0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LTC3417AEFE-2#TRPBF

LTC3417AEFE-2#TRPBF

  • 厂商:

    AD(亚德诺)

  • 封装:

    TSSOP20

  • 描述:

    IC REG BUCK ADJ DL 20TSSOP

  • 数据手册
  • 价格&库存
LTC3417AEFE-2#TRPBF 数据手册
LTC3417A-2 Dual Synchronous 1.5A/1A 4MHz Step-Down DC/DC Regulator DESCRIPTION FEATURES n n n n n n n n n n n n n n n n High Efficiency: Up to 95% 1.5A/1A Guaranteed Minimum Output Current Synchronizable to External Clock No Schottky Diodes Required Programmable Frequency Operation: 1.5MHz or Adjustable From 0.6MHz to 4MHz Low Ripple ( VOUT2: IRMS = 2 •I1 •I2 • D2(1– D1) +I2 2 (D2 – D22 ) +I12 (D1– D12 ) VOUT2 > VOUT1: IRMS = 2 •I1 •I2 • D1(1– D2) +I2 2 (D2 – D22 ) +I12 (D1– D12 ) where. D1= VOUT1 V and D2 = OUT2 VIN VIN Table 1 MANUFACTURER PART NUMBER VALUE (μH) MAX DC CURRENT (A) DCR DIMENSIONS L × W × H (mm) L1 on OUT1 Toko A920CY-1R5M-D62CB A918CY-1R5M-D62LCB 1.5 1.5 2.8 2.9 0.014 0.018 6 × 6 × 2.5 6×6×2 Coilcraft D01608C-152ML 1.5 2.6 0.06 6.6 × 4.5 × 2.9 Sumida CDRH4D22/HP 1R5 1.5 3.9 0.031 5 × 5 × 2.4 Midcom DUP-1813-1R4R 1.4 5.5 0.033 4.3 × 4.8 × 3.5 Toko A915AY-2ROM-D53LC 2.0 3.9 0.027 5×5×3 Coilcraft D01608C-222ML 2.2 2.3 0.07 6.6 × 4.5 × 2.9 Sumida CDRH3D16/HP 2R2 2.2 2.2 1.75 1.6 0.047 0.035 4 × 4 × 1.8 3.2 × 3.2 × 2 Midcom DUP-1813-2R2R 2.2 3.9 0.047 4.3 × 4.8 × 3.5 L2 on OUT2 3417a2fa 10 LTC3417A-2 APPLICATIONS INFORMATION When D1 = D2 then the equation simplifies to: IRMS = (I1 +I2 ) D (1– D) or IRMS = (I1 +I2 ) VOUT ( VIN – VOUT ) VIN where the maximum average output currents I1 and I2 equal the respective peak currents minus half the peakto-peak ripple currents: ΔI I1 =ILIM1 – L1 2 ΔIL2 I2 =ILIM2 – 2 These formula have a maximum at VIN = 2VOUT, where IRMS = (I1 + I2)/2. This simple worst case is commonly used to determine the highest IRMS. For “out of phase” operation, the ripple current can be lower than the “in phase” current. In the “out of phase” case, the maximum IRMS does not occur when VOUT1 = VOUT2. The maximum typically occurs when VOUT1 – VIN/2 = VOUT2 or when VOUT2 – VIN/2 = VOUT1. As a good rule of thumb, the amount of worst case ripple is about 75% of the worst case ripple in the “in phase” mode. Also note that when VOUT1 = VOUT2 = VIN/2 and I1 = I2, the ripple is zero. Note that capacitor manufacturer’s ripple current ratings are often based on only 2000 hours lifetime. This makes it advisable to further derate the capacitor, or choose a capacitor rated at a higher temperature than required. Several capacitors may also be paralleled to meet the size or height requirements of the design. An additional 0.1μF to 1μF ceramic capacitor is also recommended on VIN for high frequency decoupling, when not using an all ceramic capacitor solution. Output Capacitor (COUT1 and COUT2) Selection The selection of COUT1 and COUT2 is driven by the required ESR to minimize voltage ripple and load step transients. Typically, once the ESR requirement is satisfied, the capacitance is adequate for filtering. The output ripple (ΔVOUT) is determined by:   1 VOUT  IL  ESRCOUT + 8 • fO • COUT   where fO = operating frequency, COUT = output capacitance and ΔIL = ripple current in the inductor. The output ripple is highest at maximum input voltage, since ΔIL increases with input voltage. With ΔIL = 0.35ILOAD(MAX), the output ripple will be less than 100mV at maximum VIN and fO = 1MHz with: ESRCOUT < 150mΩ Once the ESR requirements for COUT have been met, the RMS current rating generally far exceeds the IRIPPLE(P-P) requirement, except for an all ceramic solution. In surface mount applications, multiple capacitors may have to be paralleled to meet the capacitance, ESR or RMS current handling requirement of the application. Aluminum electrolytic, special polymer, ceramic and dry tantalum capacitors are all available in surface mount packages. The OS-CON semiconductor dielectric capacitor available from Sanyo has the lowest ESR(size) product of any aluminum electrolytic at a somewhat higher price. Special polymer capacitors, such as Sanyo POSCAP, offer very low ESR, but have a lower capacitance density than other types. Tantalum capacitors have the highest capacitance density, but it has a larger ESR and it is critical that the capacitors are surge tested for use in switching power supplies. An excellent choice is the AVX TPS series of surface tantalums, available in case heights ranging from 2mm to 4mm. Aluminum electrolytic capacitors have a significantly larger ESR, and are often used in extremely cost-sensitive applications provided that consideration 3417a2fa 11 LTC3417A-2 APPLICATIONS INFORMATION is given to ripple current ratings and long term reliability. Ceramic capacitors have the lowest ESR and cost but also have the lowest capacitance density, high voltage and temperature coefficient and exhibit audible piezoelectric effects. In addition, the high Q of ceramic capacitors along with trace inductance can lead to significant ringing. Other capacitor types include the Panasonic specialty polymer (SP) capacitors. In most cases, 0.1μF to 1μF of ceramic capacitors should also be placed close to the LTC3417A-2 in parallel with the main capacitors for high frequency decoupling. Ceramic Input and Output Capacitors Higher value, lower cost ceramic capacitors are now becoming available in smaller case sizes. Because the LTC3417 control loop does not depend on the output capacitor’s ESR for stable operation, ceramic capacitors can be used freely to achieve very low output ripple and small circuit size. When choosing the input and output ceramic capacitors, choose the X5R or X7R dielectric formulations. These dielectrics have the best temperature and voltage characteristics of all the ceramics for a given value and size. Great care must be taken when using only ceramic input and output capacitors. When a ceramic capacitor is used at the input and the power is being supplied through long wires, such as from a wall adapter, a load step at the output can induce ringing at the VIN pin. At best, this ringing can couple to the output and be mistaken as loop instability. At worst, the ringing at the input can be large enough to damage the part. Since the ESR of a ceramic capacitor is so low, the input and output capacitor must fulfill a charge storage requirement. During a load step, the output capacitor must instantaneously supply the current to support the load until the feedback loop raises the switch current enough to support the load. The time required for the feedback loop to respond is dependent on the compensation components and the output capacitor size. Typically, 3 to 4 cycles are required to respond to a load step, but only in the first cycle does the output drop linearly. The output droop, VDROOP , is usually about 2 to 3 times the linear droop of the first cycle. Thus, a good place to start is with the output capacitor size of approximately: COUT ≈ 2.5 ΔIOUT fO • VDROOP More capacitance may be required depending on the duty cycle and load step requirements. In most applications, the input capacitor is merely required to supply high frequency bypassing, since the impedance to the supply is very low. A 10μF ceramic capacitor is usually enough for these conditions. Setting the Output Voltage The LTC3417A-2 develops a 0.8V reference voltage between the feedback pins, VFB1 and VFB2, and the signal ground as shown in Figure 4. The output voltages are set by two resistive dividers according to the following formulas:  R1 VOUT1  0.8V  1+   R2   R3  VOUT2  0.8V  1+   R4  Keeping the current small (1μF) input capacitors. The discharged input capacitors are effectively put in parallel with COUT, causing a rapid drop in VOUT. No regulator can deliver enough current to prevent this problem, if the switch connecting the load has low resistance and is driven quickly. The solution is to limit the turn-on speed of the load switch driver. A Hot Swap™ controller is designed specifically for this purpose and usually incorporates current limiting, short-circuit protection, and soft- starting. Efficiency Considerations The percent efficiency of a switching regulator is equal to the output power divided by the input power times 100. It is often useful to analyze individual losses to determine what is limiting the efficiency and which change would produce the most improvement. Percent efficiency can be expressed as: % Efficiency = 100% – (P1+ P2 + P3 +…) where P1, P2, etc. are the individual losses as a percentage of input power. Hot Swap is a trademark of Linear Technology Corporation. 3417a2fa 14 LTC3417A-2 APPLICATIONS INFORMATION Although all dissipative elements in the circuit produce losses, four main sources account for most of the losses in LTC3417A-2 circuits: 1) LTC3417A-2 IS current, 2) switching losses, 3) I2R losses, 4) other losses. 1) The IS current is the DC supply current given in the electrical characteristics which excludes MOSFET driver and control currents. IS current results in a small (< 0.1%) loss that increases with VIN, even at no load. 2) The switching current is the sum of the MOSFET driver and control currents. The MOSFET driver current results from switching the gate capacitance of the power MOSFETs. Each time a MOSFET gate is switched from low to high to low again, a packet of charge moves from VIN to ground. The resulting charge over the switching period is a current out of VIN that is typically much larger than the DC bias current. The gate charge losses are proportional to VIN and thus their effects will be more pronounced at higher supply voltages. 3) I2R losses are calculated from the DC resistances of the internal switches, RSW, and the external inductor, RL. In continuous mode, the average output current flowing through inductor L is “chopped” between the internal top and bottom switches. Thus, the series resistance looking into the SW pin is a function of both top and bottom MOSFET RDS(ON) and the duty cycle (DC) as follows: RSW = (RDS(ON)TOP)(DC) + (RDS(ON)BOT)(1 – DC) The RDS(ON) for both the top and bottom MOSFETs can be obtained from the Typical Performance Characteristics curves. Thus, to obtain I2R losses: I2R losses = IOUT2(RSW + RL) where RL is the resistance of the inductor. 4) Other “hidden” losses such as copper trace and internal battery resistances can account for additional efficiency degradations in portable systems. It is very important to include these “system” level losses in the design of a system. The internal battery and fuse resistance losses can be minimized by making sure that CIN has adequate charge storage and very low ESRCOUT at the switching frequency. Other losses including diode conduction losses during dead-time and inductor core losses generally account for less than 2% total additional loss. Thermal Considerations The LTC3417A-2 requires the package Exposed Pad (PGND2/GNDD pin) to be well soldered to the PC board. This gives the DFN and TSSOP packages exceptional thermal properties, compared to similar packages of this size, making it difficult in normal operation to exceed the maximum junction temperature of the part. In a majority of applications, the LTC3417A-2 does not dissipate much heat due to its high efficiency. However, in applications where the LTC3417A-2 is running at high ambient temperature with low supply voltage and high duty cycles, such as in dropout, the heat dissipated may exceed the maximum junction temperature of the part. If the junction temperature reaches approximately 150°C, both switches in both regulators will be turned off and the SW nodes will become high impedance. To prevent the LTC3417A-2 from exceeding its maximum junction temperature, the user will need to do some thermal analysis. The goal of the thermal analysis is to determine whether the power dissipated exceeds the maximum junction temperature of the part. The temperature rise is given by: TRISE = PD • θJA where PD is the power dissipated by the regulator and θJA is the thermal resistance from the junction of the die to the ambient temperature. The junction temperature, TJ, is given by: TJ = TRISE + TAMBIENT As an example, consider the case when the LTC3417A-2 is in dropout in both regulators at an input voltage of 3.3V with load currents of 1.5A and 1A. From the Typical Performance Characteristics graph of Switch Resistance, the RDS(ON) resistance of the 1.5A P-channel switch is 0.09Ω and the RDS(ON) of the 1A P-channel switch is 0.163Ω. 3417a2fa 15 LTC3417A-2 APPLICATIONS INFORMATION The power dissipated by the part is: Using the 1.5MHz frequency setting (FREQ = VIN), we get the following equations for L1 and L2: PD = I12 • RDS(ON)1 + I22 • RDS(ON)2 PD = 1.52 • 0.09 + 12 • 0.163 1.8V  1.8V  1– = 1.3μH 1.5MHz • 525mA  4.2V  Use 1.5μH. L1= PD = 366mW The DFN package junction-to-ambient thermal resistance, θJA, is about 43°C/W. Therefore, the junction temperature of the regulator operating in a 70°C ambient temperature is approximately: TJ = 0.366 • 43 + 70 TJ = 85.7°C Remembering that the above junction temperature is obtained from an RDS(ON) at 25°C, we might recalculate the junction temperature based on a higher RDS(ON) since it increases with temperature. However, we can safely assume that the actual junction temperature will not exceed the absolute maximum junction temperature of 125°C. 2.5V  2.5V  1– = 1.9μH 1.5MHz • 350mA  4.2V  Use 2.2μH. L2 = COUT selection is based on load step droop instead of ESR requirements. For a 2.5% output droop: COUT1 = 2.5 • 1.5A = 28μF 1.5MHz ( 5% • 1.8V ) COUT2 = 2.5 • 1A = 13μF 1.5MHz ( 5% • 2.5V ) Design Example The closest standard values are 47μF and 22μF. As a design example, consider using the LTC3417A-2 in a portable application with a Li-Ion battery. The battery provides a VIN from 2.8V to 4.2V. One load requires 1.8V at 1.5A in active mode, and 1mA in standby mode. The other load requires 2.5V at 1A in active mode, and 500μA in standby mode. Since both loads still need power in standby, Burst Mode operation is selected for good low load efficiency (SYNC/MODE = VIN). The output voltages can now be programmed by choosing the values of R1, R2, R3, and R4. To maintain high efficiency, the current in these resistors should be kept small. Choosing 2μA with the 0.8V feedback voltages makes R2 and R4 equal to 400k. A close standard 1% resistor is 412k. This then makes R1 = 515k. A close standard 1% is 511k. Similarily, with R4 at 412k, R3 is equal to 875k. A close 1% resistor is 866k. First, determine what frequency should be used. Higher frequency results in a lower inductor value for a given ΔIL (ΔIL is estimated as 0.35ILOAD(MAX)). Reasonable values for wire wound surface mount inductors are usually in the range of 1μH to 10μH. The compensation should be optimized for these components by examining the load step response, but a good place to start for the LTC3417A-2 is with a 5.9kΩ and 2200pF filter on ITH1 and 2.87k and 6800pF on ITH2. The output capacitor may need to be increased depending on the actual undershoot during a load step. CONVERTER OUTPUT ILOAD(MAX) ΔIL SW1 1.5A 525mA SW2 1A 350mA The PGOOD pin is a common drain output and requires a pull-up resistor. A 100k resistor is used for adequate speed. Figure 4 shows a complete schematic for this design. 3417a2fa 16 LTC3417A-2 APPLICATIONS INFORMATION VIN 2.25V TO 5.5V CIN 10μF CIN2 0.1μF CIN1 0.1μF R7 100k VIN1 VIN2 VOUT1 1.8V 1.5A L1 1.5μH SW1 C1 22pF VIN SW2 RUN1 RUN2 C2 22pF VIN LTC3417A-2 R1 511k VFB1 R2 412k PHASE VOUT2 2.5V 1A R3 866k VFB2 FREQ ITH2 EXPOSED GNDA PAD GNDD R4 412k VIN COUT2 22μF ITH1 R5 5.9k R6 2.87k C3 2200pF C4 6800pF 3417A-2 F04 L2: MIDCOM DUS-5121-2R2R COUT2, CIN: KEMET C1206C106K4PAC L1: MIDCOM DUS-5121-1R5R COUT1: KEMET C1210C226K8PAC OUT1 Efficiency vs Load Current 10 100 VIN = 3.6V VOUT = 1.8V 95 FREQ = 1MHz REFER TO FIGURE 4 90 1 EFFICIENCY 0.1 85 80 POWER LOSS POWER LOSS (W) EFFICIENCY (%) COUT1 47μF L2 2.2μH SYNC/MODE PGOOD 0.01 75 70 0.001 0.01 0.1 1 LOAD CURRENT (A) 0.001 10 3417A-2 F04a Figure 4. 1.8V at 1.5A/2.5V at 1A Step-Down Regulators 3417a2fa 17 LTC3417A-2 APPLICATIONS INFORMATION Board Layout Considerations When laying out the printed circuit board, the following checklist should be used to ensure proper operation of the LTC3417A-2. These items are also illustrated graphically in the layout diagram of Figure 5. Check the following in your layout. 1. Does the capacitor CIN connect to the power VIN1 (Pin 2), VIN2 (Pin 8), and PGND2/GNDD (Pin 17) as close as possible (DFN package)? It may be necessary to split CIN into two capacitors. This capacitor provides the AC current to the internal power MOSFETs and their drivers. 2. Are the COUT1, L1 and COUT2, L2 closely connected? The (–) plate of COUT1 returns current to PGND1, and the (–) plate of COUT2 returns current to the PGND2/GNDD and the (–) plate of CIN. 3. The resistor divider, R1 and R2, must be connected between the (+) plate of COUT1 and a ground line terminated near GNDA. The resistor divider, R3 and R4, must be connected between the (+) plate of COUT2 and a ground line terminated near GNDA. The feedback signals VFB1 and VFB2 should be routed away from noise components and traces, such as the SW lines, and its trace should be minimized. 4. Keep sensitive components away from the SW pins. The input capacitor CIN, the compensation capacitors CC1, CC2, CITH1 and CITH2 and all resistors R1, R2, R3, R4, RITH1 and RITH2 should be routed away from the SW traces and the inductors L1 and L2. 5. A ground plane is preferred, but if not available, keep the signal and power grounds segregated with small signal components returning to the GNDA pin at one point which is then connected to the PGND2/GNDD pin. 6. Flood all unused areas on all layers with copper. Flooding with copper will reduce the temperature rise of power components. These copper areas should be connected to one of the input supplies. VIN CIN2 0.1μF CIN 10μF VIN2 VIN1 PGND2/ EXPOSED PAD PGND1 GNDA COUT2 COUT1 L2 VOUT2 L1 SW1 SW2 CC2 R3 VFB2 LTC3417A-2 RITH2 CITH2 R8 VOUT1 CC1 R1 VFB1 R4 STAR TO GNDA VIN CIN1 0.1μF R2 ITH2 ITH1 POR FREQ RUN2 PHASE RITH1 R7 STAR TO GNDA CITH1 VIN RUN1 SYNC/MODE GNDD 3417A-2 F05 Figure 5. Layout Guideline 3417a2fa 18 LTC3417A-2 PACKAGE DESCRIPTION DHC Package 16-Lead Plastic DFN (5mm × 3mm) (Reference LTC DWG # 05-08-1706) R = 0.115 TYP 5.00 ± 0.10 (2 SIDES) R = 0.20 TYP 0.65 ± 0.05 3.50 ± 0.05 1.65 ± 0.05 2.20 ± 0.05 (2 SIDES) 9 3.00 ± 0.10 (2 SIDES) PACKAGE OUTLINE 1.65 ± 0.10 (2 SIDES) PIN 1 NOTCH PIN 1 TOP MARK (SEE NOTE 6) (DHC16) DFN 1103 8 1 0.25 ± 0.05 0.50 BSC 0.75 ± 0.05 0.200 REF 0.25 ± 0.05 0.50 BSC 0.40 ± 0.10 16 4.40 ± 0.05 (2 SIDES) 4.40 ± 0.10 (2 SIDES) 0.00 – 0.05 BOTTOM VIEW—EXPOSED PAD RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS NOTE: 1. DRAWING PROPOSED TO BE MADE VARIATION OF VERSION (WJED-1) IN JEDEC PACKAGE OUTLINE MO-229 2. DRAWING NOT TO SCALE 3. ALL DIMENSIONS ARE IN MILLIMETERS 4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE 5. EXPOSED PAD SHALL BE SOLDER PLATED 6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE FE Package 20-Lead Plastic TSSOP (4.4mm) (Reference LTC DWG # 05-08-1663) Exposed Pad Variation CA 6.40 – 6.60* (.252 – .260) 4.95 (.195) 4.95 (.195) 20 1918 17 16 15 14 13 12 11 6.60 ± 0.10 2.74 (.108) 4.50 ± 0.10 6.40 2.74 (.252) (.108) BSC SEE NOTE 4 0.45 ± 0.05 1.05 ± 0.10 0.65 BSC 1 2 3 4 5 6 7 8 9 10 RECOMMENDED SOLDER PAD LAYOUT 4.30 – 4.50* (.169 – .177) 0.09 – 0.20 (.0035 – .0079) 0.25 REF 0.50 – 0.75 (.020 – .030) NOTE: 1. CONTROLLING DIMENSION: MILLIMETERS MILLIMETERS 2. DIMENSIONS ARE IN (INCHES) 3. DRAWING NOT TO SCALE 1.20 (.047) MAX 0° – 8° 0.65 (.0256) BSC 0.195 – 0.30 (.0077 – .0118) TYP 0.05 – 0.15 (.002 – .006) FE20 (CA) TSSOP 0204 4. RECOMMENDED MINIMUM PCB METAL SIZE FOR EXPOSED PAD ATTACHMENT *DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.150mm (.006") PER SIDE 3417a2fa Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. 19 LTC3417A-2 RELATED PARTS PART NUMBER DESCRIPTION COMMENTS LTC3406A/B 600mA, 1.5MHz, Synchronous Step-Down DC/DC Converter 96% Efficiency, VIN(MIN): 2.5V, VIN(MAX): 5.5V, VOUT(MIN) = 0.6V, IQ = 20μA, ISD < 1μA, ThinSOT™ Package LTC3407A Dual 600mA/600mA 1.5MHz, Synchronous Step-Down DC/DC Converter 95% Efficiency, VIN(MIN): 2.5V, VIN(MAX): 5.5V, VOUT(MIN) = 0.6V, IQ = 40μA, ISD < 1μA, MS10E, 3mm × 3mm DFN-10 Package LTC3409 600mA, 1.7/2.6MHz, Synchronous Step-Down DC/DC Converter 96% Efficiency, VIN(MIN): 1.6V, VIN(MAX): 5.5V, VOUT(MIN) = 0.6V, IQ = 65μA, ISD < 1μA, 3mm × 3mm DFN-8 Package LTC3410/B 300mA, 2.25MHz, Synchronous Step-Down DC/DC Converter 95% Efficiency, VIN(MIN): 2.5V, VIN(MAX): 5.5V, VOUT(MIN) = 0.8V, IQ = 26μA, ISD < 1μA, SC70 Package LTC3411A 1.25A, 4MHz, Synchronous Step-Down DC/DC Converter 95% Efficiency, VIN(MIN): 2.5V, VIN(MAX): 5.5V, VOUT(MIN) = 0.8V, IQ = 60μA, ISD < 1μA, MS10, 3mm × 3mm DFN-10 Package LTC3412A 2.5A, 4MHz, Synchronous Step-Down DC/DC Converter 95% Efficiency, VIN(MIN): 2.5V, VIN(MAX): 5.5V, VOUT(MIN) = 0.8V, IQ = 60μA, ISD < 1μA, 4mm × 4mm QFN-16, TSSOP-16E Package LTC3414 4A, 4MHz, Synchronous Step-Down DC/DC Converter 95% Efficiency, VIN(MIN): 2.25V, VIN(MAX): 5.5V, VOUT(MIN) = 0.8V, IQ = 64μA, ISD < 1μA, TSSOP20E Package LTC3416 4A, 4MHz, Synchronous Step-Down DC/DC Converter with Tracking 95% Efficiency, VIN(MIN): 2.25V, VIN(MAX): 5.5V, VOUT(MIN) = 0.8V, IQ = 64μA, ISD < 1μA, TSSOP20E Package LTC3417A Dual 1.5A/1A, 4MHz, Synchronous Step-Down DC/DC Converter 95% Efficiency, VIN(MIN): 2.3V, VIN(MAX): 5.5V, VOUT(MIN) = 0.8V, IQ = 125μA, ISD < 1μA, TSSOP-16E, 3mm × 3mm DFN-16 Package LTC3418 8A, 4MHz, Synchronous Step-Down DC/DC Converter 95% Efficiency, VIN(MIN): 2.25V, VIN(MAX): 5.5V, VOUT(MIN) = 0.8V, IQ = 380μA, ISD < 1μA, 5mm × 7mm QFN-38 Package LTC3419/-1 Dual 600mA/600mA 2.25MHz, Synchronous Step-Down DC/DC Converter 95% Efficiency, VIN(MIN): 2.5V, VIN(MAX): 5.5V, VOUT(MIN) = 0.6V, IQ = 35μA, ISD < 1μA, MS10, 3mm × 3mm DFN-10 Package LTC3438 800mA, 1MHz, Synchronous Buck-Boost DC/DC Converter 95% Efficiency, VIN(MIN): 2.4V, VIN(MAX): 5.5V, VOUT(MIN) = 1.5V to 5.25V, IQ = 35μA, ISD < 1μA, 2mm × 3mm DFN-8 Package LTC3440 600mA, 2MHz, Synchronous Buck-Boost DC/DC Converter 95% Efficiency, VIN(MIN): 2.5V, VIN(MAX): 5.5V, VOUT(MIN) = 2.5V to 5.5V, IQ = 25μA, ISD < 1μA, MS10, 3mm × 3mm DFN-10 Package LTC3441/2/3 1.2A, 2MHz, Synchronous Buck-Boost DC/DC Converter 95% Efficiency, VIN(MIN): 2.4V, VIN(MAX): 5.5V, VOUT(MIN) = 2.4V to 5.25V, IQ = 50μA, ISD < 1μA, 3mm × 4mm DFN-12 Package LTC3530 600mA, 2MHz, Synchronous Buck-Boost DC/DC Converter 95% Efficiency, VIN(MIN): 1.8V, VIN(MAX): 5.5V, VOUT(MIN) = 1.8V to 5.5V, IQ = 40μA, ISD < 1μA, MS10, 3mm × 3mm DFN-10 Package LTC3531/-3/3.3 200mA, 1.5MHz, Synchronous Buck-Boost DC/DC Converter 95% Efficiency, VIN(MIN): 1.8V, VIN(MAX): 5.5V, VOUT(MIN) = 2V to 5V, IQ = 16μA, ISD < 1μA, ThinSOT, 3mm × 3mm DFN-6 Package LTC3532 500mA, 2MHz, Synchronous Buck-Boost DC/DC Converter 95% Efficiency, VIN(MIN): 2.4V, VIN(MAX): 5.5V, VOUT(MIN) = 2.4V to 5.25V, IQ = 35μA, ISD < 1μA, MS10E, 3mm × 3mm DFN-10 Package LTC3542 500mA, 2.25MHz, Synchronous Step-Down DC/DC Converter 95% Efficiency, VIN(MIN): 2.5V, VIN(MAX): 5.5V, VOUT(MIN) = 0.6V, IQ = 26μA, ISD < 1μA, 2mm × 2mm DFN-6, ThinSOT Package LTC3544/B Quad 100/200/200/300mA, 2.25MHz Synchronous Step-Down DC/DC Converter 95% Efficiency, VIN(MIN): 2.3V, VIN(MAX): 5.5V, VOUT(MIN) = 0.8V, IQ = 70μA, ISD < 1μA, 3mm × 3mm QFN-16 Package LTC3545/-1 Triple, 800mA x 3, 2.25MHz Synchronous Step-Down DC/DC 95% Efficiency, VIN(MIN): 2.3V, VIN(MAX): 5.5V, VOUT(MIN) = 0.6V, IQ = 58μA, ISD < 1μA, 3mm × 3mm QFN-16 Package Converter LTC3547/B Dual 300mA, 2.25MHz, Synchronous Step-Down DC/DC Converter 95% Efficiency, VIN(MIN): 2.5V, VIN(MAX): 5.5V, VOUT(MIN) = 0.6V, IQ = 40μA, ISD < 1μA, DFN-8 Package LTC3548/-1/-2 Dual 400mA & 800mA IOUT, 2.25MHz, Synchronous Step-Down DC/DC Converter 95% Efficiency, VIN(MIN): 2.5V, VIN(MAX): 5.5V, VOUT(MIN) = 0.6V, IQ = 40μA, ISD < 1μA, MS10E, 3mm × 3mm DFN-10 Package LTC3560 800mA 2.25MHz, Synchronous Step-Down DC/DC Converter 95% Efficiency, VIN(MIN): 2.5V, VIN(MAX): 5.5V, VOUT(MIN) = 0.6V, IQ = 16μA, ISD < 1μA, ThinSOT Package LTC3561 1.25A, 4MHz, Synchronous Step-Down DC/DC Converter 95% Efficiency, VIN(MIN): 2.5V, VIN(MAX): 5.5V, VOUT(MIN) = 0.8V, IQ = 240μA, ISD < 1μA, 3mm × 3mm DFN-8 Package LTC3562 Quad, I2C Interface, 600/600/400/400mA , 2.25MHz Synchronous Step-Down DC/DC Converter 95% Efficiency, VIN(MIN): 2.9V, VIN(MAX): 5.5V, VOUT(MIN) = 0.425V, IQ = 100μA, ISD < 1μA, 3mm × 3mm QFN-20 Package ThinSOT is a trademark of Linear Technology Corporation. 20 Linear Technology Corporation 3417a2fa LT 0808 REV A • PRINTED IN USA 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com © LINEAR TECHNOLOGY CORPORATION 2008
LTC3417AEFE-2#TRPBF 价格&库存

很抱歉,暂时无法提供与“LTC3417AEFE-2#TRPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货