0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LM25149-Q1EVM-2100

LM25149-Q1EVM-2100

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

  • 描述:

    LM25149-Q1 - DC/DC,步降 1,非隔离 输出评估板

  • 数据手册
  • 价格&库存
LM25149-Q1EVM-2100 数据手册
www.ti.com User’s Guide LM25149-Q1 EVM User's Guide ABSTRACT With an input operating voltage as low as 3.5 V and up to 100 V as specified in Table 1-1, the LM514x-Q1 family of automotive synchronous buck controllers from TI provides flexibility, scalability, and optimized solution size for a range of applications. These controllers enable DC/DC solutions with high density, low EMI, and increased flexibility. Available EMI mitigation features include dual-random spread spectrum (DRSS) or triangular spread spectrum (TRSS), split gate driver outputs for slew rate (SR) control, and integrated active EMI filtering (AEF). All controllers are rated for a maximum operating junction temperature of 150°C and have AEC-Q100 grade 1 qualification. Table 1-1. Automotive Synchronous Buck DC/DC Controller Family DC/DC Controller Single or Dual VIN Range Control Method Gate Drive Voltage Sync Output EMI Mitigation LM5140-Q1 Dual 3.8 V to 65 V Peak current mode 5V 180° phase shift N/A LM25149-Q1 Single 3.5 V to 42 V Peak current mode 5V 180° phase shift AEF, DRSS LM25148-Q1 Single 3.5 V to 42 V Peak current mode 5V 180° phase shift DRSS LM5141-Q1 Single 3.8 V to 65 V Peak current mode 5V N/A SR control, TRSS LM25141-Q1 Single 3.8 V to 42 V Peak current mode 5V N/A SR control, TRSS LM5143-Q1 Dual 3.5 V to 65 V Peak current mode 5V 90° phase shift SR control, TRSS LM5145-Q1 Single 5.5 V to 75 V Voltage mode 7.5 V 180° phase shift N/A LM5146-Q1 Single 5.5 V to 100 V Voltage mode 7.5 V 180° phase shift N/A The LM25149-Q1EVM-2100 evaluation module (EVM) is a synchronous buck DC/DC regulator that employs synchronous rectification to achieve high conversion efficiency in a small footprint. It operates over a wide input voltage range of 5.5 V to 36 V, providing a regulated output of 5 V. The output voltage has better than 1% setpoint accuracy and are adjustable by modifying the feedback resistor values, permitting the user to customize the output voltage from 3.3 V to 5.5 V as needed. The LM25149-Q1 synchronous buck controller used in the EVM has the following features: • • • • • • • • • Wide input voltage (wide VIN) range of 3.5 V to 42 V Spread spectrum modulation and active EMI filtering for lower EMI Wide duty cycle range with low tON(min) and tOFF(min) Ultra-low shutdown and no-load standby quiescent currents Multiphase capability Peak current-mode control loop architecture Integrated, high-current MOSFET gate drivers Cycle-by-cycle overcurrent protection with hiccup Functional-safety capable The free-running switching frequency of the EVM is 2.1 MHz and is synchronizable to a higher or lower frequency, if required. Moreover, a synchronization output signal (SYNCOUT) 180° phase-shifted relative to the internal clock is available for dual-phase leader-follower configurations. VCC and gate drive UVLO protects the regulator at low input voltage conditions, and EN pins for each channel support application-specific power-up and power-down requirements. The LM25149-Q1 is available in a 24-pin VQFN package with 5.5-mm × 3.5-mm footprint to enable DC/DC solutions with high density and low component count. See the LM25149-Q1 3.5-V to 42-V Synchronous Buck DC/DC Controller Data Sheet for more information. Use the LM25149-Q1 with WEBENCH® Power Designer SNVU773A – MARCH 2021 – REVISED APRIL 2022 Submit Document Feedback LM25149-Q1 EVM User's Guide Copyright © 2022 Texas Instruments Incorporated 1 Table of Contents www.ti.com to create a custom regulator design. To optimize component selection and examine predicted efficiency performance across line and load ranges, download the LM25149-Q1 Quickstart Calculator. The LM25149-Q1 on the EVM can be substituted with LM25148-Q1 for evaluation. Table of Contents 1 High Density EVM Description.............................................................................................................................................. 3 1.1 Typical Applications............................................................................................................................................................3 1.2 Features and Electrical Performance.................................................................................................................................3 2 EVM Characteristics............................................................................................................................................................... 4 3 Application Circuit Diagram...................................................................................................................................................5 4 EVM Photo...............................................................................................................................................................................5 5 Test Setup and Procedure......................................................................................................................................................6 5.1 EVM Connections.............................................................................................................................................................. 6 5.2 Test Equipment.................................................................................................................................................................. 7 5.3 Recommended Test Setup.................................................................................................................................................7 5.4 Test Procedure................................................................................................................................................................... 7 6 Test Data and Performance Curves...................................................................................................................................... 8 6.1 Conversion Efficiency.........................................................................................................................................................8 6.2 Operating Waveforms........................................................................................................................................................ 9 6.3 Bode Plot..........................................................................................................................................................................14 6.4 CISPR 25 EMI Performance............................................................................................................................................ 14 6.5 Thermal Performance...................................................................................................................................................... 15 7 EVM Documentation.............................................................................................................................................................16 7.1 Schematic........................................................................................................................................................................ 16 7.2 Bill of Materials.................................................................................................................................................................17 7.3 PCB Layout...................................................................................................................................................................... 18 7.4 Component Drawings.......................................................................................................................................................21 8 Device and Documentation Support...................................................................................................................................22 8.1 Device Support.................................................................................................................................................................22 8.2 Documentation Support................................................................................................................................................... 22 9 Revision History................................................................................................................................................................... 22 List of Figures Figure 3-1. LM25149-Q1 Synchronous Buck Regulator Simplified Schematic........................................................................... 5 Figure 4-1. LM25149-Q1 EVM Photo, 70 mm × 40 mm.............................................................................................................. 5 Figure 5-1. EVM Test Setup.........................................................................................................................................................6 Figure 6-1. Efficiency, VOUT = 5 V................................................................................................................................................8 Figure 6-2. Efficiency, VIN = 12 V, VOUT = 5 V, PFM (Log Scale).................................................................................................8 Figure 6-3. SW Node Voltage, VIN = 12 V, IOUT = 8 A .................................................................................................................9 Figure 6-4. SW Node Voltage, VIN = 8 V, IOUT = 8 A....................................................................................................................9 Figure 6-5. PFM Mode SW Node Voltage, VIN = 12 V, IOUT = 0 A............................................................................................. 10 Figure 6-6. Load Transient Response, VIN = 12 V, FPWM, 0 A to 8 A at 1 A/µs....................................................................... 10 Figure 6-7. Load Transient Response, VIN = 12 V, FPWM, 4 A to 8 A at 1 A/µs....................................................................... 11 Figure 6-8. Line Transient Response to VIN = 8 V to 36 V, IOUT = 4 A....................................................................................... 11 Figure 6-9. Cold-Crank Response to VIN = 3.8 V, IOUT = 1 A CC, EN tied to VIN......................................................................12 Figure 6-10. ENABLE ON and OFF, VIN = 12 V, IOUT = 8 A.......................................................................................................12 Figure 6-11. Start-Up, VIN = 12 V, IOUT = 8-A Resistive Load.................................................................................................... 13 Figure 6-12. Shutdown, VIN = 12 V, IOUT = 8-A Resistive Load................................................................................................. 13 Figure 6-13. Bode Plot, VIN = 12 V, VOUT = 5 V, IOUT = 8-A Resistive Load.............................................................................. 14 Figure 6-14. CISPR 25 Class 5 Conducted Emissions Plot, 150 kHz to 30 MHz, VIN = 12 V, IOUT = 8 A Resistive Load, (a) No EMI Mitigation, (b) Active EMI and Spread-Spectrum Enabled.................................................................................. 14 Figure 6-15. Thermal Performance, VIN = 12 V, IOUT = 8 A, Tamb = 25°C, Free Convection Airflow......................................... 15 Figure 7-1. EVM Schematic.......................................................................................................................................................16 Figure 7-2. Top Copper (Top View)............................................................................................................................................ 18 Figure 7-3. Layer 2 Copper (Top View)......................................................................................................................................18 Figure 7-4. Layer 3 Copper (Top View)......................................................................................................................................19 Figure 7-5. Layer 4 Copper (Top View)......................................................................................................................................19 Figure 7-6. Layer 5 Copper (Top View)......................................................................................................................................20 Figure 7-7. Bottom Copper (Top View)...................................................................................................................................... 20 2 LM25149-Q1 EVM User's Guide SNVU773A – MARCH 2021 – REVISED APRIL 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Trademarks Figure 7-8. Top Component Drawing.........................................................................................................................................21 Figure 7-9. Bottom Component Drawing................................................................................................................................... 21 List of Tables Table 1-1. Automotive Synchronous Buck DC/DC Controller Family.......................................................................................... 1 Table 2-1. Electrical Performance Characteristics....................................................................................................................... 4 Table 5-1. EVM Power Connections............................................................................................................................................ 6 Table 5-2. EVM Signal Connections............................................................................................................................................ 6 Table 7-1. Bill of Materials..........................................................................................................................................................17 Trademarks WEBENCH® is a registered trademark of Texas Instruments. All trademarks are the property of their respective owners. 1 High Density EVM Description The LM25149-Q1EVM-2100 high-density EVM is designed to use a regulated or non-regulated high-voltage input rail ranging from 5.5 V to 36 V to produce a tightly-regulated output voltage of 5 V at load currents up to 8 A. This wide VIN range DC/DC solution offers outsized voltage rating and operating margin to withstand supply rail voltage transients. The free-running switching frequency is 2.1 MHz and is synchronizable to an external clock signal at a higher or lower frequency. The power-train passive components selected for this EVM, including buck inductors and ceramic input and output capacitors, are automotive AEC-Q200 rated and are available from multiple component vendors. 1.1 Typical Applications • • • • High-current automotive electronic systems ADAS and body electronics Infotainment systems and instrument clusters Automotive HEV/EV powertrain systems 1.2 Features and Electrical Performance • • • • • • • • • • • • • Wide input voltage operating range of 5.5 V to 36 V 1% accurate fixed 3.3 V, 5 V, or adjustable output down to 0.8 V Switching frequency of 2.1 MHz externally synchronizable up or down by 20% Full-load efficiency of 92.8% at VIN = 12 V 12-µA controller standby current at VIN = 12 V Optimized for ultra-low EMI – Dual-Random Spread Spectrum and Active EMI filtering – Meets CISPR 25 and UNECE Reg 10 EMI standards Peak current-mode control architecture provides fast line and load transient response – Integrated slope compensation adaptive with switching frequency – Forced PWM (FPWM) or Pulsed-Frequency Modulation (PFM) operation – Optional internal or external loop compensation Integrated high-side and low-side power MOSFET gate drivers – 2.2-A and 3.2-A sink and source gate drive current capability – 13-ns adaptive dead-time control reduces power dissipation and MOSFET temperature rise Overcurrent protection (OCP) with hiccup mode for sustained overload conditions SYNCOUT signal 180° out-of-phase with internal clock Power Good signal with 100-kΩ pullup resistor to VCC Internal 3-ms soft start Fully assembled, tested, and proven PCB layout with 70-mm × 40-mm total footprint SNVU773A – MARCH 2021 – REVISED APRIL 2022 Submit Document Feedback LM25149-Q1 EVM User's Guide Copyright © 2022 Texas Instruments Incorporated 3 EVM Characteristics www.ti.com 2 EVM Characteristics Table 2-1 lists the electrical characteristics. Table 2-1. Electrical Performance Characteristics PARAMETER TEST CONDITIONS MIN TYP MAX 5.5 12 36 UNIT INPUT CHARACTERISTICS Input voltage range, VIN Input current, no load, IIN-NL Input current, shutdown, IIN-OFF Operating IOUT = 0 A, PFM tied to VDDA, UVLO removed VEN = 0 V VIN = 12 V 12 VIN = 24 V 9 VIN = 36 V 9 VIN = 12 V 3 V µA µA OUTPUT CHARACTERISTICS Output voltage, VOUT (1) Output current, IOUT Output voltage regulation, ΔVOUT 4.95 VIN = 5.5 V to 36 V, airflow = 100 LFM(2) Load regulation IOUT = 0 A to 8 A Line regulation VIN = 5.5 V to 36 V Output voltage ripple, VOUT-AC VIN = 12 V, IOUT = 8 A Output overcurrent protection, IOCP VIN = 12 V 5 0 5.05 V 8 A 0.1% 1% Soft-start time, tSS 5 mVrms 10 A 3 ms SYSTEM CHARACTERISTICS Switching frequency, FSW-nom VIN = 12 V Half-load efficiency, ηHALF (1) IOUT = 4 A Full load efficiency, ηFULL IOUT = 8 A 2.1 VIN = 8 V 94.3% VIN = 12 V 92.9% VIN = 18 V 90.5% VIN = 8 V 93.5% VIN = 12 V 92.8% VIN = 18 V 90.7% LM25149-Q1 junction temperature, TJ (1) (2) 4 –40 MHz 150 °C The default output voltage of this EVM is 5 V. Efficiency and other performance metrics can change based on operating input voltage, load currents, externally-connected output capacitors, and other parameters. The recommended airflow when operating at input voltages greater than 18 V is 100 LFM. LM25149-Q1 EVM User's Guide SNVU773A – MARCH 2021 – REVISED APRIL 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Application Circuit Diagram 3 Application Circuit Diagram Figure 3-1 shows the schematic of an LM25149-Q1-based synchronous buck regulator with active EMI filter. LIN 0.68 µH VIN = 5.5 V...36 V RINC 0.24 CINJ CSEN 0.1 F CDAMP1 0.47 F RDAMP CINC 0.1 F 6.81 CAEFC RAEFC 4.7 nF 200  Tie to VOUT or GND 47 F VOUT RFB1 100 k VIN EN VCCX VCC CBOOT FB RFB2 22.1 k CBOOT 0.1 F Q1 LO CHF LM25149-Q1 VOUT = 5 V IOUT = 8 A Q2 LO AGND RS 5 m 0.68 H SW 22 pF CCOMP 2.7 nF RAEFDC 49.9 k HO EXTCOMP RCOMP 10 k CIN 2 10 F CVCC 2.2 F CO 4 47 F PGND INJ ISNS+ SENSE To AEF sense point VCC VOUT REFAGND PGOOD PFM/SYNC AEFVDDA RAEFVDD 3 AVSS CNFG RT VDDA Tie to VDDA or GND CVDDA 0.1 F CAEFVDD 4.7 F RCNFG 41.2 k * VOUT tracks VIN if VIN < 5.2 V RT 9.53 k Figure 3-1. LM25149-Q1 Synchronous Buck Regulator Simplified Schematic 4 EVM Photo Figure 4-1 shows the EVM photo. Figure 4-1. LM25149-Q1 EVM Photo, 70 mm × 40 mm CAUTION Caution Hot surface. Contact may cause burns. Do not touch. SNVU773A – MARCH 2021 – REVISED APRIL 2022 Submit Document Feedback LM25149-Q1 EVM User's Guide Copyright © 2022 Texas Instruments Incorporated 5 Test Setup and Procedure www.ti.com 5 Test Setup and Procedure 5.1 EVM Connections Referencing the EVM connections described in Table 5-1, the recommended test setup to evaluate the LM25149-Q1EVM-2100 is shown in Figure 5-1. Working at an ESD-protected workstation, make sure that any wrist straps, boot straps, or mats are connected and referencing the user to earth ground before handling the EVM. Power Supply - + Ammeter 1 A V Ammeter 2 A COM COM COM COM Voltmeter 1 Electronic Load + - V Voltmeter 2 Figure 5-1. EVM Test Setup CAUTION Refer to the LM25149-Q1 data sheet, LM25149-Q1 Quickstart Calculator and WEBENCH® Power Designer for additional guidance pertaining to component selection and controller operation. Table 5-1. EVM Power Connections Label Description VIN+ Positive input voltage power and sense connection VIN – Negative input voltage power and sense connection VOUT+ Positive output voltage power and sense connection VOUT– Negative output voltage power and sense connection Label Description GND GND connection CNFG Configuration input - tie to GND to disable AEF COMP Error amplifier output FB FB node VDDA Bias supply connection for the analog circuits PFM PFM/FPWM selection and Synchronization input GND GND connection BODE 50-Ω injection point for loop response VOUT Output voltage EN ENABLE input – tie to GND to disable the device VCC Bias supply connection for the gate drivers and AEF PGOOD Power Good indicator Table 5-2. EVM Signal Connections 6 LM25149-Q1 EVM User's Guide SNVU773A – MARCH 2021 – REVISED APRIL 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Test Setup and Procedure 5.2 Test Equipment Voltage Source: Use an input voltage source capable of supplying 0 V to 40 V and 12 A. Multimeters: • • • • Voltmeter 1: Input voltage at VIN+ to VIN–. Set voltmeter to an input impedance of 100 MΩ. Voltmeter 2: Output voltage at VOUT to GND. Set voltmeter to an input impedance of 100 MΩ. Ammeter 1: Input current. Set ammeter to 1-second aperture time. Ammeter 2: Output current. Set ammeter to 1-second aperture time. Electronic Load: The load must be an electronic constant-resistance (CR) or constant-current (CC) mode load capable of 0 Adc to 10 Adc at 12 V. For a no-load input current measurement, disconnect the electronic load as it may draw a small residual current. Oscilloscope: With the scope set to 20-MHz bandwidth and AC coupling, measure the output voltage ripple directly across an output capacitor with a short ground lead normally provided with the scope probe. Place the oscilloscope probe tip on the positive terminal of the output capacitor, holding the ground barrel of the probe through the ground lead to the negative terminal of the capacitor. TI does not recommend using a long-leaded ground connection because this can induce additional noise given a large ground loop. To measure other waveforms, adjust the oscilloscope as needed. Safety: Always use caution when touching any circuits that may be live or energized. 5.3 Recommended Test Setup 5.3.1 Input Connections • • • Prior to connecting the DC input source, set the current limit of the input supply to 0.1 A maximum. Ensure the input source is initially set to 0 V and connected to the VIN+ and VIN– connection points as shown in Figure 5-1. An additional input bulk capacitor is recommended to provide damping if long input lines are used. Connect voltmeter 1 at VIN+ and VIN– connection points to measure the input voltage. Connect ammeter 1 to measure the input current and set to at least 1-second aperture time. 5.3.2 Output Connections • • • Connect electronic load to VOUT connection. Set the load to constant-resistance mode or constant-current mode at 0 A before applying input voltage. Connect voltmeter 2 at VOUT and GND connections to measure the output voltage. Connect ammeter 2 to measure the output current. 5.4 Test Procedure 5.4.1 Line and Load Regulation, Efficiency • • • • • • • Set up the EVM as previously described. Set load to constant resistance or constant current mode and to sink 0 A. Increase input source from 0 V to 12 V; use voltmeter 1 to measure the input voltage. Increase the current limit of the input supply to 12 A. Using voltmeter 2 to measure the output voltage, VOUT, vary the load current from 0 A to 8 A DC; VOUT must remain within the load regulation specification. Set the load current to 4 A (50% rated load) and vary the input source voltage from 5.5 V to 36 V; VOUT must remain within the line regulation specification. Decrease load to 0 A. Decrease input source voltage to 0 V. SNVU773A – MARCH 2021 – REVISED APRIL 2022 Submit Document Feedback LM25149-Q1 EVM User's Guide Copyright © 2022 Texas Instruments Incorporated 7 Test Data and Performance Curves www.ti.com 6 Test Data and Performance Curves Figure 6-1 through Figure 6-15 present typical performance curves for the LM25149-Q1EVM-2100. Because actual performance data can be affected by measurement techniques and environmental variables, these curves are presented for reference and can differ from actual field measurements. 6.1 Conversion Efficiency 100 Efficiency (%) 95 90 85 80 VIN = 8V VIN = 12V VIN = 18V 75 70 0 1 2 3 4 Load (A) 5 6 7 8 The curves with higher efficiency at light load correspond to when diode emulation is enabled (PFM tied to VDDA). Figure 6-1. Efficiency, VOUT = 5 V 100 Efficiency (%) 90 80 70 60 50 0.001 VIN = 8V VIN = 12V VIN = 18V 0.01 0.1 Load (A) 1 8 Figure 6-2. Efficiency, VIN = 12 V, VOUT = 5 V, PFM (Log Scale) 8 LM25149-Q1 EVM User's Guide SNVU773A – MARCH 2021 – REVISED APRIL 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Test Data and Performance Curves 6.2 Operating Waveforms 6.2.1 Switching Figure 6-3. SW Node Voltage, VIN = 12 V, IOUT = 8 A Figure 6-4. SW Node Voltage, VIN = 8 V, IOUT = 8 A SNVU773A – MARCH 2021 – REVISED APRIL 2022 Submit Document Feedback LM25149-Q1 EVM User's Guide Copyright © 2022 Texas Instruments Incorporated 9 Test Data and Performance Curves www.ti.com Figure 6-5. PFM Mode SW Node Voltage, VIN = 12 V, IOUT = 0 A 6.2.2 Load Transient Response Figure 6-6. Load Transient Response, VIN = 12 V, FPWM, 0 A to 8 A at 1 A/µs 10 LM25149-Q1 EVM User's Guide SNVU773A – MARCH 2021 – REVISED APRIL 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Test Data and Performance Curves Figure 6-7. Load Transient Response, VIN = 12 V, FPWM, 4 A to 8 A at 1 A/µs 6.2.3 Line Transient Response Figure 6-8. Line Transient Response to VIN = 8 V to 36 V, IOUT = 4 A SNVU773A – MARCH 2021 – REVISED APRIL 2022 Submit Document Feedback LM25149-Q1 EVM User's Guide Copyright © 2022 Texas Instruments Incorporated 11 Test Data and Performance Curves www.ti.com Figure 6-9. Cold-Crank Response to VIN = 3.8 V, IOUT = 1 A CC, EN tied to VIN 6.2.4 Start-Up and Shutdown With ENABLE ON and OFF Figure 6-10. ENABLE ON and OFF, VIN = 12 V, IOUT = 8 A 12 LM25149-Q1 EVM User's Guide SNVU773A – MARCH 2021 – REVISED APRIL 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Test Data and Performance Curves 6.2.5 Start-Up and Shutdown with EN Tied to VIN Figure 6-11. Start-Up, VIN = 12 V, IOUT = 8-A Resistive Load Figure 6-12. Shutdown, VIN = 12 V, IOUT = 8-A Resistive Load SNVU773A – MARCH 2021 – REVISED APRIL 2022 Submit Document Feedback LM25149-Q1 EVM User's Guide Copyright © 2022 Texas Instruments Incorporated 13 Test Data and Performance Curves www.ti.com 6.3 Bode Plot 50 150 45 135 40 120 35 105 30 90 25 75 20 60 15 45 10 30 5 15 0 Phase (°) Gain (dB) PM = 48° 0 fc = 75.6 kHz Gain Phase -5 -15 -10 103 -30 105 104 Frequency (Hz) fc = crossover frequency, PM = phase margin Figure 6-13. Bode Plot, VIN = 12 V, VOUT = 5 V, IOUT = 8-A Resistive Load 6.4 CISPR 25 EMI Performance Figure 6-14 presents the EMI performance of the LM25149-Q1 EVM at 12-V input with and without the EMI mitigation techniques enabled. Conducted emissions are measured over a frequency range of 150 kHz to 30 MHz using a 5-µH LISN according to the CISPR 25 low-frequency specification. CISPR 25 class 5 peak and average limit lines are denoted in red. The yellow and blue spectra are measured using peak and average detection, respectively. Start 150 kHz Stop 30 MHz Start 150 kHz (a) Stop 30 MHz (b) Figure 6-14. CISPR 25 Class 5 Conducted Emissions Plot, 150 kHz to 30 MHz, VIN = 12 V, IOUT = 8 A Resistive Load, (a) No EMI Mitigation, (b) Active EMI and Spread-Spectrum Enabled 14 LM25149-Q1 EVM User's Guide SNVU773A – MARCH 2021 – REVISED APRIL 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Test Data and Performance Curves 6.5 Thermal Performance Figure 6-15 shows the thermal performance image. Figure 6-15. Thermal Performance, VIN = 12 V, IOUT = 8 A, Tamb = 25°C, Free Convection Airflow SNVU773A – MARCH 2021 – REVISED APRIL 2022 Submit Document Feedback LM25149-Q1 EVM User's Guide Copyright © 2022 Texas Instruments Incorporated 15 EVM Documentation www.ti.com 7 EVM Documentation 7.1 Schematic Figure 7-1 shows the EVM schematic. VIN_AEF: Vin TP1 VIN L1 VIN = 5.5-36V J1 VIN_AEF 2 1 680nH C1 0.1uF C4 10nF 100V TP2 C3 470nF C5 10nF R1 6.81 C2 C8 10nF C9 10nF C10 2.2µF 47uF C11 2.2µF R3 0 R2 0.24 R4 4700pF NT1 Net-Tie C12 C7 0.1uF 200 GND R5 49.9k SEN GND INJ AEFGND VIN VDDA AEFVDDA VCC VIN VCC VIN R6 3.32 R7 100k VDDA VCC VOUT C24 0.1µF C23 4.7µF C25 4.7µF C14 10uF C26 470nF C15 10uF C17 0.01uF C16 10uF C18 0.01uF C19 0.01uF J2 C21 0.01uF C22 0.01uF GND AGND PGSYNC AVSS GND GND D1 5-6-7-8 12 11 10 9 8 7 6 5 4 3 2 1 45V U1 PFMSYNC FBA C27 12 9 COMP 8 VIN CBOOT HO VCC SW VDDA LO CNFG ISNS+ R8 19 EN VOUT 15 13 0.1uF 0 AEFVDDA PGSYNC VDDA PFMSYNC FBA R15 17 18 6 5 100k COMP CNFG INJ 3 22 2 23 VCCX PG PFM/SYNC RT FB AVSS EXTCOMP CNFG AEFVDDA INJ SEN AGND PGND REFAGND EP 20 21 VCCX 16 4 R13 9.53k 1 R11 680nH 5m TP3 VOUT = 5.0VDC J3 C28 47uF C29 47uF C30 47uF C31 47uF C32 0.1uF 1 2 C33 0.1uF R14 0 7 10 24 TP4 GND R16 49.9 GND 25 GND R17 LM25149QRGYRQ1 49.9 C35 22pF AEFGND AVSS VDDA R20 100k Net-Tie GND VBODE C34 33pF NT2 Net-Tie C37 2700pF L3 Q2 IAUC60N04S6L039ATMA1 4 NT3 R19 41.2k VOUT R10 0 SEN R18 10.0k VCCX 14 11 23.7k GND Q1 IAUC60N04S6L039ATMA1 4 R9 1-2-3 R12 100k 5-6-7-8 VBODE 1-2-3 PG/SYNCOUT VCC EN/OFF VOUT VBODE GND SYNC_IN VDDA FBA COMP CNFG GND C20 0.01uF R23 24.9k AGND FBA R22 19.1k AGND AGND Figure 7-1. EVM Schematic 16 LM25149-Q1 EVM User's Guide SNVU773A – MARCH 2021 – REVISED APRIL 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com EVM Documentation 7.2 Bill of Materials Table 7-1. Bill of Materials COUNT REF DES DESCRIPTION PART NUMBER 3 C1, C7, C27 Capacitor, Ceramic, 0.1 μF, 50 V, X7R, 0402, AEC-Q200 CGA2B3X7R1H104K050BB TDK 1 C2 Capacitor, Ceramic, 4700 pF, 50 V, X7R, 0402, AEC-Q200 CGA6P1X7S0J476M250AC TDK 1 C3 Capacitor, Ceramic, 0.47 μF, 50 V, X7R, 0603 CGA3E3X7R1H474K080AB TDK 2 C8, C9 Capacitor, Ceramic, 0.01 μF, 50 V, X7R, 0603 C1608X7R1H103K080AA TDK 2 C10, C11 Capacitor, Ceramic, 2.2 μF, 50 V, X7R, 0805 UMK212BB7225KG-T Taiyo Yuden 1 C12 Capacitor, Aluminum, 47 µF, 50 V, 0.68 Ω, AEC-Q200 EEE-FK1H470P Panasonic 12105C106K4Z2A AVX Capacitor, Ceramic, 10 μF, 50 V, X7R, 1210, AEC-Q200 MFR 2 C14, C15 6 C17, C18, C19, C20, C21, Capacitor, Ceramic, 0.01 μF, 50 V, X7R, 0402 AEC-Q200 C22 CGA2B3X7R1H103K050BB TDK 1 C23 Capacitor, Ceramic, 4.7 μF, 25 V, X7R, 0805,AEC-Q200 CGA4J1X7R1E475K125AC TDK 1 C24 Capacitor, Ceramic, 0.1 µF, 10 V, X7R, 0402, AEC-Q200 Std Std 1 C25 Capacitor, Ceramic, 4.7 μF, 10 V, X7R, 0603 GRM188Z71A475ME15D Murata 1 C26 Capacitor, Ceramic, 0.47 μF, 50 V, X7R, 0805 AEC-Q200 GCM21BR71H474KA55L Murata 4 C28, C29, C30, C31 Capacitor, Ceramic, 47 μF, 10 V, X7R, 1210 GRM32ER71A476KE15L Murata 1 C32, C33 Capacitor, Ceramic, 0.1 μF, 50 V, X7R, 0603 C0603C104K5RAC-TU KEMET 1 C34 Capacitor, Ceramic, 33 pF, 50 V, C0G/NP0, 0402, AEC-Q200 GCM1555C1H330JA16D Murata 1 C35 Capacitor, Ceramic, 22 pF, 50 V, C0G/NP0, 0402, AEC-Q200 CGA2B2NP01H220J050BA TDK 1 C37 Capacitor, Ceramic, 2700 pF, 50 V, X7R, 0402 CL05B272KB5NNNC 4 H3, H4, H5, H6 Standoff, Hex, 0.5"L #4-40 Nylon 18K5088 4 H7, H8, H9, H10 Screw, Pan Head , 4-40, 3/8", Nylon H544-ND 2 J1, J3 Terminal Block, 2 position, 5 mm, TH Std Std 1 J2 Header, 100 mil, 10×1, Au, TH PBC12SABN TSW-110-07-G-S 1 L1 Inductor, 0.68 μH, 9 mΩ typ, 8.2 A, 6 mm typ, 744383560068 Würth Electronik Inductor, 0.68 μH, 2.9 mΩ typ, 15.3 A, 3.1 mm typ, AEC-Q200 XGL6030-681MEB Coilcraft Inductor, 0.56 μH, 3.6 mΩ typ, 13 A, 4.8 mm typ, AEC-Q200 744373490056 Würth Electronik Inductor, 0.68 μH, 5 mΩ typ, 15.5 A, 3 mm typ IHLP2525CZERR68M01 Vishay Capacitor, Ceramic, 10 μF, 50 V, X7R, 1206, AEC-Q200 1 L3 CNA6P1X7R1H106K250AE TDK CGA5L1X7R1H106K160AC TDK Samsung 2 Q1, Q2 MOSFET, N-Channel, 40 V, 4 mΩ, AEC-Q101 IAUC60N04S6L039 Infineon 1 R1 Resistor, Chip, 6.81 Ω, 1/10W, 1%, 0603 Std Std 1 R2 Resistor, Chip, 0.24 Ω, 1/4W, 5%, 0603 Std Std 1 R3 Resistor, Chip, 0 Ω, 1/8W, 1%, 0805 Std Std 1 R4 Resistor, Chip, 200 Ω, 1/16W, 1%, 0402 Std Std 1 R5 Resistor, Chip, 49.9 kΩ, 1/8W, 1%, 0402 Std Std 1 R6 Resistor, Chip, 3.32 Ω, 1/16W, 1%, 0402 Std Std 3 R7, R12, R20 Resistor, Chip, 100 kΩ, 1/16W, 1%, 0402 Std Std 1 R8 Resistor, Chip, 22.1 kΩ, 1/16W, 1%, 0402 Std Std 3 R9, R10, R14 Resistor, Chip, 0 kΩ, 1/5W, 1%, 0603 Std Std 1 R11 Resistor, Chip, 5 mΩ, 1W, 1%, 0508, AEC-Q200 KRL2012E-M-R005-F-T5 Susumu 1 R13 Resistor, Chip, 9.53 kΩ, 1/16W, 1%, 0402 Std Std 2 R16, R17 Resistor, Chip, 49.9 Ω, 1/16W, 1%, 0402 Std Std 1 R18 Resistor, Chip, 10 kΩ, 1/16W, 1%, 0402 Std Std 1 R19 Resistor, Chip, 41.2 kΩ, 1/16W, 1%, 0402 Std Std 1 R22 Resistor, Chip, 19.1 kΩ, 1/16 W, 1%, 0402 Std Std 1 R23 Resistor, Chip, 24.9 kΩ, 1/16 W, 1%, 0402 Std Std 4 TP1, TP2, TP3, TP4 Test Point, Miniature, SMT 5019 Keystone 1 U1 IC, LM25149-Q1, 42-V Synchronous Buck Controller, VQFN-24 LM25149QRGYRQ1 TI 1 PCB1 PCB, FR4, 6 layer, 2 oz, 70 mm × 40 mm PCB — SNVU773A – MARCH 2021 – REVISED APRIL 2022 Submit Document Feedback LM25149-Q1 EVM User's Guide Copyright © 2022 Texas Instruments Incorporated 17 EVM Documentation www.ti.com 7.3 PCB Layout Figure 7-2 through Figure 7-9 show the design of the LM25149-Q1 EVM using a six-layer PCB with 2-oz copper thickness. The power stage is essentially a single-sided design and the input filtering is located on the bottom side. Figure 7-2. Top Copper (Top View) Figure 7-3. Layer 2 Copper (Top View) 18 LM25149-Q1 EVM User's Guide SNVU773A – MARCH 2021 – REVISED APRIL 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com EVM Documentation Figure 7-4. Layer 3 Copper (Top View) Figure 7-5. Layer 4 Copper (Top View) SNVU773A – MARCH 2021 – REVISED APRIL 2022 Submit Document Feedback LM25149-Q1 EVM User's Guide Copyright © 2022 Texas Instruments Incorporated 19 EVM Documentation www.ti.com Figure 7-6. Layer 5 Copper (Top View) Figure 7-7. Bottom Copper (Top View) 20 LM25149-Q1 EVM User's Guide SNVU773A – MARCH 2021 – REVISED APRIL 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com EVM Documentation 7.4 Component Drawings Figure 7-8. Top Component Drawing Figure 7-9. Bottom Component Drawing SNVU773A – MARCH 2021 – REVISED APRIL 2022 Submit Document Feedback LM25149-Q1 EVM User's Guide Copyright © 2022 Texas Instruments Incorporated 21 Device and Documentation Support www.ti.com 8 Device and Documentation Support 8.1 Device Support 8.1.1 Development Support For development support see the following: • • • For TI's reference design library, visit TI reference designs For TI's WEBENCH Design Environments, visit the WEBENCH® Design Center LM25149-Q1 DC/DC Controller Quickstart Calculator 8.2 Documentation Support 8.2.1 Related Documentation For related documentation see the following: • • • • • LM25149-Q1 3.5-V to 42-V Synchronous Buck DC/DC Controller Data Sheet Improve High-current DC/DC Regulator Performance for Free with Optimized Power Stage Layout Application Brief Reduce Buck Converter EMI and Voltage Stress by Minimizing Inductive Parasitics Analog Applications Journal AN-2162 Simple Success with Conducted EMI from DC-DC Converters Application Report White Papers: – Valuing Wide VIN, Low EMI Synchronous Buck Circuits for Cost-driven, Demanding Applications – An Overview of Conducted EMI Specifications for Power Supplies – An Overview of Radiated EMI Specifications for Power Supplies 8.2.1.1 PCB Layout Resources • • • • • AN-1149 Layout Guidelines for Switching Power Supplies Application Report AN-1229 Simple Switcher PCB Layout Guidelines Application Report Constructing Your Power Supply – Layout Considerations Power Supply Design Seminar Low Radiated EMI Layout Made SIMPLE with LM4360x and LM4600x Application Report Power House Blogs: – High-Density PCB Layout of DC-DC Converters 8.2.1.2 Thermal Design Resources • • • • • • • AN-2020 Thermal Design by Insight, Not Hindsight Application Report AN-1520 A Guide to Board Layout for Best Thermal Resistance for Exposed Pad Packages Application Report Semiconductor and IC Package Thermal Metrics Application Report Thermal Design Made Simple with LM43603 and LM43602 Application Report PowerPAD Thermally Enhanced Package Application Report PowerPAD Made Easy Application Brief Using New Thermal Metrics Application Report 9 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision * (March 2021) to Revision A (April 2022) Page • Updated simplified schematic values for C3, R1, and R2...................................................................................5 • Updated schematic........................................................................................................................................... 16 • Updated BOM entries....................................................................................................................................... 17 22 LM25149-Q1 EVM User's Guide SNVU773A – MARCH 2021 – REVISED APRIL 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated
LM25149-Q1EVM-2100 价格&库存

很抱歉,暂时无法提供与“LM25149-Q1EVM-2100”相匹配的价格&库存,您可以联系我们找货

免费人工找货