0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
OPA2137EA

OPA2137EA

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    TSSOP8

  • 描述:

    OPERATIONAL AMPLIFIER

  • 数据手册
  • 价格&库存
OPA2137EA 数据手册
® OPA OPA 137 OPA 413 7 413 7 OPA 213 7 OPA137 OPA2137 OPA4137 LOW COST FET-INPUT OPERATIONAL AMPLIFIERS MicroAmplifier ™ Series FEATURES q q q q q q q q FET INPUT: IB = 5pA LOW OFFSET VOLTAGE: 1.5mV WIDE SUPPLY RANGE: ±2.25V to ±18V LOW QUIESCENT CURRENT: 220µA/channel EXCELLENT SPEED/POWER: 1MHz INPUT TO POSITIVE SUPPLY MicroSIZE PACKAGES: SOT-23-5, MSOP-8 SINGLE, DUAL, AND QUAD DESCRIPTION OPA137 series FET-input operational amplifiers are designed for low cost and miniature applications. In addition to small size (SOT-23-5 and MSOP-8 packages), they provide low input bias current (5pA), low quiescent currrent (220µA/ channel), and high open-loop gain (94dB). Either single (+4.5V to +36V) or dual (±2.25 to ±18V) supplies can be used. The input common-mode voltage range includes the positive supply—suitable for many single-supply applications. Single, dual, and quad versions have identical specifications for maximum design flexibility. OPA137 op amps are easy to use and free from phase inversion and overload problems found in some FET-input amplifiers. High performance, including linearity, is maintained as the amplifiers swing to their specified limits. In addition, the combination of high slew rate (3.5V/µs) and wide bandwidth (1MHz) provide fast settling time assuring good dynamic response. Dual and quad designs feature completely independent circuitry for lowest crosstalk and freedom from interaction. The single (OPA137) packages are the tiny 5-lead SOT-23-5 surface mount, SO-8 surface mount, and 8-pin DIP. The dual (OPA2137) comes in the miniature MSOP-8 surface mount, SO-8 surface mount, and 8-pin DIP packages. The quad (OPA4137) packages are the SO-14 surface mount and the 14-pin DIP. All are specified from –40°C to +85°C and operate from –55°C to +125°C. A SPICE macromodel is available for design analysis. APPLICATIONS q STRAIN GAGE AMPLIFIER q PHOTODETECTOR AMPLIFIER q PRECISION INTEGRATOR q BATTERY-POWERED INSTRUMENTS q TEST EQUIPMENT q ACTIVE FILTERS OPA137 NC –In +In V– 1 2 3 4 8-Pin DIP, SO-8 8 7 6 5 NC V+ Output NC Out A 1 2 A D 12 11 10 B –In B 6 7 14-Pin DIP SO-14 C 9 8 –In C Out C +In D V– +In C 3 4 5 OPA4137 14 13 Out D –In D OPA2137 1 2 3 4 A B 8 7 6 5 V+ Out B –In A +In A V+ +In B OPA137 Out 1 V– 2 +In 3 SOT-23-5 4 –In 5 V+ Out A –In A +In A V– –In B +In B Out B 8-Pin DIP, SO-8, MSOP-8 International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111 • Twx: 910-952-1111 Internet: http://www.burr-brown.com/ • FAXLine: (800) 548-6133 (US/Canada Only) • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132 © 1998 Burr-Brown Corporation PDS-1438A Printed in U.S.A. August, 1998 SPECIFICATIONS: VS = ±15V At TA = +25°C, RL = 10kΩ connected to ground, unless otherwise noted. Boldface limits apply over the specified temperature range, TA = –40°C to +85°C. OPA137N, U, P OPA2137E, U, P OPA4137U, P PARAMETER OFFSET VOLTAGE Input Offset Voltage TA = –40°C to +85°C vs Temperature vs Power Supply TA = –40°C to +85°C Channel Separation (dual, quad) INPUT BIAS CURRENT Input Bias Current vs Temperature Input Offset Current NOISE Input Voltage Noise, f = 0.1 to 10Hz Input Voltage Noise Density, f = 1kHz Current Noise Density, f = 1kHz INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection Ratio OPA137, OPA2137 OPA4137 TA = –40°C to +85°C OPA137, OPA2137 OPA4137 INPUT IMPEDANCE Differential Common-Mode OPEN-LOOP GAIN Open-Loop Voltage Gain TA = –40°C to +85°C FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Settling Time, 0.1% 0.01% Overload Recovery Time Total Harmonic Distortion + Noise OUTPUT Voltage Output TA = –40°C to +85°C Short-Circuit Current Capacitive Load Drive POWER SUPPLY Specified Operating Range Operating Voltage Range Dual Supplies Single Supply Quiescent Current TA = –40°C to +85°C TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance SOT-23-5 Surface Mount MSOP-8 Surface Mount SO-8 Surface Mount 8-Pin DIP SO-14 Surface Mount 14-Pin DIP AOL VO = –13.8V to 13.9V VO = –13.8V to 13.9V 86 86 VOS dVOS/dT PSRR TA = –40°C to +85°C VS = ±3V to ±18V dc VCM = 0V IB IOS CONDITION MIN TYP ±1.5 ±2.5 ±15 ±90 0.6 ±5 ±100 See Typical Curve ±2 ±50 2 45 1.2 (V–) + 3 VCM = –12V to 15V 76 74 VCM = –12V to 15V 72 70 1010 || 1 1012 || 2 94 T T 70 70 T T T dB dB Ω || pF Ω || pF dB dB MHz V/µs µs µs µs % T T T T T ±18 +36 ±270 ±375 +85 +125 +125 200 150 150 100 100 80 T T T T T T T T T T T T T T T T V V mA pF V V V µA µA °C °C °C °C/W °C/W °C/W °C/W °C/W °C/W 84 84 70 70 T T dB dB (V+) T MAX ±3 OPA137NA, UA, PA OPA2137EA, UA, PA OPA4137UA, PA MIN TYP ±2.5 ±3.5 T T T T T T T T T T T T MAX ±10 UNITS mV mV µV/°C µV/V µV/V µV/V pA pA µVp-p nV/√Hz fA/√Hz V ±7 ±15 T T ±250 ±250 en in VCM CMRR GBW SR THD+N VOUT ISC CLOAD VS G=1 G = 1, 10V Step, CL = 100pF G = 1, 10V Step, CL = 100pF VIN • G = VS G = 1, f = 1kHz, 3.5Vrms (V–) + 1.2 (V–) + 1.2 1 3.5 8 10 1 0.05 (V+) – 1.1 (V+) – 1.1 –25/+60 1000 ±15 ±2.25(1) +4.5 T T T T T T T T IQ IO = 0 IO = 0 –40 –55 –55 ±220 T T T θJA T Specifications the same as OPA137N, U, P. NOTE: (1) At minimum power supply voltage inputs must be biased above ground in accordance with common-mode voltage range restrictions—see “Operating Voltage” discussion. ® OPA137, 2137, 4137 2 ABSOLUTE MAXIMUM RATINGS(1) Supply Voltage, V+ to V– ..................................................................... 36V Input Voltage ....................................................... (V–) –0.7V to (V+) +0.7V Input Current ....................................................................................... 2mA Output Short-Circuit(2) .............................................................. Continuous Operating Temperature .................................................. –55°C to +125°C Storage Temperature ...................................................... –55°C to +125°C Junction Temperature .................................................................... +150°C Lead Temperature (soldering, 10s) ................................................. 300°C NOTE: (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum ratings for extended periods may affact device reliability. (2) Short circuit to ground, one amplifier per package. ELECTROSTATIC DISCHARGE SENSITIVITY This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. PACKAGE/ORDERING INFORMATION PACKAGE DRAWING NUMBER(1) 331 SPECIFIED TEMPERATURE RANGE –40°C to +85°C PACKAGE MARKING E37(3) ORDERING NUMBER(2) OPA137N/250 OPA137N/3K OPA137NA/250 OPA137NA/3K OPA137U OPA137U/2K5 OPA137UA OPA137UA/2K5 OPA137P OPA137PA TRANSPORT MEDIA Tape and Reel Tape and Reel Tape and Reel Tape and Reel Rails Tape and Reel Rails Tape and Reel Rails Rails PRODUCT Single OPA137N PACKAGE 5-Lead SOT-23-5 Surface Mount " OPA137NA " 5-Lead SOT-23-5 Surface Mount " 331 " –40°C to +85°C " E37(3) " OPA137U " SO-8 Surface Mount " 182 " –40°C to +85°C " OPA137U " OPA137UA " SO-8 Surface Mount " 182 " –40°C to +85°C " OPA137UA " OPA137P OPA137PA Dual OPA2137E " 8-Pin DIP 8-Pin DIP " 006 006 " –40°C to +85°C –40°C to +85°C –40°C to +85°C " OPA137P OPA137PA E37(3) MSOP-8 Surface Mount 337 " OPA2137EA " MSOP-8 Surface Mount " 337 " –40°C to +85°C " E37(3) " OPA2137U " SO-8 Surface Mount " 182 " –40°C to +85°C " OPA2137U " OPA2137UA " SO-8 Surface Mount " 182 " –40°C to +85°C " OPA2137UA " OPA2137P OPA2137PA Quad OPA4137U " 8-Pin DIP 8-Pin DIP " 006 006 " –40°C to +85°C –40°C to +85°C –40°C to +85°C " OPA2137P OPA2137PA OPA2137E/250 OPA2137E/2K5 OPA2137EA/250 OPA2137EA/2K5 OPA2137U OPA2137U/2K5 OPA2137UA OPA2137UA/2K5 OPA2137P OPA2137PA Tape and Reel Tape and Reel Tape and Reel Tape and Reel Rails Tape and Reel Rails Tape and Reel Rails Rails SO-14 Surface Mount 235 OPA4137U " OPA4137UA " SO-14 Surface Mount " 235 " –40°C to +85°C " OPA4137UA " OPA4137P OPA4137PA " 14-Pin DIP 14-Pin DIP " 010 010 " –40°C to +85°C –40°C to +85°C " OPA4137P OPA4137PA OPA4137U OPA4137U/2K5 OPA4137UA OPA4137UA/2K5 OPA4137P OPA4137PA Rails Tape and Reel Rails Tape and Reel Rails Rails NOTES: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book. (2) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /2K5 indicates 2500 devices per reel). Ordering 3000 pieces of “OPA137NA/3K” will get a single 3000-piece Tape and Reel. For detailed Tape and Reel mechanical information, refer to Appendix B of Burr-Brown IC Data Book. (3) Grade information is marked on the reel. The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems. ® 3 OPA137, 2137, 4137 TYPICAL PERFORMANCE CURVES At TA = +25°C, VS = ±15V, RL = 10kΩ, connected to ground, unless otherwise noted. OPEN-LOOP GAIN/PHASE vs FREQUENCY 100 80 G 60 0 –40°C POWER SUPPLY AND COMMON-MODE REJECTION vs FREQUENCY 100 80 Phase Shift (°) –45 φ –90 PSRR, CMRR (dB) +PSRR 60 CMRR Gain (dB) 40 20 0 –20 1 10 100 1k 10k 100k 1M +85°C +25°C 40 –PSRR 20 –135 –180 0 10M 10 100 1k 10k 100k 1M Frequency (Hz) Frequency (Hz) INPUT VOLTAGE AND CURRENT NOISE SPECTRAL DENSITY vs FREQUENCY 1k 1 140 120 CHANNEL SEPARATION vs FREQUENCY Voltage Noise (nV/√Hz) 100 Voltage Noise 10 Channel Separation (dB) Current Noise (fA/√Hz) 100 80 60 40 20 100 1k 10k Frequency (Hz) 100k 1M Dual and quad devices. G = 1, all channels. Quad measured channel A to D or B to C—other combinations yield improved rejection. 10 Current Noise 1 1 0.1 1 10 100 1k 10k 100k 1M Frequency (Hz) 0.1 INPUT BIAS CURRENT vs TEMPERATURE 10k INPUT BIAS CURRENT vs INPUT COMMON-MODE VOLTAGE 1n Input bias current is a function of the voltage between the V– supply and the inputs. 100p Input Bias Current (pA) 100 10 Input Bias Current (pA) –75 –50 –25 0 25 50 75 100 125 1k 10p 1 0.1 Temperature (°C) 1p –15 –10 –5 0 5 10 15 Common-Mode Voltage (V) ® OPA137, 2137, 4137 4 TYPICAL PERFORMANCE CURVES At TA = +25°C, VS = ±15V, RL = 10kΩ, connected to ground, unless otherwise noted. (CONT) TOTAL HARMONIC DISTORTION + NOISE vs FREQUENCY 1 95 AOL, CMRR, PSRR vs TEMPERATURE VO = –13.8V to +13.9V AOL G = 10 THD+N (%) AOL, CMRR, PSRR (dB) 90 85 80 75 70 65 CMRR 0.1 PSRR G=1 VO = 3.5Vrms 0.01 100 1k Frequency (Hz) 10k 100k –75 –50 –25 0 25 50 75 100 125 Temperature (°C) ±400 ±350 Quiescent Current (µA) QUIESCENT CURRENT and SHORT-CIRCUIT CURRENT vs TEMPERATURE (IQ Per Amplifier) QUIESCENT CURRENT and SHORT-CIRCUIT CURRENT vs SUPPLY VOLTAGE ±80 ±70 Short-Circuit Current (mA) ±230 (IQ Per Amplifier) ±220 ±70 ±60 IQ ±ISC ±50 ±40 ±30 –ISC ±20 ±10 0 0 ±5 ±10 Supply Voltage (V) ±15 ±20 ±300 ±250 ±200 ±150 ±100 ±50 0 –75 –50 –25 0 25 50 75 100 125 Temperature (°C) –ISC IQ +ISC ±60 ±50 ±40 ±30 ±20 ±10 0 ±210 ±200 ±190 ±180 ±170 ±160 MAXIMUM OUTPUT VOLTAGE vs FREQUENCY 30 25 VS = ±15V Maximum output voltage without visible dynamic distortion. OUTPUT VOLTAGE SWING vs OUTPUT CURRENT (V+) (V+) –1 –55°C Output Voltage Swing (V) Output Voltage (Vp-p) 20 15 10 5 CL = 100pF (V+) –2 (V+) –3 (V–) +3 +125°C +25°C CL = 200pF Without slew-rate induced distortion +125°C (V–) +2 (V–) +1 (V–) +25°C VS = ±5V 0 10k 100k Frequency (Hz) 1M –55°C 0 ±2 ±4 ±6 ±8 ±10 Output Current (mA) ® 5 OPA137, 2137, 4137 Short-Circuit Current (mA) Quiescent Current (µA) TYPICAL PERFORMANCE CURVES At TA = +25°C, VS = ±15V, RL = 10kΩ, connected to ground, unless otherwise noted. (CONT) 20 18 Percent of Amplifiers (%) 16 14 12 10 8 6 4 2 0 OFFSET VOLTAGE PRODUCTION DISTRIBUTION Typical production distribution of packaged units. Single, duals, and quads included. 20 18 OFFSET VOLTAGE DRIFT PRODUCTION DISTRIBUTION Typical production distribution of packaged units. Single, duals, and quads included. Percent of Amplifiers (%) 16 14 12 10 8 6 4 2 0 –10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10 Offset Voltage (mV) SETTLING TIME vs CLOSED-LOOP GAIN 100 10V Step 0.01% 50 60 Settling Time (µs) Overshoot (%) 40 30 20 10 G = +10 G = –1 10 0.1% 1 1 10 Closed-Loop Gain (V/V) 100 0 10 100 1k 10k Load Capacitance (pF) SMALL-SIGNAL STEP RESPONSE G = 1, CL = 50pF 20mV/div 1µs/div 5V/div ® OPA137, 2137, 4137 6 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 82 76 80 Offset Voltage Drift (µV/°C) SMALL-SIGNAL OVERSHOOT vs LOAD CAPACITANCE G = +1 LARGE-SIGNAL STEP RESPONSE G = 1, CL = 50pF 5µs/div APPLICATIONS INFORMATION OPA137 series op amps are unity-gain stable and suitable for a wide range of general-purpose applications. Power supply pins should be bypassed with 10nF ceramic capacitors or larger. All circuitry is completely independent in dual and quad versions, assuring normal performance when one amplifier in a package is overdriven or short circuited. Many key parameters are guaranteed over the specified temperature range, –40°C to +85°C. OPERATING VOLTAGE OPA137 op amps can be operated on power supplies as low as ±2.25V. Performance remains excellent with power supplies ranging from ±2.25V to ±18V (+4.5V to +36V single supply). Most parameters vary only slightly throughout this supply voltage range. Quiescent current and short-circuit current vs supply voltage are shown in Typical Performance Curves. Operation at very low supply voltage (VS ≤ ±3V) requires careful attention to ensure that the common-mode voltage remains within the linear range, VCM = (V–)+3V to (V+). Inputs may need to be biased above ground in accordance with the common-mode voltage range restrictions for linear operation. INPUT VOLTAGE The input common-mode voltage range of OPA137 series op amps extends from (V–)+3V to the positive rail, V+. For normal operation, inputs should be limited to this range. The inputs may go beyond the power supplies without output phase-reversal. Many FET-input op amps (such as TL061 types) exhibit phase-reversal of the output when the input common-mode range is exceeded. This can occur in voltagefollower circuits, causing serious problems in control loop applications. Input terminals are diode-clamped to the power supply rails for ESD protection. If the input voltage can exceed the negative supply by 500mV, input current should be limited to 2mA (or less). If the input current is not adequately limited, you may see unpredicatable behavior in the other amplifiers in the package. This is easily accomplished with an input resistor as shown in Figure 1. Many input signals are inherently current-limited, therefore, a limiting resistor may not be required. HIGH-SIDE CURRENT SENSING Many applications require the sensing of signals near the positive supply. The common-mode input range of OPA137 op amps includes the positive rail, enabling them to be used to sense power supply currents as shown in Figure 2. R1 0.1Ω V+ R2 1kΩ Load OPA137 20pF R1 R3 I R2 L VO = Zetex Darlington ZTX712 OPA241 VO Ground-referred output R3 10kΩ FIGURE 2. High-Side Current Monitor. INPUT BIAS CURRENT The input bias current is approximately 5pA at room temperature and increases with temperature as shown in the typical performance curve “Input Bias Current vs Temperature.” Input Bias current also varies with common-mode voltage and power supply voltage. This variation is dependent on the voltage between the negative power supply and the common-mode input voltage. The effect is shown in the typical performance curve “Input Bias Current vs CommonMode Voltage.” RF 1MΩ 3.3pF V+ IOVERLOAD 2mA max VIN Inputs are internally clamped to V+ and V– V– λ VOUT ID OPA137 VO = – R F I D OPA137 Photodiode BPW34 CD = 75pF ID is proportional to light intensity (radiant power) FIGURE 3. Photodetector Amplifier. FIGURE 1. Input Current Protection for Voltages Exceeding the Supply Voltage. ® 7 OPA137, 2137, 4137 SOT-23-5 (Package Drawing #331) 0.027 (0.686) 0.075 (1.905) MSOP-8 (Package Drawing #337) 0.035 (0.889) 0.10 (2.54) 0.0375 (0.9525) 0.0375 (0.9525) 0.04 (1.016) 0.016 (0.41) 0.0256 (0.65) Refer to end of data sheet or Appendix C of Burr-Brown Data Book for tolerances and detailed package drawing. For further information on solder pads for surface-mount devices consult Application Bulletin AB-132. FIGURE 4. Recommended SOT-23-5 and MSOP-8 Solder Footprints. ® OPA137, 2137, 4137 8 0.19 (4.83)
OPA2137EA 价格&库存

很抱歉,暂时无法提供与“OPA2137EA”相匹配的价格&库存,您可以联系我们找货

免费人工找货