0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AWL9232RS35P8

AWL9232RS35P8

  • 厂商:

    ANADIGICS

  • 封装:

  • 描述:

    AWL9232RS35P8 - 802.11b/g/n WLAN PA/LNA/RF Switch 2400 - 2500 MHz - ANADIGICS, Inc

  • 数据手册
  • 价格&库存
AWL9232RS35P8 数据手册
802.11b/g/n WLAN PA/LNA/RF Switch Preliminary Data Sheet - Rev 1.0 • 2.5% EVM @ POUT = +19 dBm with IEEE 802.11g 64 QAM OFDM at 54 Mbps • -34 dBr 1st Sidelobe / -56 dBr 2nd Sidelobe ACPR at +21 dBm with IEEE 802.11b at 1, 2, 5.5, 11 Mbps, Gaussian baseband filtering • SP3T RF Switch to Enable Bluetooth Path • Single +3.8 V Supply • Transmit Path Linear Power of Gain 24 dB • Receive Path In-Band Gain of 13 dB • Receive Path Noise Figure of 1.9 dB • 3 x 3 x 0.55 mm ULPCC Package • Leadfree and RoHS Compliant AWL9232 2400 – 2500 MHz FEATURES AW L9 232 APPLICATIONS • 802.11b/g WLAN in Consumer Electronics Products (e.g., cell phones, MP3 players, cameras, etc.) • 2.4 GHz Cordless Phone Handsets/Basestations The ANADIGICS AWL9232 is a high performance InGaP HBT power amplifier, low-noise amplifier and RF switch integrated on a single IC. It is particularly applicable in consumer electronics products (e.g., cell phones, MP3 players, cameras, etc.) that integrate 802.11b/g WLAN in the 2.4 - 2.5 GHz band. Matched to 50  on all RF ports, the part requires only one choke inductor and one power supply decoupling cap off-chip. The antenna port is switched between WLAN transmit, WLAN receive and Bluetooth paths with a low-loss single-pole triple-throw RF switch. The transmit path PA exhibits unparalleled linearity for both IEEE 802.11g and 802.11b WLAN systems under the toughest signal configurations within these standards. The WLAN receive path from the antenna port to receiver output port provides a low noise, high-gain path to the system receiver chain. The AWL9232 is biased by a single +3.8 V supply and consumes ultra-low current in the OFF mode. S35 Package 16 Pin 3 mm x 3 mm x 0.55 mm Surface Mount ULPCC The AWL9232 is manufactured using advanced InGaP HBT technology that offers state-of-the-art reliability, temperature stability and ruggedness. It is provided in a 3 x 3 x 0.55 mm ULPCC package optimized for a 50  system. PRODUCT DESCRIPTION GN D Bias Network Rx RF OUT WLAN Rx Enable BLUETOOTH Enable WLAN Tx Enable Tx RF IN Output Match BLUE T OOT H Vcc Antenna Control Logic Input Match Output Match Bias Network GN D Figure 1: Block Diagram and Pinout 04/2008 Vcc AWL9232 Table 1: Pin Description PIN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 NAME DESCRIPTION BLUETOOTH Bluetooth RF Port GND RX_RF GND LNA_EN BT_EN PA_EN GND PA_IN GND V CC1 VCC2 N/C GND ANT GND Ground Receive RF Port Ground LNA Enable. On/Off control for the Rx Path low noise amplifier Bluetooth Enable. On/Off control for the Bluetooth path Power Amplifier Enable. On/Off control for the the Tx path power amplifier Ground Power Amplifier Input Ground Power Supply. Bias for the 1st and 2nd stage transistors. Power Supply. Bias for the 3rd stage transistors. No connect. Ground Antenna Port. Common connection for the PA, LNA and Bluetooth paths. Ground 2 PRELIMINARY DATA SHEET - Rev 1.0 04/2008 AWL9232 Table 2: Absolute Minimum and Maximum Ratings PARAMETER DC Power Supply Voltage (VCC) DC Power Control Voltage (VPA_EN) DC Power Control Voltage (VLNA_EN) DC Power Control Voltage (VBT_EN) DC Current Consumption Tx RF Input Level (RFIN) Ant RF Input Level (RFIN) Bluetooth RF Input Level (RFIN) Storage Case Temperature Operating Case Temperature ESD Tolerance MSL Rating Reflow Temperature MIN -55 -40 300 MAX +5.0 +5.0 +5.0 +5.0 350 5 -3 30 +150 +85 MSL-2 260 8C UNIT V V V V mA dBm dBm dBm 8C 8C VDC All pins, forward and reverse voltage. Human Body Model (HBM) COMMENTS No RF signal applied No RF signal applied No RF signal applied No RF signal applied Stresses in excess of the absolute ratings may cause permanent damage. Functional operation is not implied under these conditions. Exposure to absolute ratings for extended periods of time may adversely affect reliability. PRELIMINARY DATA SHEET - Rev 1.0 04/2008 3 AWL9232 Table 3: Operating Ranges PARAMETER Operating Frequency (f) DC Power Supply Voltage (VCC) Control Voltage (VPA_EN) Control Voltage (VBT_EN) Control Voltage (VLNA_EN) Control Current (VPA_EN) Control Current (VBT_EN) Control Current (VLNA_EN) Case Temperature (TC) MIN 2400 +3.0 2.0 0 2.0 0 2.0 0 -40 TYP +3.8 3 3 1 MAX 2500 +4.2 VCC +0.4 VCC +0.4 VCC +0.4 25 1 25 1 5 1 +85 UNIT MHz V V V V A A mA A °C PA "ON" PA "SHUTDOWN" BT "ON" BT "SHUTDOWN" LNA "ON" LNA "SHUTDOWN" PA "ON" PA "SHUTDOWN" BT "ON" BT "SHUTDOWN" LNA "ON" LNA "SHUTDOWN" COMMENTS The device may be operated safely over these conditions; however, parametric performance is guaranteed only over the conditions defined in the electrical specifications. 4 PRELIMINARY DATA SHEET - Rev 1.0 04/2008 AWL9232 ELECTRICAL CHARACTERISTICS Table 4: Electrical Specifications - Tx Path Continuous Wave and DC Electrical Specification (TC = +25 °C, VCC = +3.8 V, VPA_EN = +3.1 V, VLNA_EN = 0 V, VBT_EN = 0 V) PARAMETER Shutdown Current Quiescent Current 2nd Harmonic (2fo) 3rd Harmonic (3fo) Input Return Loss, TX RF In Output Return Loss, Antenna Port, Switch in Transit Mode Reverse Isolation (Antenna port to TX Input Port) Stability TON Rise Time MIN 20 TYP 20 50 -30 -20 -10 MAX 90 80 -15 -10 -4 UNIT A mA dBm dBm dB COMMENTS Tx Mode (VCC = +3.8 V, VBT_EN = VPA_EN = VLNA_EN = 0 V) VCC = +3.8 V, VLNA_EN = 0 V, VBT_EN = 0 V, VPA_EN = 3.1 V, RF = off POUT = +21 dBm(1) POUT = +21 dBm(1) - -6 -4 dB Switch in TX position Switch in TX position, signal injected into Antenna Port and measured at TX input Port, PA = "ON" 6:1 VSWR, POUT = +21 dBm(1), -40 OC 10% to 90% of maximum RF power. POUT = +19 dBm(1) 20 - 45 -65 - 2 dB dBc s Notes: (1) Power as measured at antenna port of AWL9232. PRELIMINARY DATA SHEET - Rev 1.0 04/2008 5 AWL9232 Table 5: Electrical Specifications - Tx Path 802.11g (TC = +25 °C, VCC = +3.8 V, VPA_EN = +3.1 V, VLNA_EN = 0 V, VBT_EN = 0 V, 64 QAM OFDM 54 Mbps) PARAMETER Operating Frequency Power Gain Gain Ripple Error Vector Magnitude (EVM)(2) Current Consumption TX Spectrum Mask MIN 2400 21 110 Pass TYP 25 1.0 2.5 -32.0 145 MAX 2500 29 2.5 4.0 -28.0 180 UNIT MHz dB dB % dB mA N/A Across 100 MHz band POUT = +19 dBm(1) POUT = +19 dBm(1) POUT = +19 dBm(1) COMMENTS Notes: (1) Power as measured at antenna port of AWL9232. (2) EVM does not include system noise floor of 1% (-40 dB). Table 6: Electrical Specifications - Tx Path 802.11b (TC = +25 °C, VCC = +3.8 V, VPA_EN = +3.1 V, VLNA_EN = 0 V, VBT_EN = 0 V, 1 Mbps CCK/DSSS, Gaussian Baseband Filtering, bT = 0.50) PARAMETER Operating Frequency Power Gain Gain Ripple Adjacent Channel Power (ACPR) 1st Sidelobe (11-22 MHz Offset) Adjacent Channel Power (ACPR) 2nd Sidelobe (>22 MHz Offset) Tx Spectrum Mask Current Consumption MIN 2400 21 Pass 130 TYP 25 1.0 -34 -56 175 MAX 2500 29 2.5 -30 -50 220 UNIT MHz dB dB dBr dBr N/A mA Across any 100 MHz band POUT = +21 dBm(1) POUT = +21 dBm(1) POUT = +21 dBm(1) POUT = +21 dBm(1) COMMENTS Notes: (1) Power as measured at antenna port of AWL9232. 6 PRELIMINARY DATA SHEET - Rev 1.0 04/2008 AWL9232 Table 7: Electrical Specifications - Rx Path Continuous Wave (TC = +25 °C, VCC = +3.8 V, VPA_EN = 0 V, VLNA_EN = +3.1 V, VBT_EN = 0 V) PARAMETER Gain Gain Ripple IP1dB Current at IP1dB Quiescent Current Noise Figure Return Loss, RX RF Port Return Loss, Antenna Port, Switch in Receive Mode Isolation (Antenna port to RX port) MIN 10 -12 9 9 TYP 13 0.5 -7 14 14 1.9 -15 -5 MAX 16 2.0 19 19 4.0 -6 -3 UNIT dB dB dBm mA mA dB dB dB Includes RF switch and LNA Switch in Rx position, Antenna port terminated in 50  Load Switch in RX position, with 50 Rx path load Switch in TX position, signal injected into Antenna Port and measured at Rx Port, PA = "ON" 6:1 VSWR, PIN = -7 dBm(1), -408C Across any 100 MHz band COMMENTS 20 50 - dB Stability - -65 - dBc Note: (1) Power as measured at antenna port of AWL9232. PRELIMINARY DATA SHEET - Rev 1.0 04/2008 7 AWL9232 Table 8: Electrical Specifications - BT Path Continuous Wave (TC = +25 °C, VCC = +3.8 V, VPA_EN = 0 V, VLNA_EN = 0 V, VBT_EN = +3.1 V) PARAMETER Insertion Loss Quiescent Current OP1dB Return Loss, Bluetooth RF Port MIN 21 TYP 0.7 20 27 -12 MAX 2.0 100 -6 UNIT dB A dBm dB Measured at Ant port Switch in Bluetooth position, Antenna port terminated in 50  load Switch in Bluetooth position, Bluetooth port terminated in 50  load Switch in Bluetooth position, signal injected into Antenna Port and measured at Rx Port COMMENTS 2.4 GHz to 2.5 GHz Return Loss, Antenna Port, Switch in Bluetooth Mode - -11 -6 dB Isolation (Antenna port to RX port) 15 33 - dB 8 PRELIMINARY DATA SHEET - Rev 1.0 04/2008 AWL9232 Table 9: Control Logic Truth Table FEIC Mode Shutdown WLAN Rx Bluetooth WLAN Tx VCC On On On On PA Enable 0 0 0 1 Bluetooth Enable 0 0 1 0 LNA Enable 0 1 0 0 PA Status Off Off Off On LNA Status Off On Off Off Switch Status Not connected WLAN Rx Bluetooth WLAN Tx Table 10: Control Voltages and Timing Parameter LNA Enable Pin Control Voltage Bluetooth Enable Pin Control Voltage PA Enable Pin Control Voltage Min 2.0 2.0 2.0 Typ Max VCC +0.4 VCC +0.4 VCC +0.4 Unit V V V Comments LNA = 1 LNA = 0 Bluetooth = 1 Bluetooth = 0 PA = 1 PA = 0 PRELIMINARY DATA SHEET - Rev 1.0 04/2008 9 AWL9232 PERFORMANCE DATA - TRANSMIT PATH Figure 2: Tx Path Gain and Icc vs. Output Power Across 2: Tx Path (VCC = +3.8 V, TAAcross Freq oC) Figure Freq Gain and Icc vs. Output Power = +25 +25C) (V = +3.8V, T 802.11g 5454Mbps=OFDM 802.11g Mbps OFDM CC A Figure 3: Tx Path Gain and Icc vs. Output Power Acrossigure 3. Tx Path Gain and= 2.45 GHz,Across Temp+3.8 V) F Temp (Freq Icc vs. Output Power VCC = =+ (Freq = 802.11g 2.4554 Mbps3.8V) 54GHz, V OFDMOFDM 802.11g Mbps CC 28 26 24 22 20 18 Gain 2.40 GHz Icc 2.40 GHz Gain 2.45 GHz Icc 2.45 GHz Gain 2.50 GHz Icc 2.50 GHz 280 260 240 28 26 24 22 20 18 280 260 240 220 Gain 220 200 180 Gain 200 180 Current (mA) Gain (dB) Gain (dB) 16 14 12 10 8 6 4 2 0 0 1 160 140 120 100 16 14 12 10 8 6 4 2 0 0 1 Gain -40C Icc -40C Gain +25C Icc +25C Gain +85C Icc +85C 160 140 120 100 Current 80 60 40 20 0 Current 80 60 40 20 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Output Power (dBm) Output Power (dBm) Figure 4: Tx Path Gain and Icc vs. Output Power Across Tx Path Gain and Icc vs. Output Power Across Supply Voltage Supply Voltage (Freq = 2.45 GHz, Figure 4: TA = +25oC)(Freq = 2.45 GHz, T 5425C) 802.11g = + Mbps OFDM 28 26 24 22 20 18 Gain 3.0V Icc 3.0V Gain 3.4V Icc 3.4V Gain 3.8V Icc 3.8V Gain 4.2V Icc 4.2V 802.11g 54Mbps OFDM A Figure 5: Tx Path EVM vs. Output Power Across Frequency (VCC =vs. Output Power Across+25oC) Figure 5: Tx Path EVM +3.8 V, TA = Freq (VCC = +3.8V, TA 802.11g 5454Mbps = +25C) Mbps OFDM 802.11g OFDM 10 9 8 7 EVM 2.40 GHz EVM 2.45 GHz EVM 2.50 GHz 280 260 240 Gain 220 200 180 Gain (dB) 14 12 10 8 6 4 2 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 140 120 100 EVM (%) 16 160 Current (mA) 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Current 80 60 40 20 0 Output Power (dBm) Output Power (dBm) Figure 6: Tx Path EVM vs. Output Power Across Temp (Freq Path2.45 GHz, VCC = +3.8 V) = EVM vs. Output Power Across Temp Figure 6. Tx 3.8 (Freq 2.45 GHz, V = +OFDM 802.11g=5454 Mbps OFDM V) 802.11g Mbps CC Figure 7: Tx Path EVM vs. Output Power Across Power Supply VoltagePower Across Supply Voltage Figure 7: Tx Path EVM vs. Output (Freq = 2.45 GHz, GHz, TA = 802.11g 54 +25C) Mbps OFDM TA = +25oC)(Freq = 2.4554Mbps OFDM 802.11g 10 9 8 7 6 EVM 3.0V EVM 3.4V EVM 3.8V EVM 4.2V 10 9 8 7 6 5 4 3 2 1 EVM -40C EVM +25C EVM +85C EVM (%) EVM (%) 5 4 3 2 1 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Output Power (dBm) Output Power (dBm) 10 PRELIMINARY DATA SHEET - Rev 1.0 04/2008 Current (mA) 21 AWL9232 Figure 8: Tx Path Gain and Icc vs. Output Power Across Freq (VCC vs. Output Power Across= +25oC) Figure 8: Tx Path Gain and Icc = +3.8 V, TA Freq + (V = 802.11b Gaussian+3.8 V, T =(bT25 C) (bT = 0.5), 1 Mbps 802.11b Gaussian Filtering 1 Mbps Filtering = 0.5), CC A Figure 9: Tx Path Gain and Icc vs. Output Power Across Temp (Freq Icc vs. OutputGHz, VCC = +3.8 V) = 2.45 Power Across Temp Figure 9. Tx Path Gain and =+ V) (Freq = 802.11b Root Cosine Filtering 802.11b Gaussian 2.45 GHz, V (bT 3.80.5), 1 Mbps Filtering=(bT = 0.5), 1 Mbps CC 28 26 24 22 20 18 Gain 2.40 GHz Current 2.40 GHz Gain 2.45 GHz Current 2.45 GHz Gain 2.50 GHz Current 2.50 GHz 280 260 240 28 26 24 22 20 280 260 240 220 Gain 220 200 180 Gain 200 180 Current (mA) 18 Gain (dB) 14 12 10 8 6 4 2 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 140 120 Gain (dB) 16 160 16 14 12 10 8 6 4 2 0 0 1 2 Gain -40C Current -40C Gain +25C Current +25C Gain +85C Current +85C 160 140 120 100 Current 100 80 60 40 20 0 Current 80 60 40 20 0 Output Power (dBm) 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Output Power (dBm) Figure 10: Tx Path Gain and Icc vs. Output Power Figure 11: Tx Path ACPR Sidelobes 1&2 vs. Output Power Across FreqSidelobes 1&2+3.8 V, TA Across25oC) (VCC = vs. Output Power = + Freq Across Supply VoltageOutput Power= 2.45 GHz, TA = Figure 10: Tx Path Gain and Icc vs. (Freq Across Supply Voltage Figure 11: Tx Path ACPR (Freq = 2.45 GHz, T = +25 C) = +3.8 V, T = + o 802.11b Gaussian(VFiltering(bT25 C) = Mbps 1 Mbps (bT 1 0.5), Gaussian Filtering Mbps +25 C) 802.11b 802.11b Gaussian Filtering (bT = 0.5), 1(bT = 0.5), 1 Mbps 802.11b Gaussian Filtering = 0.5), A CC A 28 26 24 22 20 18 280 260 240 -22 -26 -30 -34 Gain 220 200 Gain (dB) 16 14 12 10 8 6 4 2 0 0 1 2 Icc 3.0V Icc 3.4V Icc 3.8V Icc 4.2V 160 140 120 ACPR Sidelobe (dBr) Gain 3.0V Gain 3.4V Gain 3.8V Gain 4.2V 180 -38 -42 -46 -50 -54 -58 -62 -66 -70 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1st Sidelobe 2.40GHz 2nd Sidelobe 2.40GHz 1st Sidelobe 2.45GHz 2nd Sidelobe 2.45GHz 1st Sidelobe 2.50GHz 2nd Sidelobe 2.50GHz Current 100 80 60 40 20 0 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Output Power (dBm) Current (mA) Output Power (dBm) Figure 12: Tx Path ACPR Sidelobes 1&2 vs. Output Power AcrossTxTemp (Freq 1&22.45 GHz,Across Temp+3.8 V) Figure 12. Path ACPR Sidelobes = vs. Output Power VCC = =+ V) (Freq = 802.11b Root Cosine 2.45 GHz, V (bT 3.80.5), 1 Mbps Filtering=(bT = 0.5), 1 Mbps 802.11b Root Cosine Filtering CC -30 Figure 13: Tx Path ACPR Sidelobes 1&2 vs. Output oltage Power Across ACPR Sidelobes 1&2 vs. Output Power Across Supply = 2.45 GHz, Power VSupply Voltage (Freq Figure 13: Tx Path (Freq = 2.45 GHz, T = +25 C) TA = +25oC) 802.11b Gaussian 0.5), 1 Mbps (bT = 0.5), 1 Mbps 802.11b Gaussian Filtering (bT = Filtering A -22 -26 -30 -34 -38 -34 ACPR Sidelobe (dBr) -46 2nd Sidelobe -40C 2nd Sidelobe +25C 2nd Sidelobe +85C ACPR Sidelobe (dBr) -42 1st Sidelobe -40C 1st Sidelobe +25C 1st Sidelobe +85C -38 -42 -46 -50 -54 -58 -62 -66 1st Sidelobe 3.00V 2nd Sidelobe 3.00V 1st Sidelobe 3.40V 2nd Sidelobe 3.40V 1st Sidelobe 3.80V 2nd Sidelobe 3.80V 1st Sidelobe 4.20V 2nd Sidelobe 4.20V -50 -54 -58 -62 -66 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 -70 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Output Power (dBm) Output Power (dBm) PRELIMINARY DATA SHEET - Rev 1.0 04/2008 11 Current (mA) AWL9232 30 25 20 15 10 5 0 -5 Figure 14: 2.4 GHz Tx Path S-Parameters S21 Response Figure 14. 2.4GHz Tx Path S-Parameters (VCC = (V 3.83.8V, TT=C 25C)+25oC) + S21 Response = V, + =+ CC A 0 -2 -4 -6 -8 Figure 15: 2.4 GHz Tx Path S-Parameters S11 15. 2.4GHz Tx Path S-Parameters & S22 Response Figure (VCC = +S11=&+3.8V,Response +25oC) 3.8S22 T = +25C) V, TA = (V CC A S21 Mag (dB) S21 (dB) -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 S11/S22 (dB) -10 -12 -14 -16 -18 -20 -22 -24 -26 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 S11 Mag (dB) S22 Mag (dB) Frequency (GHz) Frequency (GHz) 26.0 25.5 25.0 24.5 24.0 Figure 16: 2.4 GHz Tx Path S-Parameters S21 Response Tx Path S-Parameters Figure 16. 2.4GHz (Narrow band) S21 Response V, T= = + ( VCC = +3.83.8V, T A+25C) 258C) (V = + CC A Figure 17: 2.4 GHz Tx Path S-Parameters S11 & S22 Response (Narrow band) Figure 17. 2.4GHz Tx Path S-Parameters S11 & V, TA = (VCC = +3.8S22 Response +258C) 0 -2 (VCC = +3.8V, TA = +25C) S11 Mag (dB) S22 Mag (dB) S21 Mag (dB) -4 -6 -8 S11/S22 (dB) 2.41 2.42 2.43 2.44 2.45 2.46 2.47 2.48 2.49 2.50 S21 (dB) 23.5 23.0 22.5 22.0 21.5 21.0 20.5 20.0 2.40 -10 -12 -14 -16 -18 -20 -22 -24 -26 2.40 Frequency (GHz) 2.41 2.42 2.43 2.44 2.45 2.46 2.47 2.48 2.49 2.50 Frequency (GHz) PERFORMANCE DATA - RECEIVE PATH Figure 18: Receive Path Noise Figure Across Supply FVoltage (VLNA_EN = +3.1 Supply Voltage+25oC) V, TA = igure 16. Receive Path Noise Figure Across 1.8 (VLNA_EN=+3.1V, TA=+25C) Figure 19: Receive Path Input P1dB Across Freq = +3.1 V, T= (VCC = +3.8, VLNA_EN Input P1dB Across Freq +25oC) Figure 17. Receive Path 15 (Vcc=+3.8 V, VLNA_EN=+3.1 V, T=+25C) 1.75 +3.0V Noise Figure +3.4V Noise Figure 1.7 +3.8V Noise Figure +4.2V Noise Figure 14 13 Noise Figure (dB) 1.65 Gain (dB) 12 2.40GHz IP1dB 1.6 11 2.45GHz IP1dB 2.50GHz IP1dB IP1dB Points 1.55 10 1.5 2.4 2.41 2.42 2.43 2.44 2.45 2.46 2.47 2.48 2.49 2.5 9 -25 -24 -23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 Frequency (GHz) Input Power (dBm) 12 PRELIMINARY DATA SHEET - Rev 1.0 04/2008 AWL9232 20 15 10 5 0 -5 -10 Figure 20: Rx Path S-Parameters S21 Response Figure 18. Rx Path S-Parameters S21 Response V, T = 25C) (VCC = +3.83.8 V, TA += +25oC) (V = + CC A 0 -2 -4 -6 -8 Figure 21: Rx Path S-Parameters S11 & 19. Rx Path S-Parameters Figure S22 Response S22 (VCC = (VS11=&+3.8V,Response 25oC) +3.8 V,T TC25C) = =+ CC A S21 (dB) -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 S11/S22 (dB) -10 -12 -14 -16 -18 -20 -22 -24 -26 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 S11 Mag (dB) S22 Mag (dB) S21 Mag (dB) Frequency (GHz) Frequency (GHz) 15.0 14.5 14.0 13.5 13.0 Figure 22: Rx Path S-Parameters S21 ResponsePath S-Parametersband) Figure 22. Rx (Narrow S21 Response (VCC = +3.8 3.8 V,TA += +258C) (V = + V, T = 25C) CC A 0 -2 -4 -6 -8 Figure 23: Rx Path S-Parameters S11 & S22Figure 23. Rx Path S-Parameters Response (Narrow band) (VCC = (VS11=&+3.8V,Response +258C) +3.8S22 TTA 25C) V, = + = CC A S11/S22 (dB) -10 -12 -14 -16 -18 -20 -22 S21 (dB) 12.5 12.0 11.5 11.0 10.5 10.0 2.40 S11 Mag (dB) S22 Mag (dB) S21 Mag (dB) -24 2.41 2.42 2.43 2.44 2.45 2.46 2.47 2.48 2.49 2.50 Frequency (GHz) -26 2.40 2.41 2.42 2.43 2.44 2.45 2.46 2.47 2.48 2.49 2.50 Frequency (GHz) PERFORMANCE DATA - BLUETOOTH PATH Figure 24: Bluetooth S-Parameters S21 Response (VCCFigure 20. Bluetooth S-Parameters oC) = +3.8 V, TA = +25 3.0 2.5 2.0 1.5 1.0 0.5 S21 Response (VCC = +3.8V, TA = +25C) Figure 25: Bluetooth S-Parameters S11 & S22 Response (VCCFigure 21. Bluetooth A = +25oC) = +3.8 V, T S-Parameters 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 S11 & S22 Response (VCC = +3.8V, TA = +25C) S21 Mag (dB) S11 Mag (dB) S22 Mag (dB) S21 (dB) -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 Frequency (GHz) S11/S22 (dB) 0.0 Frequency (GHz) PRELIMINARY DATA SHEET - Rev 1.0 04/2008 13 AWL9232 Figure 26: Bluetooth S-Parameters S21 Response (Narrow band) Figure 27. Bluetooth S-Parameters (VCC = +3.8 Response = +258C) S21 V, TA 0.0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.9 -1.0 -1.1 -1.2 -1.3 -1.4 -1.5 -1.6 -1.7 -1.8 -1.9 -2.0 2.40 2.41 2.42 2.43 2.44 2.45 2.46 2.47 2.48 2.49 2.50 -0.8 (VCC = +3.8V, TA = +25C) Figure 27: Bluetooth S-Parameters S11 & S22 Response (Narrow band) (VCCFigure 27. Bluetooth A = +258C) = +S11 & S22 Response 3.8 V, T S-Parameters 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 2.40 2.41 2.42 2.43 2.44 2.45 2.46 2.47 2.48 2.49 2.50 (VCC = +3.8V, TA = +25C) S21 Mag (dB) S11 Mag (dB) S22 Mag (dB) Frequency (GHz) S11/S22 (dB) S21 (dB) Frequency (GHz) 14 PRELIMINARY DATA SHEET - Rev 1.0 04/2008 AWL9232 APPLICATION INFORMATION Following is an application schematic for the AWL9232. A 10uF decoupling capacitor should be connected to the system voltage supply line for low frequency bypassing. CONNECT TO ANTENNA 16 15 14 13 CONNECT TO BLUETOOTH VCC L1 10.0nH +/-5% C1 0.1uF 16V +/-10% G ND GN D A NT 1 2 N /C BLUE TOOTH GND RX_RF GND VCC2 12 11 10 9 CONNECT TO RX 3 4 AWL9232 LN A _E N PA _E N VCC1 GND PA_IN BT _ EN 5 6 7 CONNECT TO TX 3-BIT CONTROL Figure 26: Application Circuit 8 GN D PRELIMINARY DATA SHEET - Rev 1.0 04/2008 15 AWL9232 PACKAGE OUTLINE The AWL9232 is offered in a 3 mm x 3 mm x 0.55 mm surface mount ULPCC package: C 4 A D I G 16 1 H B Pin 1 Index Area Top View MILLIMETERS DIMENSION A B C D E F G H I MIN 2.90 2.90 0.50 0.00 1.55 TYP MAX 3.00 3.10 3.00 3.10 0.55 0.60 0.02 0.05 1.70 1.85 1.50 BSC. 0.18 0.25 0.30 0.50 BSC. 0.20 0.30 0.40 Side View F E Bottom View 1. All dimensions are in millimeters, angles in degrees. 2. The terminal #1 identifier and pad numbering convention shall conform to JESD 95-1 SPP-012 . 3. Lead coplanarity: 0.05 max. 4. Dimension applies to metalized pad and is measured between 0.25 and 0.30 MM from pad tip. Figure 27: S35 Package Outline - 16 Pin 3 mm x 3 mm x 0.55 mm Surface Mount Module Figure 28: Branding Specification 16 PRELIMINARY DATA SHEET - Rev 1.0 04/2008 AWL9232 RECOMMENDED PCB LAYOUT The following diagram shows the suggested application PCB layout: Figure 29: Recommended PCB Layout (all units in mils) PRELIMINARY DATA SHEET - Rev 1.0 04/2008 17 AWL9232 ORDERING INFORMATION ORDER NUMBER TEMPERATURE RANGE -40 °C to +85°C PACKAGE DESCRIPTION 16 Pin 3 mm x 3 mm x 0.55 mm Surface Mount ULPCC 16 Pin 3 mm x 3 mm x 0.55 mm Surface Mount ULPCC 16 Pin 3 mm x 3 mm x 0.55 mm Surface Mount ULPCC 16 Pin 3 mm x 3 mm x 0.55 mm Surface Mount ULPCC COMPONENT PACKAGING 2,500 piece Tape and Reel 13 inch Reel 2,500 piece Tape and Reel 7 inch Reel AWL9232RS35P8 AWL9232RS35Q7 -40 °C to +85°C AWL9232RS35Q1 -40 °C to +85°C 1000 piece Tape and Reel EVA9232RS35 -40 °C to +85°C 1 piece Evaluation Board ANADIGICS, Inc. 141 Mount Bethel Road Warren, New Jersey 07059, U.S.A. Tel: +1 (908) 668-5000 Fax: +1 (908) 668-5132 URL: http://www.anadigics.com E-mail: Mktg@anadigics.com IMPORTANT NOTICE ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without notice. The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are subject to change prior to a product’s formal introduction. Information in Data Sheets have been carefully checked and are assumed to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges customers to verify that the information they are using is current before placing orders. ANADIGICS products are not intended for use in life support appliances, devices or systems. Use of an ANADIGICS product in any such application without written consent is prohibited. WARNING 18 PRELIMINARY DATA SHEET - Rev 1.0 04/2008
AWL9232RS35P8 价格&库存

很抱歉,暂时无法提供与“AWL9232RS35P8”相匹配的价格&库存,您可以联系我们找货

免费人工找货