0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
8102302HA

8102302HA

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    CFP10

  • 描述:

    OPERATIONAL AMPLIFIER

  • 数据手册
  • 价格&库存
8102302HA 数据手册
Product Folder Sample & Buy Support & Community Tools & Software Technical Documents TL061, TL061A, TL061B TL062, TL062A, TL062B, TL064, TL064A, TL064B SLOS078L – NOVEMBER 1978 – REVISED MAY 2015 TL06xx Low-Power JFET-Input Operational Amplifiers 1 Features 2 Applications • • • • • • • 1 • • • • • • • • Very Low Power Consumption Typical Supply Current: 200 μA (Per Amplifier) Wide Common-Mode and Differential Voltage Ranges Low Input Bias and Offset Currents Common-Mode Input Voltage Range Includes VCC+ Output Short-Circuit Protection High Input Impedance: JFET-Input Stage Internal Frequency Compensation Latch-Up-Free Operation High Slew Rate: 3.5 V/μs Typical On Products Compliant to MIL-PRF-38535, All Parameters Are Tested Unless Otherwise Noted. On All Other Products, Production Processing Does Not Necessarily Include Testing of All Parameters. Tablets White goods Personal electronics Computers 3 Description The JFET-input operational amplifiers of the TL06x series are designed as low-power versions of the TL08x series amplifiers. They feature high input impedance, wide bandwidth, high slew rate, and low input offset and input bias currents. The TL06x series features the same terminal assignments as the TL07x and TL08x series. Device Information(1) PART NUMBER PACKAGE BODY SIZE (NOM) TL06xxD SOIC (14) 8.65 mm × 3.91 mm TL06xxJ CDIP (14) 19.56 mm × 6.92 mm TL06xxN PDIP (14) 19.30 mm × 6.35 mm TL06xxNS SO (14) 10.30 mm × 5.30 mm TL06xxPW TSSOP (14) 5.00 mm × 4.40 mm (1) For all available packages, see the orderable addendum at the end of the data sheet. Schematic Symbol IN+ + IN− − OFFSET N1 OUT OFFSET N2 Offset Null/Compensation TL061 Only 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. TL061, TL061A, TL061B TL062, TL062A, TL062B, TL064, TL064A, TL064B SLOS078L – NOVEMBER 1978 – REVISED MAY 2015 www.ti.com Table of Contents 1 2 3 4 5 6 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Pin Configuration and Functions ......................... Specifications......................................................... 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 7 8 1 1 1 2 3 4 Absolute Maximum Ratings ...................................... 4 ESD Ratings.............................................................. 5 Recommended Operating Conditions....................... 5 Thermal Information - 8 Pins..................................... 5 Thermal Information - 14 Pins................................... 5 Thermal Information - 20 Pins................................... 6 Electrical Characteristics for TL06xC and TL06xxC . 6 Electrical Characteristics for TL06xxC and TL06xI ... 7 Electrical Characteristics for TL06xM and TL064M .. 7 Operating Characteristics........................................ 8 Typical Characteristics ............................................ 9 Parameter Measurement Information ................ 13 Detailed Description ............................................ 14 8.1 Overview ................................................................. 14 8.2 Functional Block Diagram ....................................... 14 8.3 Feature Description................................................. 14 8.4 Device Functional Modes........................................ 15 9 Applications and Implementation ...................... 16 9.1 Application Information............................................ 16 9.2 Typical Applications ................................................ 16 9.3 System Examples ................................................... 17 10 Power Supply Recommendations ..................... 19 11 Layout................................................................... 20 11.1 Layout Guidelines ................................................. 20 11.2 Layout Examples................................................... 20 12 Device and Documentation Support ................. 21 12.1 12.2 12.3 12.4 12.5 12.6 Documentation Support ........................................ Related Links ........................................................ Community Resources.......................................... Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 21 21 21 21 21 21 13 Mechanical, Packaging, and Orderable Information ........................................................... 21 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision K (January 2014) to Revision L Page • Added Applications ................................................................................................................................................................. 1 • Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section .............................. 1 Changes from Revision J (September 2004) to Revision K Page • Updated document to new TI data sheet format - no specification changes. ........................................................................ 1 • Deleted Ordering Information table. ....................................................................................................................................... 1 • Updated Features with Military Disclaimer. ............................................................................................................................ 1 2 Submit Documentation Feedback Copyright © 1978–2015, Texas Instruments Incorporated Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B TL061, TL061A, TL061B TL062, TL062A, TL062B, TL064, TL064A, TL064B www.ti.com SLOS078L – NOVEMBER 1978 – REVISED MAY 2015 5 Pin Configuration and Functions TL061x D, P, and PS Package 8-Pin SOIC, PDIP, and SO Top View 1 8 2 7 3 6 4 5 NC 1OUT NC VCC+ NC OFFSET N1 IN− IN+ VCC− TL062 FK Package 20-Pin LCCC Top View NC VCC+ OUT OFFSET N2 NC 1IN− NC 1IN+ NC TL062x D, JG, P, PS, and PW Package 8-Pin SOIC, CDIP, PDIP, SO, and TSSOP Top View 1 8 2 7 3 6 4 5 VCC+ 2OUT 2IN− 2IN+ 3 2 1 20 19 18 5 17 6 16 7 15 8 14 9 10 11 12 13 NC 2OUT NC 2IN− NC NC VCC− NC 2IN+ NC 1OUT 1IN− 1IN+ VCC− 4 TL064 FK Package 20-Pin LCCC Top View 1 14 2 13 3 12 4 11 5 10 6 9 7 8 4OUT 4IN− 4IN+ VCC− 3IN+ 3IN− 3OUT 1IN+ NC VCC+ NC 2IN+ 4 3 2 1 20 19 18 5 17 6 16 7 15 8 14 9 10 11 12 13 4IN+ NC VCC− NC 3IN+ 2IN− 2OUT NC 3OUT 3IN− 1OUT 1IN− 1IN+ VCC+ 2IN+ 2IN− 2OUT 1IN− 1OUT NC 4OUT 4IN− TL064x D, J, N, NS, PW, and W Package 14-Pin SOIC, CDIP, PDIP, SO, TSSOP and CFP Top View Pin Functions PIN TL061 NAME TL062 D, P, PS D, JG, P, PS, PW 1IN– — 1IN+ — 1OUT — 2IN– — 2IN+ — 2OUT 3IN– TL064 TYPE DESCRIPTION FK D, J, N, NS, PW, W FK 2 5 2 3 I Negative input 3 7 3 4 I Positive input 1 2 1 2 O Output 6 15 6 9 I Negative input 5 12 5 8 I Positive input — 7 17 7 10 O Output — — — 9 13 I Negative input 3IN+ — — — 10 14 I Positive input 3OUT — — — 8 12 O Output 4IN– — — — 13 19 I Negative input 4IN+ — — — 12 18 I Positive input 4OUT — — — 14 20 O Output IN– 2 — — — — I Negative input Copyright © 1978–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B 3 TL061, TL061A, TL061B TL062, TL062A, TL062B, TL064, TL064A, TL064B SLOS078L – NOVEMBER 1978 – REVISED MAY 2015 www.ti.com Pin Functions (continued) PIN TL061 NAME IN+ TL062 TL064 D, JG, P, PS, PW FK D, J, N, NS, PW, W FK 3 — — — — 1 4 8 — Positive input 5 6 8 I DESCRIPTION 1 3 NC TYPE D, P, PS 7 9 — 11 — Do not connect 11 13 14 15 16 18 17 19 OFFSET N1 1 — — — — — Input offset adjustment OFFSET N2 5 — — — — — Input offset adjustment OUT 6 — — — — O Output VCC– 4 4 10 11 16 — Power supply VCC+ 7 8 20 4 6 — Power supply 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) MIN VCC+ VCC– MAX 18 Supply voltage (2) –18 UNIT V VID Differential input voltage (3) ±30 V VI Input voltage (2) (4) ±15 V Duration of output short circuit (5) TJ Tstg (1) (2) (3) (4) (5) 4 Unlimited Operating virtual junction temperature 150 °C Case temperature for 60 seconds FK package 260 °C Lead temperature 1.6 mm (1/16 inch) from case for 60 seconds J, JG, U, or W package 300 °C Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds D, N, NS, P, PS, or PW package 260 °C 150 °C Storage temperature –65 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC−. Differential voltages are at IN+, with respect to IN−. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded. Submit Documentation Feedback Copyright © 1978–2015, Texas Instruments Incorporated Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B TL061, TL061A, TL061B TL062, TL062A, TL062B, TL064, TL064A, TL064B www.ti.com SLOS078L – NOVEMBER 1978 – REVISED MAY 2015 6.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) 2000 Charged-device model (CDM), per JEDEC specification JESD22C101 (2) 2000 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN MAX UNIT VCC+ Supply voltage 5 15 V VCC– Supply voltage –5 –15 V VCM Common-mode voltage VCC– + 4 VCC+ – 4 V TL06xM –55 125 TL06xQ –40 125 TL06xI –40 85 0 70 TA Ambient temperature TL06xC °C 6.4 Thermal Information - 8 Pins TL06xx THERMAL METRIC (1) RθJ A RθJ C(to p) (1) (2) (3) (4) (5) D (SOIC) P (PDIP) PS (SO) PW (TSSOP) JG (CDIP) 8 PINS 8 PINS 8 PINS 8 PINS 8 PINS UNIT Junction-to-ambient thermal resistance (2) (3) 97 85 95 149 — °C/W Junction-to-case (top) thermal resistance (4) (5) — — — — 14.5 °C/W For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. Maximum power dissipation is a function of TJ(max), RθJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TA)/RθJA. Operating at the absolute maximum TJ of 150°C can affect reliability. The package thermal impedance is calculated in accordance with JESD 51-7. Maximum power dissipation is a function of TJ(max), RθJC, and TC. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TC) / RθJC. Operating at the absolute maximum TJ of 150°C can affect reliability. The package thermal impedance is calculated in accordance with MIL-STD-883. 6.5 Thermal Information - 14 Pins TL06xx THERMAL METRIC (1) RθJ Junction-to-ambient thermal resistance (2) (3) A RθJ C(to p) (1) (2) (3) Junction-to-case (top) thermal resistance (2) (3) D (SOIC) N (PDIP) NS (SO) PS (SO) PW (TSSOP) J (CDIP) W (CFP) 14 PINS 14 PINS 14 PINS 8 PINS 14 PINS 14 PINS 14 PINS 86 80 76 95 — — °C/W — — — — 15.05 14.65 °C/W 113 — UNIT For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. Maximum power dissipation is a function of TJ(max), RθJC, and TC. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TC) / RθJC. Operating at the absolute maximum TJ of 150°C can affect reliability. The package thermal impedance is calculated in accordance with MIL-STD-883. Copyright © 1978–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B 5 TL061, TL061A, TL061B TL062, TL062A, TL062B, TL064, TL064A, TL064B SLOS078L – NOVEMBER 1978 – REVISED MAY 2015 www.ti.com 6.6 Thermal Information - 20 Pins TL06xx THERMAL METRIC (1) FK (LCCC) UNIT 20 PINS Junction-to-ambient thermal resistance (2) (3) RθJA RθJC(top) (1) (2) (3) (4) (5) Junction-to-case (top) thermal resistance (4) (5) — °C/W 5.61 °C/W For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. Maximum power dissipation is a function of TJ(max), RθJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TA)/RθJA. Operating at the absolute maximum TJ of 150°C can affect reliability. The package thermal impedance is calculated in accordance with JESD 51-7. Maximum power dissipation is a function of TJ(max), RθJC, and TC. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TC) / RθJC. Operating at the absolute maximum TJ of 150°C can affect reliability. The package thermal impedance is calculated in accordance with MIL-STD-883. 6.7 Electrical Characteristics for TL06xC and TL06xxC VCC± = ±15 V (unless otherwise noted) TEST CONDITIONS (1) PARAMETER MIN TA = 25°C VIO Input offset voltage VO = 0, RS = 50 Ω αVIO Temperature coefficient of input offset voltage VO = 0, RS = 50 Ω, TA = Full range IIO Input offset current VO = 0 TL061AC, TL062AC, TL064AC TL061C, TL062C, TL064C TYP MAX 3 15 TA = Full range MIN TYP 3 20 5 TA = Full range 200 5 30 400 30 mV μV/°C 10 5 TA = 25°C 6 7.5 10 TA = 25°C UNIT MAX 100 pA 3 nA 200 pA 7 nA IIB Input bias current (2) VO = 0 VICR Common-mode input voltage range TA = 25°C ±11 –12 to 15 ±11 –12 to 15 VOM Maximum peak output voltage swing RL = 10 kΩ, TA = 25°C ±10 ±13.5 ±10 ±13.5 RL ≥ 10 kΩ, TA = Full range ±10 AVD Large-signal differential voltage amplification VO = ±10 V, RL ≥ 2 kΩ B1 Unity-gain bandwidth RL = 10 kΩ, TA = 25°C ri Input resistance TA = 25°C CMRR Common-mode rejection ratio VIC = VICRmin, VO = 0, RS = 50 Ω, TA = 25°C 70 86 kSVR Supply-voltage rejection ratio (ΔVCC±/ΔVIO) VCC = ±9 V to ±15 V, VO = 0, RS = 50 Ω, TA = 25°C 70 95 PD Total power dissipation (each amplifier) VO = 0, No load, TA = 25°C 6 7.5 6 7.5 mW ICC Supply current (each amplifier) VO = 0, No load, TA = 25°C 200 250 200 250 µA VO1/VO2 Crosstalk attenuation AVD = 100, TA = 25°C 120 (1) (2) 6 TA = Full range 10 TA = 25°C 3 TA = Full range 3 V V ±10 6 4 6 V/mV 4 1 1 1012 1012 Ω 80 86 dB 80 95 dB 120 MHz dB All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range for TA is 0°C to 70°C for TL06xC, TL06xAC, and TL06xBC and –40°C to 85°C for TL06xI. Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Figure 12. Pulse techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Submit Documentation Feedback Copyright © 1978–2015, Texas Instruments Incorporated Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B TL061, TL061A, TL061B TL062, TL062A, TL062B, TL064, TL064A, TL064B www.ti.com SLOS078L – NOVEMBER 1978 – REVISED MAY 2015 6.8 Electrical Characteristics for TL06xxC and TL06xI VCC± = ±15 V (unless otherwise noted) TEST CONDITIONS (1) PARAMETER TL061BC, TL062BC, TL064BC MIN TA = 25°C VIO Input offset voltage VO = 0, RS = 50 Ω αVIO Temperature coefficient of input offset voltage VO = 0, RS = 50 Ω, TA = Full range IIO Input offset current VO = 0 Input bias current (2) IIB TYP MAX 2 3 TA = Full range MIN MAX 3 6 9 10 5 TA = Full range 100 5 30 TA = Full range 200 30 7 pA 20 nA Maximum peak output voltage swing RL = 10 kΩ, TA = 25°C ±10 ±13.5 RL ≥ 10 kΩ, TA = Full range ±10 AVD Large-signal differential voltage amplification VO = ±10 V, RL ≥ 2 kΩ B1 Unity-gain bandwidth RL = 10 kΩ, TA = 25°C ri Input resistance TA = 25°C CMRR Common-mode rejection ratio VIC = VICRmin, VO = 0, RS = 50 Ω, TA = 25°C 80 86 kSVR Supply-voltage rejection ratio (ΔVCC±/ΔVIO) VCC = ±9 V to ±15 V, VO = 0, RS = 50 Ω, TA = 25°C 80 95 PD Total power dissipation (each amplifier) VO = 0, No load, TA = 25°C 6 7.5 6 7.5 mW ICC Supply current (each amplifier) VO = 0, No load, TA = 25°C 200 250 200 250 µA VO1/VO2 Crosstalk attenuation AVD = 100, TA = 25°C 120 (1) (2) TA = 25°C 4 TA = Full range 4 ±13.5 nA 200 ±11 VOM ±10 pA 10 TA = 25°C Common-mode input voltage range ±11 100 –12 to 15 VICR –12 to 15 mV μV/°C 10 3 TA = 25°C UNIT TYP 5 TA = 25°C VO = 0 TL061I, TL062I, TL064I V V ±10 6 4 6 V/mV 4 1 1 1012 1012 MHz Ω 80 86 dB 80 95 dB 120 dB All characteristics are measured under open-loop conditions with zero common-mode input voltage, unless otherwise specified. Full range for TA is 0°C to 70°C for TL06xC, TL06xAC, and TL06xBC and –40°C to 85°C for TL06xI. Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Figure 12. Pulse techniques are used to maintain the junction temperature as close to the ambient temperature as possible. 6.9 Electrical Characteristics for TL06xM and TL064M VCC± = ±15 V (unless otherwise noted) TEST CONDITIONS (1) PARAMETER TL061M, TL062M MIN TA = 25°C VIO Input offset voltage VO = 0, RS = 50 Ω αVIO Temperature coefficient of input offset voltage VO = 0, RS = 50 Ω, TA = –55°C to 125°C IIO Input offset current VO = 0 VICR (1) (2) (3) Common-mode input voltage range VO = 0 TA = 25°C 3 6 MIN TYP MAX 3 9 9 15 10 5 100 5 100 20 (2) 20 (2) TA = 125°C 20 20 30 200 30 200 TA = –55°C 50 (2) 50 (2) TA = 125°C 50 50 ±11 –12 to 15 ±11 UNIT mV μV/°C 10 TA = –55°C TA = 25°C Input bias current (3) MAX TA = –55°C to 125°C TA = 25°C IIB TL064M TYP –12 to 15 pA nA pA nA V All characteristics are measured under open-loop conditions, with zero common-mode voltage, unless otherwise specified. This parameter is not production tested. Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Figure 12. Pulse techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Copyright © 1978–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B 7 TL061, TL061A, TL061B TL062, TL062A, TL062B, TL064, TL064A, TL064B SLOS078L – NOVEMBER 1978 – REVISED MAY 2015 www.ti.com Electrical Characteristics for TL06xM and TL064M (continued) VCC± = ±15 V (unless otherwise noted) TEST CONDITIONS (1) PARAMETER TL061M, TL062M MIN TYP ±13.5 VOM Maximum peak output voltage swing RL = 10 kΩ, TA = 25°C ±10 RL ≥ 10 kΩ, TA = –55°C to 125°C ±10 AVD Large-signal differential voltage amplification VO = ±10 V, RL ≥ 2 kΩ B1 Unity-gain bandwidth RL = 10 kΩ, TA = 25°C TA = 25°C 4 TA = –55°C to 125°C 4 TL064M MAX MIN TYP ±10 ±13.5 MAX V ±10 6 4 UNIT 6 V/mV 4 MHz 12 12 Ω ri Input resistance TA = 25°C CMRR Common-mode rejection ratio VIC = VICRmin, VO = 0, RS = 50 Ω, TA = 25°C 80 86 80 86 dB kSVR Supply-voltage rejection ratio (ΔVCC±/ΔVIO) VCC = ±9 V to ±15 V, VO = 0, RS = 50 Ω, TA = 25°C 80 95 80 95 dB PD Total power dissipation (each amplifier) VO = 0, No load, TA = 25°C 6 7.5 6 7.5 mW ICC Supply current (each amplifier) VO = 0, No load, TA = 25°C 200 250 200 250 µA VO1/VO2 Crosstalk attenuation AVD = 100, TA = 25°C 120 10 10 120 dB 6.10 Operating Characteristics VCC± = ±15 V, TA= 25°C PARAMETER TEST CONDITIONS SR Slew rate at unity gain (1) VI = 10 V, RL = 10 kΩ, CL = 100 pF, see Figure 16 tr Rise-time Overshoot factor VI = 20 V, RL = 10 kΩ, CL = 100 pF, see Figure 16 Equivalent input noise voltage RS = 20 Ω f = 1 kHz Vn (1) 8 MIN TYP MAX UNIT 1.5 3.5 V/μs 0.2 μs 10% 42 nV/√Hz Slew rate at –55°C to 125°C is 0.7 V/μs min. Submit Documentation Feedback Copyright © 1978–2015, Texas Instruments Incorporated Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B TL061, TL061A, TL061B TL062, TL062A, TL062B, TL064, TL064A, TL064B www.ti.com SLOS078L – NOVEMBER 1978 – REVISED MAY 2015 6.11 Typical Characteristics Data at high and low temperatures are applicable only within the specified operating free-air temperature ranges of the various devices. Table 1. Table of Graphs FIGURE Maximum peak output voltage versus Supply voltage Figure 1 Maximum peak output voltage versus Free-air temperature Figure 2 Maximum peak output voltage versus Load resistance Figure 3 Maximum peak output voltage versus Frequency Figure 4 Differential voltage amplification versus Free-air temperature Figure 5 Large-signal differential voltage amplification versus Frequency Figure 6 Phase shift versus Frequency Figure 6 Supply current versus Supply voltage Figure 7 Supply current versus Free-air temperature Figure 8 Total power dissipation versus Free-air temperature Figure 9 Common-mode rejection ratio versus Free-air temperature Figure 10 Normalized unity-gain bandwidth versus Free-air temperature Figure 11 Normalized slew rate versus Free-air temperature Figure 11 Normalized phase shift versus Free-air temperature Figure 11 Input bias current versus Free-air temperature Figure 12 Voltage-follower large-signal pulse response versus Time Figure 13 Output voltage versus Elapsed time Figure 14 Equivalent input noise voltage versus Frequency Figure 15 Copyright © 1978–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B 9 TL061, TL061A, TL061B TL062, TL062A, TL062B, TL064, TL064A, TL064B SLOS078L – NOVEMBER 1978 – REVISED MAY 2015 www.ti.com ±15 VOM − Maximum Peak Output Voltage − V RL = 10 kΩ TA = 25°C See Figure 2 ±12.5 ±12.5 ±10 ±7.5 ±5 ±2.5 ±10 ±7.5 ±5 ±2.5 0 2 0 4 6 8 10 12 14 0 −75 16 VCC± = ±15 V RL = 10 kΩ See Figure 2 −50 |VCC±| − Supply Voltage − V Figure 1. Maximum Peak Output Voltage vs Supply Voltage VOM − Maximum Peak Output Voltage − V VOM − Maximum Peak Output Voltage − V VCC± = ±15 V TA = 25°C See Figure 2 ±10 ±7.5 ±5 ±2.5 100 50 VCC± = ±15 V 75 100 125 RL = 10 kΩ TA = 25°C See Figure 2 ±12.5 VCC± = ±12 V ±10 ±7.5 ±5 VCC± = ±5 V ±2.5 200 400 700 1 k 2k 4k 1k 7 k 10 k 10 k 100 k 100 10 AVD − Large-Signal Differential Voltage Amplification − V/mV VCC± = ±15 V RL = 10 kΩ 4 2 1 −75 10 M Figure 4. Maximum Peak Output Voltage vs Frequency Figure 3. Maximum Peak Output Voltage vs Load Resistance 7 1M f − Frequency − Hz RL − Load Resistance − Ω AVD − Differential Voltage Amplification − V/mV 25 0 0 VCC± = ±15 V Rext = 0 RL = 10 kΩ TA = 25°C 10 Phase Shift (right scale) 1 −25 0 25 50 75 100 TA − Free-Air Temperature − °C 125 Submit Documentation Feedback 0° 45° 90° 0.1 AVD (left scale) 0.01 135° 0.001 −50 Figure 5. Differential Voltage Amplification vs Free-Air Temperature 10 0 Figure 2. Maximum Peak Output Voltage vs Free-Air Temperature ±15 ±12.5 −25 TA − Free-Air Temperature − °C 1 10 100 1k Phase Shift VOM − Maximum Peak Output Voltage − V ±15 10 k 100 k 1M 180° 10 M f − Frequency − Hz Figure 6. Large-Signal Differential Voltage Amplification and Phase Shift vs Frequency Copyright © 1978–2015, Texas Instruments Incorporated Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B TL061, TL061A, TL061B TL062, TL062A, TL062B, TL064, TL064A, TL064B www.ti.com SLOS078L – NOVEMBER 1978 – REVISED MAY 2015 250 TA = 25°C No Signal No Load 200 I CC± ICC − Supply Current − µA I CC± ICC − Supply Current − µA 250 150 100 50 150 100 50 0 2 4 6 8 10 12 14 16 |VCC±| − Supply Voltage − V TA − Free-Air Temperature − °C Figure 7. Supply Current vs Supply Voltage Figure 8. Supply Current vs Free-Air Temperature 87 CMRR − Common-Mode Rejection Ratio − dB 30 25 TL064 VCC± = ±15 V No Signal No Load 20 15 TL062 10 TL061 5 0 −75 −50 −25 0 25 50 75 100 VCC± = ±15 V RL = 10 kΩ 86 85 84 83 82 81 −75 125 Slew Rate (left scale) 0.7 −75 1 0.99 VCC± = ±15 V RL = 10 kΩ f = B1 for Phase Shift −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C 0.98 0.97 125 Figure 11. Normalized Unity-Gain Bandwidth, Slew Rate, and Phase Shift vs Free-Air Temperature Copyright © 1978–2015, Texas Instruments Incorporated IIB IIB − Input Bias Current − nA 1.01 0.9 0.8 25 50 75 100 125 VCC± = ±15 V 1.02 Phase Shift (right scale) 1.1 1 0 100 40 Unity-Gain Bandwidth (left scale) −25 Figure 10. All Except TL06_C Common-Mode Rejection Ratio vs Free-Air Temperature 1.03 Normalized Phase Shift Normalized Unity-Gain Bandwidth and Slew Rate Figure 9. Total Power Dissipation vs Free-Air Temperature 1.3 −50 TA − Free-Air Temperature − °C TA − Free-Air Temperature − °C 1.2 VCC± = ±15 V No Signal No Load 0 −75 0 P PD D − Total Power Dissipation − mW 200 10 4 1 0.4 0.1 0.04 0.01 −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C 125 Figure 12. Input Bias Current vs Free-Air Temperature Submit Documentation Feedback Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B 11 TL061, TL061A, TL061B TL062, TL062A, TL062B, TL064, TL064A, TL064B SLOS078L – NOVEMBER 1978 – REVISED MAY 2015 www.ti.com 6 28 Input 24 Overshoot VO − Output Voltage − mV Input and Output Voltages − V 4 2 0 Output −2 VCC± = ±15 V RL = 10 kΩ CL = 100 pF TA = 25°C −4 −6 20 16 12 8 4 10% VCC± = ±15 V RL = 10 kΩ TA = 25°C 0 tr −4 0 2 4 6 t − Time − µs 8 0 10 Figure 13. Voltage-Follower Large-Signal Pulse Response vs Time 0.2 0.4 0.6 0.8 1 t − Elapsed Time − µs 1.2 1.4 Figure 14. Output Voltage vs Elapsed Time V n − Equivalent Input Noise Voltage − nV/ Hz 100 VCC± = ±15 V RS = 20 Ω TA = 25°C 90 80 70 60 50 40 30 20 10 0 10 40 100 400 1 k 4 k 10 k f − Frequency − Hz 40 k 100 k Figure 15. Equivalent Input Noise Voltage vs Frequency 12 Submit Documentation Feedback Copyright © 1978–2015, Texas Instruments Incorporated Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B TL061, TL061A, TL061B TL062, TL062A, TL062B, TL064, TL064A, TL064B www.ti.com SLOS078L – NOVEMBER 1978 – REVISED MAY 2015 7 Parameter Measurement Information − OUT VI + RL = 2 kΩ CL = 100 pF Figure 16. Unity-Gain Amplifier 10 kΩ 1 kΩ − VI OUT + RL CL = 100 pF Figure 17. Gain-of-10 Inverting Amplifier − IN− TL061 N2 + IN+ OUT N1 100 kΩ 1.5 kΩ VCC− Figure 18. Input Offset-Voltage Null Circuit Copyright © 1978–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B 13 TL061, TL061A, TL061B TL062, TL062A, TL062B, TL064, TL064A, TL064B SLOS078L – NOVEMBER 1978 – REVISED MAY 2015 www.ti.com 8 Detailed Description 8.1 Overview The JFET-input operational amplifiers of the TL06x series are designed as low-power versions of the TL08x series amplifiers. They feature high input impedance, wide bandwidth, high slew rate, and low input offset and input bias currents. The TL06x series features the same terminal assignments as the TL07x and TL08x series. Each of these JFET-input operational amplifiers incorporates well-matched, high-voltage JFET and bipolar transistors in an integrated circuit. The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from −40°C to 85°C, and the M-suffix devices are characterized for operation over the full military temperature range of −55°C to 125°C. 8.2 Functional Block Diagram VCC+ IN+ 50 Ω IN− 100 Ω C1 OFFSET N1 OFFSET N2 OUT VCC− TL061 Only C1 = 10 pF on TL061, TL062, and TL064 Component values shown are nominal. 8.3 Feature Description 8.3.1 Common-Mode Rejection Ratio The common-mode rejection ratio (CMRR) of an amplifier is a measure of how well the device rejects unwanted input signals common to both input leads. It is found by taking the ratio of the change in input offset voltage to the change in the input voltage and converting to decibels. Ideally the CMRR is infinite, but in practice, amplifiers are designed to have it as high as possible. The CMRR of this device is 86 dB. 8.3.2 Slew Rate The slew rate is the rate at which an operational amplifier can change its output when there is a change on the input. These devices have a 3.5-V/μs slew rate. 14 Submit Documentation Feedback Copyright © 1978–2015, Texas Instruments Incorporated Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B TL061, TL061A, TL061B TL062, TL062A, TL062B, TL064, TL064A, TL064B www.ti.com SLOS078L – NOVEMBER 1978 – REVISED MAY 2015 8.4 Device Functional Modes These devices are powered on when the supply is connected. This device can be operated as a single supply operational amplifier or dual supply amplifier depending on the application. Copyright © 1978–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B 15 TL061, TL061A, TL061B TL062, TL062A, TL062B, TL064, TL064A, TL064B SLOS078L – NOVEMBER 1978 – REVISED MAY 2015 www.ti.com 9 Applications and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 9.1 Application Information The TL06x series of operational amplifiers can be used in countless applications. The few applications in this section show principles used in all applications of these parts. 9.2 Typical Applications 9.2.1 Inverting Amplifier Application A typical application for an operational amplifier in an inverting amplifier. This amplifier takes a positive voltage on the input, and makes it a negative voltage of the same magnitude. In the same manner, it also makes negative voltages positive. RF RI Vsup+ VOUT VIN + Vsup- Figure 19. Schematic for Inverting Amplifier Application 9.2.1.1 Design Requirements The supply voltage must be chosen such that it is larger than the input voltage range and output range. For instance, this application will scale a signal of ±0.5 V to ±1.8 V. Setting the supply at ±12 V is sufficient to accommodate this application. 9.2.1.2 Detailed Design Procedure Determine the gain required by the inverting amplifier: (1) (2) Once the desired gain is determined, choose a value for RI or RF. Choosing a value in the kilohm range is desirable because the amplifier circuit will use currents in the milliamp range. This ensures the part will not draw too much current. This example will choose 10 kΩ for RI which means 36 kΩ will be used for RF. This was determined by Equation 3. (3) 16 Submit Documentation Feedback Copyright © 1978–2015, Texas Instruments Incorporated Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B TL061, TL061A, TL061B TL062, TL062A, TL062B, TL064, TL064A, TL064B www.ti.com SLOS078L – NOVEMBER 1978 – REVISED MAY 2015 Typical Applications (continued) 9.2.1.3 Application Curve 2 VIN 1.5 VOUT 1 Volts 0.5 0 -0.5 -1 -1.5 -2 0 0.5 1 Time (ms) 1.5 2 Figure 20. Input and Output Voltages of the Inverting Amplifier 9.3 System Examples 9.3.1 General Applications RF = 100 kΩ VCC+ 10 kΩ 0.1% 10 kΩ 0.1% − 3.3 kΩ + VCC+ VCC− − TL061 Output 100 kΩ + VCC+ VCC+ + TL064 CF = 3.3 µF 1 MΩ + − TL064 10 kΩ 0.1% − TL064 10 kΩ 0.1% 100 kΩ 3.3 kΩ + 100 kΩ f= VCC− VCC− Figure 21. Instrumentation Amplifier Figure 22. 0.5-Hz Square-Wave Oscillator − 1 MΩ − − 1 µF + Figure 23. High-Q Notch Filter Copyright © 1978–2015, Texas Instruments Incorporated Output B 100 kΩ VCC+ VCC+ TL064 Output C + C3 = 110 pF 2 1 fO = = 1 kHz 2π ´ R1´ C1 C1 = C2 = 100 µF − C1 TL064 100 kΩ 100 kΩ R1 = R2 = 2 ´ R3 = 1.5 MΩ VCC+ + + Input VCC− TL064 − Output R2 R3 C2 Output A + C3 VCC+ TL064 VCC+ TL061 R1 9.1 kΩ 1 2π ´ RF ´ CF VCC+ Input 1 kΩ −15 V VCC− Input B Output − Input A 15 V TL064 100 kΩ Figure 24. Audio-Distribution Amplifier Submit Documentation Feedback Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B 17 TL061, TL061A, TL061B TL062, TL062A, TL062B, TL064, TL064A, TL064B SLOS078L – NOVEMBER 1978 – REVISED MAY 2015 www.ti.com System Examples (continued) VCC+ 15 V 10 kΩ 10 kΩ 0.1 µF 10 kΩ 10 kΩ + 100 pF Output TL061 10 kΩ − Output TL061 50 Ω 10 kΩ + N2 10 kΩ 5 kΩ 1 MΩ − TIL601 10 kΩ 10 kΩ 0.1 µF N1 250 kΩ −15 V Figure 25. Low-Level Light Detector Preamplifier 10 kΩ 0.1 µF 100 kΩ 0.06 µF 0.06 µF + TL061 − 1.2 MΩ 47 kΩ Figure 26. AC Amplifier 1 kΩ IN+ + TL062 − 1 µF 10 kΩ 0.002 µF 100 kΩ 50 kΩ Output 100 kΩ 2.7 kΩ 100 kΩ 270 Ω 0.003 µF 0.001 µF + 10 kΩ 100 kΩ 50 kΩ 20 µF 0.02 µF 1 kΩ 1 kΩ 100 kΩ IN− Figure 27. Microphone Preamplifier With Tone Control 18 Submit Documentation Feedback − TL062 + Figure 28. Instrumentation Amplifier Copyright © 1978–2015, Texas Instruments Incorporated Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B TL061, TL061A, TL061B TL062, TL062A, TL062B, TL064, TL064A, TL064B www.ti.com SLOS078L – NOVEMBER 1978 – REVISED MAY 2015 System Examples (continued) IC PREAMPLIFIER RESPONSE CHARACTERISTICS 25 Max Bass 20 VCC± = ±15 V TA = 25°C 15 Voltage Amplification − dB Max Treble 10 5 0 −5 −10 −15 −20 Min Treble Min Bass −25 20 40 100 200 400 1k 2k 4k 10 k 20 k f − Frequency − Hz 220 kΩ 0.00375 µF 0.003 µF 10 kΩ 0.03 µF 0.01 µF 27 kΩ MIN 100 kΩ Bass MAX VCC+ 100 Ω 1 µF Input 100 Ω + TL062 − 10 kΩ 3.3 kΩ MIN 100 kΩ Treble MAX VCC+ + TL062 0.03 µF VCC− VCC− 0.003 µF 10 kΩ Balance 10 pF 75 µF 47 kΩ + 50 pF Output − 5 kΩ Gain 10 pF + 68 kΩ 47 µF Figure 29. IC Preamplifier 10 Power Supply Recommendations CAUTION Supply voltages larger than 36 V for a single supply, or outside the range of ±18 V for a dual supply can permanently damage the device (see the Absolute Maximum Ratings). Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high impedance power supplies. For more detailed information on bypass capacitor placement, refer to the Layout. Copyright © 1978–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B 19 TL061, TL061A, TL061B TL062, TL062A, TL062B, TL064, TL064A, TL064B SLOS078L – NOVEMBER 1978 – REVISED MAY 2015 www.ti.com 11 Layout 11.1 Layout Guidelines For best operational performance of the device, use good PCB layout practices, including: • Noise can propagate into analog circuitry through the power pins of the circuit as a whole, as well as the operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low impedance power sources local to the analog circuitry. – Connect low-ESR, 0.1-μF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single supply applications. • Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital and analog grounds, paying attention to the flow of the ground current. For more detailed information, refer to Circuit Board Layout Techniques, (SLOA089). • To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If it is not possible to keep them separate, it is much better to cross the sensitive trace perpendicular as opposed to in parallel with the noisy trace. • Place the external components as close to the device as possible. Keeping RF and RG close to the inverting input minimizes parasitic capacitance, as shown in Layout Examples. • Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit. • Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials. 11.2 Layout Examples RIN VIN RG + VOUT RF Figure 30. Operational Amplifier Schematic for Noninverting Configuration Place components close to device and to each other to reduce parasitic errors Run the input traces as far away from the supply lines as possible RF NC NC IN1í VCC+ IN1+ OUT VCCí NC VS+ Use low-ESR, ceramic bypass capacitor RG GND VIN RIN GND Only needed for dual-supply operation GND VS(or GND for single supply) VOUT Ground (GND) plane on another layer Figure 31. Operational Amplifier Board Layout for Noninverting Configuration 20 Submit Documentation Feedback Copyright © 1978–2015, Texas Instruments Incorporated Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B TL061, TL061A, TL061B TL062, TL062A, TL062B, TL064, TL064A, TL064B www.ti.com SLOS078L – NOVEMBER 1978 – REVISED MAY 2015 12 Device and Documentation Support 12.1 Documentation Support 12.1.1 Related Documentation For related documentation, see the following: Circuit Board Layout Techniques, SLOA089 12.2 Related Links The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. Table 2. Related Links PARTS PRODUCT FOLDER SAMPLE & BUY TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY TL061 Click here Click here Click here Click here Click here TL061A Click here Click here Click here Click here Click here TL061B Click here Click here Click here Click here Click here TL062 Click here Click here Click here Click here Click here TL062A Click here Click here Click here Click here Click here TL062B Click here Click here Click here Click here Click here TL064 Click here Click here Click here Click here Click here TL064A Click here Click here Click here Click here Click here TL064B Click here Click here Click here Click here Click here 12.3 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support. 12.4 Trademarks E2E is a trademark of Texas Instruments. 12.5 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. 12.6 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation. Copyright © 1978–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B 21 PACKAGE OPTION ADDENDUM www.ti.com 28-Nov-2015 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) 81023012A OBSOLETE LCCC FK 20 TBD Call TI Call TI -55 to 125 81023022A ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 81023022A TL062MFKB 8102302HA NRND CFP U 10 1 TBD A42 N / A for Pkg Type -55 to 125 8102302HA TL062M 8102302PA ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 8102302PA TL062M 81023032A ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 81023032A TL064MFKB 8102303CA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 8102303CA TL064MJB 8102303DA ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type -55 to 125 8102303DA TL064MWB TL061ACD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 061AC TL061ACDE4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 061AC TL061ACDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 061AC TL061ACP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 TL061ACP TL061ACPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 TL061ACP TL061BCD OBSOLETE SOIC D 8 TBD Call TI Call TI 0 to 70 TL061BCP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 TL061BCP TL061BCPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 TL061BCP TL061CD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL061C TL061CDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL061C TL061CP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 TL061CP Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 28-Nov-2015 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) TL061CPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 TL061CP TL061CPSR ACTIVE SO PS 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T061 TL061CPWLE OBSOLETE TSSOP PW 8 TBD Call TI Call TI 0 to 70 TL061ID ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL061I TL061IDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL061I TL061IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL061I TL061IP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 85 TL061IP TL061IPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 85 TL061IP TL061MJG OBSOLETE CDIP JG 8 TBD Call TI Call TI -55 to 125 TL061MJGB OBSOLETE CDIP JG 8 TBD Call TI Call TI -55 to 125 TL062ACD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 062AC TL062ACDE4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 062AC TL062ACDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 062AC TL062ACDRE4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 062AC TL062ACDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 062AC TL062ACJG OBSOLETE CDIP JG 8 TBD Call TI Call TI 0 to 70 TL062ACP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 TL062ACP TL062ACPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 TL062ACP TL062ACPSR ACTIVE SO PS 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T062A TL062ACPSRG4 ACTIVE SO PS 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T062A Addendum-Page 2 Samples PACKAGE OPTION ADDENDUM www.ti.com 28-Nov-2015 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) TL062BCD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 062BC TL062BCDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 062BC TL062BCDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 062BC TL062BCP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 TL062BCP TL062BCPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 TL062BCP TL062CD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL062C TL062CDE4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL062C TL062CDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL062C TL062CDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL062C TL062CDRE4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL062C TL062CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL062C TL062CJG OBSOLETE CDIP JG 8 TBD Call TI Call TI 0 to 70 TL062CP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 TL062CP TL062CPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 TL062CP TL062CPSLE OBSOLETE SO PS 8 TBD Call TI Call TI 0 to 70 TL062CPSR ACTIVE SO PS 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T062 TL062CPSRG4 ACTIVE SO PS 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T062 TL062CPW ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T062 TL062CPWG4 ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T062 Addendum-Page 3 Samples PACKAGE OPTION ADDENDUM www.ti.com 28-Nov-2015 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) TL062CPWLE OBSOLETE TSSOP PW 8 TBD Call TI Call TI 0 to 70 TL062CPWR ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T062 TL062CPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T062 TL062ID ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL062I TL062IDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL062I TL062IDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL062I TL062IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL062I TL062IJG OBSOLETE CDIP JG 8 TBD Call TI Call TI -40 to 85 TL062IP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 85 TL062IP TL062IPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 85 TL062IP TL062IPWR ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 Z062 TL062IPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 Z062 TL062MFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 81023022A TL062MFKB TL062MJG ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 TL062MJG TL062MJGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 8102302PA TL062M TL064ACD ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL064AC TL064ACDE4 ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL064AC TL064ACDR ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL064AC TL064ACDRE4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL064AC Addendum-Page 4 Samples PACKAGE OPTION ADDENDUM www.ti.com 28-Nov-2015 Orderable Device Status (1) TL064ACN ACTIVE Package Type Package Pins Package Drawing Qty PDIP N 14 Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 TL064ACN (4/5) TL064ACP OBSOLETE PDIP NFF 14 TBD Call TI Call TI 0 to 70 LF444ACN TL064BCD ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL064BC TL064BCDG4 ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL064BC TL064BCDR ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL064BC TL064BCN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 TL064BCN TL064BCNE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 TL064BCN TL064BCP OBSOLETE PDIP NFF 14 TBD Call TI Call TI 0 to 70 LF444ACN TL064CD ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL064C TL064CDE4 ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL064C TL064CDR ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL064C TL064CDRE4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL064C TL064CDRG4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL064C TL064CN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 TL064CN TL064CNE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 TL064CN TL064CNSR ACTIVE SO NS 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL064 TL064CNSRG4 ACTIVE SO NS 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL064 TL064CP OBSOLETE PDIP NFF 14 TBD Call TI Call TI 0 to 70 LF444CN TL064CPW ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T064 Addendum-Page 5 Samples PACKAGE OPTION ADDENDUM www.ti.com 28-Nov-2015 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) TL064CPWE4 ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T064 TL064CPWG4 ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T064 TL064CPWLE OBSOLETE TSSOP PW 14 TBD Call TI Call TI 0 to 70 TL064CPWR ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T064 TL064CPWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T064 TL064ID ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL064I TL064IDG4 ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL064I TL064IDR ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM -40 to 85 TL064I TL064IDRG4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL064I TL064IN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 85 TL064IN TL064INE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 85 TL064IN TL064INS ACTIVE SO NS 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL064I TL064INSR ACTIVE SO NS 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL064I TL064IPWR ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 Z064 TL064MFK NRND LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 TL064MFK TL064MFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 81023032A TL064MFKB TL064MJ ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 TL064MJ TL064MJB ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 8102303CA TL064MJB TL064MWB ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type -55 to 125 8102303DA TL064MWB Addendum-Page 6 Samples PACKAGE OPTION ADDENDUM www.ti.com 28-Nov-2015 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF TL062, TL062M, TL064, TL064M : • Catalog: TL062, TL064 • Military: TL062M, TL064M Addendum-Page 7 PACKAGE OPTION ADDENDUM www.ti.com 28-Nov-2015 NOTE: Qualified Version Definitions: • Catalog - TI's standard catalog product • Military - QML certified for Military and Defense Applications Addendum-Page 8 PACKAGE MATERIALS INFORMATION www.ti.com 24-Jan-2015 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant TL061ACDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TL061CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TL061CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TL061CPSR SO PS 8 2000 330.0 16.4 8.2 6.6 2.5 12.0 16.0 Q1 TL061IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TL061IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TL062ACDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TL062ACPSR SO PS 8 2000 330.0 16.4 8.2 6.6 2.5 12.0 16.0 Q1 TL062BCDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TL062CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TL062CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TL062CPWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1 TL062IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TL062IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TL062IPWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1 TL064ACDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 TL064BCDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 TL064CPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 24-Jan-2015 Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant TL064IDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 TL064IDRG4 SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 TL064INSR SO NS 14 2000 330.0 16.4 8.2 10.5 2.5 12.0 16.0 Q1 TL064IPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) TL061ACDR SOIC D 8 2500 340.5 338.1 20.6 TL061CDR SOIC D 8 2500 367.0 367.0 35.0 TL061CDR SOIC D 8 2500 340.5 338.1 20.6 TL061CPSR SO PS 8 2000 367.0 367.0 38.0 TL061IDR SOIC D 8 2500 340.5 338.1 20.6 TL061IDR SOIC D 8 2500 367.0 367.0 35.0 TL062ACDR SOIC D 8 2500 340.5 338.1 20.6 TL062ACPSR SO PS 8 2000 367.0 367.0 38.0 TL062BCDR SOIC D 8 2500 340.5 338.1 20.6 TL062CDR SOIC D 8 2500 340.5 338.1 20.6 TL062CDR SOIC D 8 2500 367.0 367.0 35.0 TL062CPWR TSSOP PW 8 2000 367.0 367.0 35.0 TL062IDR SOIC D 8 2500 367.0 367.0 35.0 Pack Materials-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 24-Jan-2015 Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) TL062IDR SOIC D 8 2500 340.5 338.1 20.6 TL062IPWR TSSOP PW 8 2000 367.0 367.0 35.0 TL064ACDR SOIC D 14 2500 367.0 367.0 38.0 TL064BCDR SOIC D 14 2500 367.0 367.0 38.0 TL064CPWR TSSOP PW 14 2000 367.0 367.0 35.0 TL064IDR SOIC D 14 2500 367.0 367.0 38.0 TL064IDRG4 SOIC D 14 2500 367.0 367.0 38.0 TL064INSR SO NS 14 2000 367.0 367.0 38.0 TL064IPWR TSSOP PW 14 2000 367.0 367.0 35.0 Pack Materials-Page 3 MECHANICAL DATA MCER001A – JANUARY 1995 – REVISED JANUARY 1997 JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE 0.400 (10,16) 0.355 (9,00) 8 5 0.280 (7,11) 0.245 (6,22) 1 0.063 (1,60) 0.015 (0,38) 4 0.065 (1,65) 0.045 (1,14) 0.310 (7,87) 0.290 (7,37) 0.020 (0,51) MIN 0.200 (5,08) MAX Seating Plane 0.130 (3,30) MIN 0.023 (0,58) 0.015 (0,38) 0°–15° 0.100 (2,54) 0.014 (0,36) 0.008 (0,20) 4040107/C 08/96 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification. Falls within MIL STD 1835 GDIP1-T8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA NFF0014A N0014A N14A (Rev G) www.ti.com PACKAGE OUTLINE PW0008A TSSOP - 1.2 mm max height SCALE 2.800 SMALL OUTLINE PACKAGE C 6.6 TYP 6.2 SEATING PLANE PIN 1 ID AREA A 0.1 C 6X 0.65 8 1 3.1 2.9 NOTE 3 2X 1.95 4 5 B 4.5 4.3 NOTE 4 SEE DETAIL A 8X 0.30 0.19 0.1 C A 1.2 MAX B (0.15) TYP 0.25 GAGE PLANE 0 -8 0.15 0.05 0.75 0.50 DETAIL A TYPICAL 4221848/A 02/2015 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. 5. Reference JEDEC registration MO-153, variation AA. www.ti.com EXAMPLE BOARD LAYOUT PW0008A TSSOP - 1.2 mm max height SMALL OUTLINE PACKAGE 8X (1.5) 8X (0.45) SYMM 1 8 (R0.05) TYP SYMM 6X (0.65) 5 4 (5.8) LAND PATTERN EXAMPLE SCALE:10X SOLDER MASK OPENING METAL SOLDER MASK OPENING METAL UNDER SOLDER MASK 0.05 MAX ALL AROUND 0.05 MIN ALL AROUND SOLDER MASK DEFINED NON SOLDER MASK DEFINED SOLDER MASK DETAILS NOT TO SCALE 4221848/A 02/2015 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com EXAMPLE STENCIL DESIGN PW0008A TSSOP - 1.2 mm max height SMALL OUTLINE PACKAGE 8X (1.5) 8X (0.45) SYMM (R0.05) TYP 1 8 SYMM 6X (0.65) 5 4 (5.8) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:10X 4221848/A 02/2015 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated
8102302HA 价格&库存

很抱歉,暂时无法提供与“8102302HA”相匹配的价格&库存,您可以联系我们找货

免费人工找货