0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SN74ALVCH16952DLR

SN74ALVCH16952DLR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SSOP56_300MIL

  • 描述:

    IC TXRX NON-INVERT 3.6V 56SSOP

  • 数据手册
  • 价格&库存
SN74ALVCH16952DLR 数据手册
www.ti.com FEATURES • • • • • • Member of the Texas Instruments Widebus™ Family EPIC™ (Enhanced-Performance Implanted CMOS) Submicron Process ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0) Latch-Up Performance Exceeds 500 mA Per JESD 17 Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors Package Options Include Plastic 300-mil Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), and Thin Very Small-Outline (DGV) Packages DESCRIPTION This 16-bit registered transceiver is designed for 1.65-V to 3.6-V VCC operation. The SN74ALVCH16952 contains two sets of D-type flip-flops for temporary storage of data flowing in either direction. This device can be used as two 8-bit transceivers or one 16-bit transceiver. Data on the A or B bus is stored in the registers on the low-to-high transition of the clock (CLKAB or CLKBA) input, provided that the clock-enable (CLKENAB or CLKENBA) input is low. Taking the output-enable (OEAB or OEBA) input low accesses the data on either port. SN74ALVCH16952 16-BIT REGISTERED TRANSCEIVER WITH 3-STATE OUTPUTS SCES011E – JULY 1995 – REVISED SEPTEMBER 2004 DGG, DGV, OR DL PACKAGE (TOP VIEW) 1OEAB 1CLKAB 1CLKENAB GND 1A1 1A2 VCC 1A3 1A4 1A5 GND 1A6 1A7 1A8 2A1 2A2 2A3 GND 2A4 2A5 2A6 VCC 2A7 2A8 GND 2CLKENAB 2CLKAB 2OEAB 1 56 2 55 3 54 4 53 5 52 6 51 7 50 8 49 9 48 10 47 11 46 12 45 13 44 14 43 15 42 16 41 17 40 18 39 19 38 20 37 21 36 22 35 23 34 24 33 25 32 26 31 27 30 28 29 1OEBA 1CLKBA 1CLKENBA GND 1B1 1B2 VCC 1B3 1B4 1B5 GND 1B6 1B7 1B8 2B1 2B2 2B3 GND 2B4 2B5 2B6 VCC 2B7 2B8 GND 2CLKENBA 2CLKBA 2OEBA To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level. The SN74ALVCH16952 is characterized for operation from -40°C to 85°C. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus, EPIC are trademarks of Texas Instruments. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 1995–2004, Texas Instruments Incorporated SN74ALVCH16952 16-BIT REGISTERED TRANSCEIVER WITH 3-STATE OUTPUTS www.ti.com SCES011E – JULY 1995 – REVISED SEPTEMBER 2004 FUNCTION TABLE (1) INPUTS (1) (2) 2 CLKENAB CLKAB OEAB A OUTPUT B H X L X B0 (2) X L L X B0 (2) L ↑ L L L L ↑ L H H X X H X Z A-to-B data flow is shown; B-to-A data flow is similar, but uses CLKENBA, CLKBA, and OEBA. Level of B before the indicated steady-state input conditions were established SN74ALVCH16952 16-BIT REGISTERED TRANSCEIVER WITH 3-STATE OUTPUTS www.ti.com SCES011E – JULY 1995 – REVISED SEPTEMBER 2004 LOGIC SYMBOL(1) 1OEBA 56 54 1CLKENBA 1CLKBA 55 1 1OEAB 3 1CLKENAB 1CLKAB 2 29 2OEBA 31 2CLKENBA 2CLKBA 2OEAB 30 28 26 2CLKENAB 2CLKAB 1A1 27 5 EN3 G1 1C5 EN4 G2 2C6 EN9 G7 7C11 EN10 G8 8C12 3 6D 1A2 1A3 1A4 1A5 1A6 1A7 1A8 2A1 6 2A3 2A4 2A5 2A6 2A7 2A8 (1) 4 52 51 8 49 9 48 10 47 12 45 13 44 14 43 15 9 12D 2A2 5D 11D 42 1B1 1B2 1B3 1B4 1B5 1B6 1B7 1B8 2B1 10 16 41 17 40 19 38 20 37 21 36 23 34 24 33 2B2 2B3 2B4 2B5 2B6 2B7 2B8 This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. 3 SN74ALVCH16952 16-BIT REGISTERED TRANSCEIVER WITH 3-STATE OUTPUTS www.ti.com SCES011E – JULY 1995 – REVISED SEPTEMBER 2004 LOGIC DIAGRAM (POSITIVE LOGIC) 1CLKENAB 1CLKAB 1OEBA 1A1 3 54 2 55 56 1 5 One of Eight Channels C1 CE 1D 52 1CLKENBA 1CLKBA 1OEAB 1B1 C1 CE 1D To Seven Other Channels 2CLKENAB 2CLKAB 2OEBA 2A1 26 31 27 30 29 28 15 One of Eight Channels C1 CE 1D C1 CE 1D To Seven Other Channels 4 42 2CLKENBA 2CLKBA 2OEAB 2B1 SN74ALVCH16952 16-BIT REGISTERED TRANSCEIVER WITH 3-STATE OUTPUTS www.ti.com SCES011E – JULY 1995 – REVISED SEPTEMBER 2004 ABSOLUTE MAXIMUM RATINGS (1) over operating free-air temperature range (unless otherwise noted) VCC Supply voltage range MIN MAX -0.5 4.6 Except I/O ports (2) -0.5 4.6 I/O ports (2) (3) -0.5 VCC + 0.5 -0.5 VCC + 0.5 UNIT V VI Input voltage range VO Output voltage range (2) (3) IIK Input clamp current VI < 0 -50 mA IOK Output clamp current VO < 0 -50 mA IO Continuous output current ±50 mA ±100 mA Continuous current through each VCC or GND θJA Package thermal impedance (4) Tstg Storage temperature range DGG package 81 DGV package 86 DL package (1) (2) (3) (4) V V °C/W 74 -65 °C 150 Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed. This value is limited to 4.6 V maximum. The package thermal impedance is calculated in accordance with JESD 51. RECOMMENDED OPERATING CONDITIONS (1) VCC Supply voltage VIH High-level input voltage VCC = 1.65 V to 1.95 V MIN MAX 1.65 3.6 Low-level input voltage VI Input voltage VO Output voltage IOH High-level output current IOL Low-level output current ∆t/∆v Input transition rise or fall rate TA Operating free-air temperature (1) V 0.65 × VCC VCC = 2.3 V to 2.7 V 1.7 VCC = 2.7 V to 3.6 V 2 V 0.35 × VCC VCC = 1.65 V to 1.95 V VIL UNIT VCC = 2.3 V to 2.7 V 0.7 VCC = 2.7 V to 3.6 V 0.8 V 0 VCC V 0 VCC V VCC = 1.65 V -4 VCC = 2.3 V -12 VCC = 2.7 V -12 VCC = 3 V -24 VCC = 1.65 V 4 VCC = 2.3 V 12 VCC = 2.7 V 12 VCC = 3 V 24 -40 mA mA 10 ns/V 85 °C All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. 5 SN74ALVCH16952 16-BIT REGISTERED TRANSCEIVER WITH 3-STATE OUTPUTS www.ti.com SCES011E – JULY 1995 – REVISED SEPTEMBER 2004 ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VCC IOH = -100 µA 1.65 V to 3.6 V 1.65 V IOH = -6 mA 2.3 V 2 2.3 V 1.7 2.7 V 2.2 3V 2.4 IOH = -24 mA 3V 2 IOL = 100 µA IOH = -12 mA II(hold) V 1.65 V to 3.6 V 0.2 1.65 V 0.45 IOL = 6 mA 2.3 V 0.4 2.3 V 0.7 IOL = 24 mA 2.7 V 0.4 3V 0.55 3.6 V VI = 0.58 V 1.65 V 25 VI = 1.07 V 1.65 V -25 VI = 0.7 V 2.3 V 45 VI = 1.7 V 2.3 V -45 VI = 0.8 V 3V 75 3V -75 VI = 0 to 3.6 V (2) IOZ (3) VO = VCC or GND ICC VI = VCC or GND, IO = 0 ∆ICC One input at VCC - 0.6 V, Other inputs at VCC or GND V ±5 VI = VCC or GND VI = 2 V UNIT 1.2 IOL = 4 mA IOL = 12 mA II TYP (1) MAX VCC - 0.2 IOH = -4 mA VOH VOL MIN µA µA 3.6 V ±500 3.6 V ±10 µA 3.6 V 40 µA 3 V to 3.6 V 750 µA Ci Control inputs VI = VCC or GND 3.3 V 3.5 pF Cio A or B ports VO = VCC or GND 3.3 V 8.5 pF (1) (2) (3) All typical values are at VCC = 3.3 V, TA = 25°C. This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another. For I/O ports, the parameter IOZ includes the input leakage current. TIMING REQUIREMENTS over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1 through Figure 3) VCC = 1.8 V MIN fclock Clock frequency tw Pulse duration tsu Setup time th Hold time (1) 6 VCC = 2.5 V ± 0.2 V MAX MIN MAX (1) 150 VCC = 2.7 V MIN VCC = 3.3 V ± 0.3 V MAX MIN MAX 150 150 CLKEN high (1) 3.3 3.3 3.3 CLK high or low (1) 3.3 3.3 3.3 Data before CLK (1) 1.7 1.9 1.5 CLKEN before CLK (1) 1.2 1 1 Data after CLK (1) 0.6 0.6 0.8 CLKEN after CLK (1) 1.1 0.9 1.1 This information was not available at the time of publication. UNIT MHz ns ns ns SN74ALVCH16952 16-BIT REGISTERED TRANSCEIVER WITH 3-STATE OUTPUTS www.ti.com SCES011E – JULY 1995 – REVISED SEPTEMBER 2004 SWITCHING CHARACTERISTICS over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1 through Figure 3) FROM (INPUT) PARAMETER VCC = 1.8 V TO (OUTPUT) MIN (1) fmax tpd (1) TYP CLK VCC = 2.5 V ± 0.2 V MIN VCC = 2.7 V MAX 150 MIN MAX 150 (1) 1 4.1 4.6 1 5.4 1 5.3 ten OEBA or OEAB A or B tdis OEBA or OEAB A or B (1) MIN UNIT MAX 150 A or B (1) VCC = 3.3 V ± 0.3 V MHz 1 3.9 ns 5.3 1 4.4 ns 4.4 1.1 4 ns This information was not available at the time of publication. OPERATING CHARACTERISTICS TA = 25°C PARAMETER Cpd (1) Power dissipation capacitance Outputs enabled Outputs disabled TEST CONDITIONS CL = 0, f = 10 MHz VCC = 1.8 V VCC = 2.5 V VCC = 3.3 V TYP TYP TYP (1) 53 71 (1) 34 40 UNIT pF This information was not available at the time of publication. 7 SN74ALVCH16952 16-BIT REGISTERED TRANSCEIVER WITH 3-STATE OUTPUTS www.ti.com SCES011E – JULY 1995 – REVISED SEPTEMBER 2004 PARAMETER MEASUREMENT INFORMATION VCC = 1.8 V 2 × VCC S1 1 kΩ From Output Under Test Open TEST tpd tPLZ/tPZL tPHZ/tPZH GND CL = 30 pF (see Note A) 1 kΩ S1 Open 2 × VCC GND LOAD CIRCUIT tw VCC Timing Input VCC/2 VCC/2 VCC/2 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES VCC/2 VCC/2 0V tPLH Output Control (low-level enabling) VCC/2 VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES tPLZ VCC VCC/2 tPZH VOH VCC/2 0V Output Waveform 1 S1 at 2 × VCC (see Note B) tPHL VCC/2 VCC VCC/2 tPZL VCC Input VOLTAGE WAVEFORMS PULSE DURATION th VCC Data Input VCC/2 0V 0V tsu Output VCC VCC/2 Input Output Waveform 2 S1 at GND (see Note B) VOL + 0.15 V VOL tPHZ VCC/2 VOH VOH − 0.15 V 0V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2 ns, tf ≤ 2 ns. D. The outputs are measured one at a time, with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. Figure 1. Load Circuit and Voltage Waveforms 8 SN74ALVCH16952 16-BIT REGISTERED TRANSCEIVER WITH 3-STATE OUTPUTS www.ti.com SCES011E – JULY 1995 – REVISED SEPTEMBER 2004 PARAMETER MEASUREMENT INFORMATION VCC = 2.5 V ± 0.2 V 2 × VCC S1 500 Ω From Output Under Test Open TEST tpd tPLZ/tPZL tPHZ/tPZH GND CL = 30 pF (see Note A) 500 Ω S1 Open 2 × VCC GND LOAD CIRCUIT tw VCC Timing Input VCC/2 VCC/2 VCC/2 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES VCC/2 VCC/2 0V tPLH Output Control (low-level enabling) VCC/2 VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES tPLZ VCC VCC/2 tPZH VOH VCC/2 0V Output Waveform 1 S1 at 2 × VCC (see Note B) tPHL VCC/2 VCC VCC/2 tPZL VCC Input VOLTAGE WAVEFORMS PULSE DURATION th VCC Data Input VCC/2 0V 0V tsu Output VCC VCC/2 Input Output Waveform 2 S1 at GND (see Note B) VOL + 0.15 V VOL tPHZ VCC/2 VOH VOH − 0.15 V 0V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2 ns, tf ≤ 2 ns. D. The outputs are measured one at a time, with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. Figure 2. Load Circuit and Voltage Waveforms 9 SN74ALVCH16952 16-BIT REGISTERED TRANSCEIVER WITH 3-STATE OUTPUTS www.ti.com SCES011E – JULY 1995 – REVISED SEPTEMBER 2004 PARAMETER MEASUREMENT INFORMATION VCC = 2.7 V AND 3.3 V ± 0.3 V 6V S1 500 Ω From Output Under Test GND CL = 50 pF (see Note A) TEST S1 tpd tPLZ/tPZL tPHZ/tPZH Open 6V GND Open 500 Ω tw LOAD CIRCUIT 2.7 V 2.7 V Timing Input 1.5 V Input 1.5 V 1.5 V 0V 0V tsu VOLTAGE WAVEFORMS PULSE DURATION th 2.7 V Data Input 1.5 V 1.5 V 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES Output Control (low-level enabling) 2.7 V 1.5 V 0V tPZL 2.7 V Input 1.5 V 1.5 V 0V tPLH 1.5 V 1.5 V VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES tPLZ 3V 1.5 V tPZH VOH Output Output Waveform 1 S1 at 6 V (see Note B) tPHL 1.5 V Output Waveform 2 S1 at GND (see Note B) VOL + 0.3 V VOL tPHZ 1.5 V VOH VOH − 0.3 V 0V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns. D. The outputs are measured one at a time, with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. Figure 3. Load Circuit and Voltage Waveforms 10 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) (3) Device Marking (4/5) (6) SN74ALVCH16952DGGR ACTIVE TSSOP DGG 56 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 ALVCH16952 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
SN74ALVCH16952DLR 价格&库存

很抱歉,暂时无法提供与“SN74ALVCH16952DLR”相匹配的价格&库存,您可以联系我们找货

免费人工找货