-23] (RJ-5) Dimensions shown in millimeters DETAIL A (JEDEC 95) 2.44 2.34 2.24 3.10 3.00 SQ 2.90 0.50 BSC 8 5 PIN 1 INDEX AREA TOP VIEW PKG-005136 SEATING PLANE SIDE VIEW 0.30 0.25 0.20 4 1 0.20 MIN BOTTOM VIEW 0.05 MAX 0.02 NOM COPLANARITY 0.08 0.203 REF FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET COMPLIANT TO JEDEC STANDARDS MO-229-W3030D-4 Figure 67. 8-Lead Lead Frame Chip Scale Package [LFCSP] 3 mm × 3 mm Body and 0.75 mm Package Height (CP-8-11) Dimensions shown in millimeters Rev. I | Page 25 of 27 P IN 1 IN D IC ATO R AR E A OP T IO N S (SEE DETAIL A) 08-17-2018-C 0.50 0.40 0.30 0.80 0.75 0.70 1.70 1.60 1.50 EXPOSED PAD ADA4610-1/ADA4610-2/ADA4610-4 Data Sheet 8.75 (0.3445) 8.55 (0.3366) 4.00 (0.1575) 3.80 (0.1496) 8 14 1 7 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0039) COPLANARITY 0.10 0.51 (0.0201) 0.31 (0.0122) 6.20 (0.2441) 5.80 (0.2283) 0.50 (0.0197) 0.25 (0.0098) 1.75 (0.0689) 1.35 (0.0531) SEATING PLANE 45° 8° 0° 1.27 (0.0500) 0.40 (0.0157) 0.25 (0.0098) 0.17 (0.0067) 060606-A COMPLIANT TO JEDEC STANDARDS MS-012-AB CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 68. 14-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-14) Dimensions shown in millimeters and (inches) DETAIL A (JEDEC 95) 0.35 0.30 0.25 13 0.65 BSC P IN 1 IN D IC ATO R AR E A OP T IO N S (SEE DETAIL A) 16 1 12 2.25 2.10 SQ 1.95 EXPOSED PAD 9 TOP VIEW PKG-004025/5112 0.80 0.75 0.70 SEATING PLANE SIDE VIEW 0.70 0.60 0.50 4 5 8 BOTTOM VIEW 0.05 MAX 0.02 NOM COPLANARITY 0.08 0.203 REF FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. COMPLIANT TO JEDEC STANDARDS MO-220-WGGC. Figure 69. 16-Lead Lead Frame Chip Scale Package [LFCSP] 4 mm × 4 mm Body and 0.75 mm Package Height (CP-16-23) Dimensions shown in millimeters Rev. I | Page 26 of 27 0.20 MIN 08-24-2018-B PIN 1 INDICATOR AREA 4.10 4.00 SQ 3.90 Data Sheet ADA4610-1/ADA4610-2/ADA4610-4 ORDERING GUIDE Model 1 ADA4610-1ARZ ADA4610-1ARZ-R7 ADA4610-1ARZ-RL ADA4610-1BRZ ADA4610-1BRZ-R7 ADA4610-1BRZ-RL ADA4610-1ARJZ-R2 ADA4610-1ARJZ-R7 ADA4610-1ARJZ-RL ADA4610-2ACPZ-R7 ADA4610-2ACPZ-RL ADA4610-2ARMZ ADA4610-2ARMZ-R7 ADA4610-2ARMZ-RL ADA4610-2ARZ ADA4610-2ARZ-R7 ADA4610-2ARZ-RL ADA4610-2BRZ ADA4610-2BRZ-R7 ADA4610-2BRZ-RL ADA4610-4ARZ ADA4610-4ARZ-R7 ADA4610-4ARZ-RL ADA4610-4ACPZ-R7 ADA4610-4ACPZ-RL 1 Temperature Range −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C Package Description 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 5-Lead Small Outline Transistor Package [SOT-23] 5-Lead Small Outline Transistor Package [SOT-23] 5-Lead Small Outline Transistor Package [SOT-23] 8-Lead Lead Frame Chip Scale Package [LFCSP] 8-Lead Lead Frame Chip Scale Package [LFCSP] 8-Lead Mini Small Outline Package [MSOP] 8-Lead Mini Small Outline Package [MSOP] 8-Lead Mini Small Outline Package [MSOP] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 14-Lead Standard Small Outline Package [SOIC_N] 14-Lead Standard Small Outline Package [SOIC_N] 14-Lead Standard Small Outline Package [SOIC_N] 16-Lead Lead Frame Chip Scale Package [LFCSP] 16-Lead Lead Frame Chip Scale Package [LFCSP] Z = RoHS Compliant Part. ©2011–2019 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D09646-0-6/19(I) Rev. I | Page 27 of 27 Package Option R-8 R-8 R-8 R-8 R-8 R-8 RJ-5 RJ-5 RJ-5 CP-8-11 CP-8-11 RM-8 RM-8 RM-8 R-8 R-8 R-8 R-8 R-8 R-8 R-14 R-14 R-14 CP-16-23 CP-16-23 Marking Code A37 A37 A37 A2U A2U A2U A2U A2U
ADA4610-1ARJZ-RL 价格&库存

很抱歉,暂时无法提供与“ADA4610-1ARJZ-RL”相匹配的价格&库存,您可以联系我们找货

免费人工找货