0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SN74LVC162244ADGGR

SN74LVC162244ADGGR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    TSSOP48_12.5X6.1MM

  • 描述:

    SN74LVC162244A 16-BIT BUFFER/DRI

  • 数据手册
  • 价格&库存
SN74LVC162244ADGGR 数据手册
Sample & Buy Product Folder Support & Community Tools & Software Technical Documents SN74LVC162244A SCAS758B – DECEMBER 2003 – REVISED JUNE 2014 SN74LVC162244A 16-Bit Buffer/Driver with 3-State Outputs 1 Features 2 Applications • • • • • 1 • • • • • • • • • • Member of the Texas Instruments Widebus™ Family Operates From 1.65 V to 3.6 V Inputs Accept Voltages to 5.5 V Max tpd of 4.4 ns at 3.3 V Typical VOLP (Output Ground Bounce) < 0.8 V at VCC = 3.3 V, TA = 25°C Typical VOHV (Output VOH Undershoot) > 2 V at VCC = 3.3 V, TA = 25°C Supports Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V VCC) Output Ports Have Equivalent 26 Ω Series Resistors, So No External Resistors Are Required Ioff Supports Live Insertion, Partial Power Down Mode, and Back Drive Protection Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II ESD Protection Exceeds JESD 22 – 2000-V Human-Body Model (A114-A) – 1000-V Charged-Device Model (C101) Motor drive Network switch Power Infrastructure Test and Measurement 3 Description This 16-bit buffer or driver is designed for 1.65-V to 3.6-V VCC operation. The device can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. Device Information(1) PART NUMBER SN74LVC162244A PACKAGE BODY SIZE (NOM) SSOP (48) 15.88 × 7.49 mm TSSOP (48) 12.50 × 6.10 mm TVSOP (48) 9.70 × 4.40 mm (1) For all available packages, see the orderable addendum at the end of the data sheet. 4 Simplified Schematic 1OE 1A1 1A2 1A3 1A4 2OE 2A1 2A2 2A3 2A4 1 3OE 47 2 46 3 44 5 43 6 1Y1 3A1 1Y2 3A2 1Y3 3A3 1Y4 3A4 48 4OE 41 8 40 9 38 11 37 12 2Y1 4A1 2Y2 4A2 2Y3 4A3 2Y4 4A4 25 36 13 35 14 33 16 32 17 3Y1 3Y2 3Y3 3Y4 24 30 19 29 20 27 22 26 23 4Y1 4Y2 4Y3 4Y4 Pin numbers shown are for the DGG, DGV, and DL packages. 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. SN74LVC162244A SCAS758B – DECEMBER 2003 – REVISED JUNE 2014 www.ti.com Table of Contents 1 2 3 4 5 6 7 8 9 Features .................................................................. Applications ........................................................... Description ............................................................. Simplified Schematic............................................. Revision History..................................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 1 2 3 6 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 6 6 7 7 8 8 8 9 Absolute Maximum Ratings ..................................... Handling Ratings....................................................... Recommended Operating Conditions ...................... Thermal Information .................................................. Electrical Characteristics........................................... Switching Characteristics .......................................... Operating Characteristics.......................................... Typical Characteristics .............................................. Parameter Measurement Information ................ 10 Detailed Description ............................................ 11 9.1 9.2 9.3 9.4 Overview ................................................................. Functional Block Diagram ....................................... Feature Description................................................. Device Functional Modes........................................ 11 11 11 12 10 Application and Implementation........................ 12 10.1 Application Information.......................................... 12 10.2 Typical Application ............................................... 12 11 Power Supply Recommendations ..................... 13 12 Layout................................................................... 14 12.1 Layout Guidelines ................................................. 14 12.2 Layout Example .................................................... 14 13 Device and Documentation Support ................. 14 13.1 Trademarks ........................................................... 14 13.2 Electrostatic Discharge Caution ............................ 14 13.3 Glossary ................................................................ 14 14 Mechanical, Packaging, and Orderable Information ........................................................... 14 5 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision A (October 2005) to Revision B Page • Updated document to new TI data sheet format. ................................................................................................................... 1 • Removed Ordering Information table. .................................................................................................................................... 1 • Added Applications. ................................................................................................................................................................ 1 • Changed MAX ambient temperature to 125°C. ..................................................................................................................... 7 • Added Device and Documentation Support section............................................................................................................. 14 • Added ESD warning. ............................................................................................................................................................ 14 • Added Mechanical, Packaging, and Orderable Information section..................................................................................... 14 2 Submit Documentation Feedback Copyright © 2003–2014, Texas Instruments Incorporated Product Folder Links: SN74LVC162244A SN74LVC162244A www.ti.com SCAS758B – DECEMBER 2003 – REVISED JUNE 2014 6 Pin Configuration and Functions DGG, DGV, OR DL PACKAGE (TOP VIEW) 1OE 1Y1 1Y2 GND 1Y3 1Y4 VCC 2Y1 2Y2 GND 2Y3 2Y4 3Y1 3Y2 GND 3Y3 3Y4 VCC 4Y1 4Y2 GND 4Y3 4Y4 4OE 1 48 2 47 3 46 4 45 5 44 6 43 7 42 8 41 9 40 10 39 11 38 12 37 13 36 14 35 15 34 16 33 17 32 18 31 19 30 20 29 21 28 22 27 23 26 24 25 2OE 1A1 1A2 GND 1A3 1A4 VCC 2A1 2A2 GND 2A3 2A4 3A1 3A2 GND 3A3 3A4 VCC 4A1 4A2 GND 4A3 4A4 3OE Pin Functions PIN NAME NO. I/O DESCRIPTION 1OE 1 I Output Enable 1 (input) 1Y1 2 O 1Y1 Output 1Y2 3 O 1Y2 Output GND 4 – Ground pin 1Y3 5 O 1Y3 Output 1Y4 6 O 1Y4 Output VCC 7 – Power pin 2Y1 8 O 2Y1 Output 2Y2 9 O 2Y2 Output GND 10 – Ground pin 2Y3 11 O 2Y3 Output 2Y4 12 O 2Y4 Output 3Y1 13 O 3Y1 Output 3Y2 14 O 3Y2 Output GND 15 – Ground pin 3Y3 16 O 3Y3 Output 3Y4 17 O 3Y4 Output VCC 18 – Power pin 4Y1 19 O 4Y1 Output 4Y2 20 O 4Y2 Output GND 21 – Ground pin 4Y3 22 O 4Y3 Output Submit Documentation Feedback Copyright © 2003–2014, Texas Instruments Incorporated Product Folder Links: SN74LVC162244A 3 SN74LVC162244A SCAS758B – DECEMBER 2003 – REVISED JUNE 2014 www.ti.com Pin Functions (continued) PIN NAME NO. I/O DESCRIPTION 4Y4 23 O 4Y4 Output 4OE 24 I Output Enable 4 (input) 3OE 25 I Output Enable 3 (input) 4A4 26 I 4A4 Input 4A3 27 I 4A3 Input GND 28 – Ground pin 4A2 29 I 4A2 Input 4A1 30 I 4A1 Input VCC 31 – Power pin 3A4 32 I 3A4 Input 3A3 33 I 3A3 Input GND 34 – Ground pin 3A2 35 I 3A2 Input 3A1 36 I 3A1 Input 2A4 37 I 2A4 Input 2A3 38 I 2A3 Input GND 39 – Ground pin 2A2 40 I 2A2 Input 2A1 41 I 2A1 Input VCC 42 – Power pin 1A4 43 I 1A4 Input 1A3 44 I 1A3 Input GND 45 – Ground pin 1A2 46 I 1A2 Input 1A1 47 I 1A1 Input 2OE 48 I Output Enable 2 (Input) 4 Submit Documentation Feedback Copyright © 2003–2014, Texas Instruments Incorporated Product Folder Links: SN74LVC162244A SN74LVC162244A www.ti.com SCAS758B – DECEMBER 2003 – REVISED JUNE 2014 GQL OR ZQL PACKAGE (TOP VIEW) 1 2 3 4 5 6 A B C D E F G H J K Table 1. 3Pin Assignments (1) (56-Ball GQL or ZQL Package) 1 2 3 4 5 6 A 1OE NC NC NC NC 2OE B 1Y2 1Y1 GND GND 1A1 1A2 C 1Y4 1Y3 VCC VCC 1A3 1A4 D 2Y2 2Y1 GND GND 2A1 2A2 E 2Y4 2Y3 2A3 2A4 F 3Y1 3Y2 3A2 3A1 G 3Y3 3Y4 GND GND 3A4 3A3 H 4Y1 4Y2 VCC VCC 4A2 4A1 J 4Y3 4Y4 GND GND 4A4 4A3 K 4OE NC NC NC NC 3OE (1) NC - No internal connection GRD OR ZRD PACKAGE (TOP VIEW) 2 3 4 5 6 1 A B C D E F G H J Table 2. Pin Assignments (1) (54-Ball GRD or ZRD Package) (1) 1 2 3 4 5 6 A 1Y1 NC 1OE 2OE NC 1A1 B 1Y3 1Y2 NC NC 1A2 1A3 C 2Y1 1Y4 VCC VCC 1A4 2A1 D 2Y3 2Y2 GND GND 2A2 2A3 E 3Y1 2Y4 GND GND 2A4 3A1 F 3Y3 3Y2 GND GND 3A2 3A3 G 4Y1 3Y4 VCC VCC 3A4 4A1 H 4Y3 4Y2 NC NC 4A2 4A3 J 4Y4 NC 4OE 3OE NC 4A4 NC - No internal connection Submit Documentation Feedback Copyright © 2003–2014, Texas Instruments Incorporated Product Folder Links: SN74LVC162244A 5 SN74LVC162244A SCAS758B – DECEMBER 2003 – REVISED JUNE 2014 www.ti.com 7 Specifications 7.1 Absolute Maximum Ratings (1) over operating free-air temperature range (unless otherwise noted) VCC MIN MAX Supply voltage range –0.5 6.5 UNIT V (2) VI Input voltage range –0.5 6.5 V VO Voltage range applied to any output in the high-impedance or power-off state (2) –0.5 6.5 V VO Voltage range applied to any output in the high or low state (2) (3) –0.5 VCC + 0.5 V IIK Input clamp current VI < 0 –50 mA IOK Output clamp current VO < 0 –50 mA IO Continuous output current ±50 mA ±100 mA Continuous current through each VCC or GND (1) (2) (3) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed. The value of VCC is provided in the Recommended Operating Conditions table. 7.2 Handling Ratings MIN Tstg Storage temperature range V(ESD) (1) (2) 6 Electrostatic discharge MAX –65 150 Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1) 0 2000 Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2) 0 1000 UNIT °C V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Submit Documentation Feedback Copyright © 2003–2014, Texas Instruments Incorporated Product Folder Links: SN74LVC162244A SN74LVC162244A www.ti.com SCAS758B – DECEMBER 2003 – REVISED JUNE 2014 7.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) (1) Operating VCC Supply voltage VIH High-level input voltage Data retention only MIN MAX 1.65 3.6 0.65 × VCC VCC = 2.3 V to 2.7 V 1.7 VCC = 2.7 V to 3.6 V 2 VCC = 1.65 V to 1.95 V Low-level input voltage VI Input voltage V 0.35 × VCC VCC = 2.3 V to 2.7 V 0.7 VCC = 2.7 V to 3.6 V VO Output voltage IOH High-level output current Low-level output current Δt/Δv Input transition rise or fall rate TA Operating free-air temperature 5.5 High or low state 0 VCC High-impedance state 0 5.5 VCC = 1.65 V –2 VCC = 2.3 V –4 VCC = 2.7 V –8 V V mA –12 VCC = 1.65 V 2 VCC = 2.3 V 4 VCC = 2.7 V 8 VCC = 3 V (1) V 0.8 0 VCC = 3 V IOL V 1.5 VCC = 1.65 V to 1.95 V VIL UNIT mA 12 –40 10 ns/V 125 °C All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. 7.4 Thermal Information THERMAL METRIC (1) DGG DGV DL 48 PINS 48 PINS 48 PINS RθJA Junction-to-ambient thermal resistance 64.3 78.4 68.4 RθJC(top) Junction-to-case (top) thermal resistance 17.6 30.7 34.7 RθJB Junction-to-board thermal resistance 31.5 41.8 41.0 ψJT Junction-to-top characterization parameter 1.1 3.8 12.3 ψJB Junction-to-board characterization parameter 31.2 41.3 40.4 (1) UNIT °C/W For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. Submit Documentation Feedback Copyright © 2003–2014, Texas Instruments Incorporated Product Folder Links: SN74LVC162244A 7 SN74LVC162244A SCAS758B – DECEMBER 2003 – REVISED JUNE 2014 www.ti.com 7.5 Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VCC IOH = –100 µA 1.65 V to 3.6 V IOH = –2 mA VOH II VCC – 0.2 1.2 2.3 V 1.7 2.7 V 2.2 IOH = –6 mA 3V 2.4 IOH = –8 mA 2.7 V 2 IOH = –12 mA 3V 2 IOL = 100 µA 1.65 V to 3.6 V 0.2 1.65 V 0.45 2.3 V 0.7 IOH = –4 mA IOL = 4 mA V 2.7 V 0.4 IOL = 6 mA 3V 0.55 IOL = 8 mA 2.7 V 0.6 IOL = 12 mA 3V 0.8 V 3.6 V ±5 µA VI or VO = 5.5 V 0 ±10 µA IOZ VO = 0 to 5.5 V 3.6 V ±10 µA ΔICC VI = 0 to 5.5 V UNIT Ioff ICC (1) (2) TYP (1) MAX 1.65 V IOL = 2 mA VOL MIN VI = VCC or GND IO = 0 3.6 V ≤ VI ≤ 5.5 V (2) One input at VCC – 0.6 V, 20 3.6 V Other inputs at VCC or GND 20 2.7 V to 3.6 V 500 µA µA Ci VI = VCC or GND 3.3 V 5.5 pF Co VO = VCC or GND 3.3 V 6 pF All typical values are at VCC = 3.3 V, TA = 25°C. This applies in the disabled state only. 7.6 Switching Characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3) FROM (INPUT) TO (OUTPUT) tpd A Y ten OE Y tdis OE Y PARAMETER VCC = 1.8 V ± 0.15 V MIN VCC = 2.5 V ± 0.2 V VCC = 2.7 V VCC = 3.3 V ± 0.3 V UNIT MAX MIN MAX MIN MAX MIN MAX 1.5 6 1 4.3 1 5.6 1.1 4.4 ns 1.5 7.3 1 5 1 6.9 1 5.5 ns 1.5 8.9 1 5.5 1 6.8 1.8 6.3 ns 7.7 Operating Characteristics TA = 25°C TEST CONDITIONS PARAMETER Cpd 8 Power dissipation capacitance per buffer/driver Outputs enabled Outputs disabled VCC = 1.8 V VCC = 2.5 V VCC = 3.3 V TYP TYP TYP 31 33 35 2 3 4 f = 10 MHz Submit Documentation Feedback UNIT pF Copyright © 2003–2014, Texas Instruments Incorporated Product Folder Links: SN74LVC162244A SN74LVC162244A www.ti.com SCAS758B – DECEMBER 2003 – REVISED JUNE 2014 7.8 Typical Characteristics 4 4 TPD 3.5 3.5 3 3 2.5 2.5 TPD (ns) TPD (ns) TPD 2 2 1.5 1.5 1 1 0.5 0.5 0 0 1 2 3 VCC (V) 4 0 -100 -50 D001 Figure 1. TPD Across VCC at 25°C 0 50 Temperature (°C) 100 150 D005 Figure 2. TPD Across Temperature at 3.3 V Submit Documentation Feedback Copyright © 2003–2014, Texas Instruments Incorporated Product Folder Links: SN74LVC162244A 9 SN74LVC162244A SCAS758B – DECEMBER 2003 – REVISED JUNE 2014 www.ti.com 8 Parameter Measurement Information VLOAD S1 RL From Output Under Test CL (see Note A) Open GND RL TEST S1 tPLH/tPHL tPLZ/tPZL tPHZ/tPZH Open VLOAD GND LOAD CIRCUIT INPUTS VCC 1.8 V ± 0.15 V 2.5 V ± 0.2 V 2.7 V 3.3 V ± 0.3 V VI tr/tf VCC VCC 2.7 V 2.7 V ≤2 ns ≤2 ns ≤2.5 ns ≤2.5 ns VM VLOAD CL RL V∆ VCC/2 VCC/2 1.5 V 1.5 V 2 × VCC 2 × VCC 6V 6V 30 pF 30 pF 50 pF 50 pF 1 kΩ 500 Ω 500 Ω 500 Ω 0.15 V 0.15 V 0.3 V 0.3 V VI Timing Input VM 0V tw tsu VI Input VM VM th VI Data Input VM VM 0V 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES VOLTAGE WAVEFORMS PULSE DURATION VI VM Input VM 0V VOH VM Output VM VOL VM tPLZ VLOAD/2 VM tPZH VOH Output VM 0V Output Waveform 1 S1 at VLOAD (see Note B) tPLH tPHL VM tPZL tPHL tPLH VI Output Control VM VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS Output Waveform 2 S1 at GND (see Note B) VOL + V∆ VOL tPHZ VM VOH − V∆ VOH ≈0 V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω. D. The outputs are measured one at a time, with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. H. All parameters and waveforms are not applicable to all devices. Figure 3. Load Circuit and Voltage Waveforms 10 Submit Documentation Feedback Copyright © 2003–2014, Texas Instruments Incorporated Product Folder Links: SN74LVC162244A SN74LVC162244A www.ti.com SCAS758B – DECEMBER 2003 – REVISED JUNE 2014 9 Detailed Description 9.1 Overview This 16-bit buffer/driver is designed for 1.65-V to 3.6-V VCC operation. The SN74LVC162244A is designed specifically to improve the performance and density of 3-state memory address drivers, clock drivers, and busoriented receivers and transmitters. The device can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. It provides true outputs and symmetrical active-low output-enable (OE) inputs. Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of this device as a translator in a mixed 3.3-V/5-V system environment. The outputs, which are designed to sink up to 12 mA, include equivalent 26-Ω resistors to reduce overshoot and undershoot. Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of this device as a translator in a mixed 3.3-V/5-V system environment. This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. 9.2 Functional Block Diagram 1OE 1A1 1A2 1A3 1A4 2OE 2A1 2A2 2A3 2A4 1 3OE 47 2 46 3 44 5 43 6 1Y1 3A1 1Y2 3A2 1Y3 3A3 1Y4 3A4 48 4OE 41 8 40 9 38 11 37 12 2Y1 4A1 2Y2 4A2 2Y3 4A3 2Y4 4A4 25 36 13 35 14 33 16 32 17 3Y1 3Y2 3Y3 3Y4 24 30 19 29 20 27 22 26 23 4Y1 4Y2 4Y3 4Y4 Pin numbers shown are for the DGG, DGV, and DL packages. 9.3 Feature Description • • • Wide operating voltage range – Operates from 1.65 V to 3.6 V Allows down voltage translation – Inputs accept voltages to 5.5 V Ioff feature – Allows voltages on the inputs and outputs when VCC is 0 V Submit Documentation Feedback Copyright © 2003–2014, Texas Instruments Incorporated Product Folder Links: SN74LVC162244A 11 SN74LVC162244A SCAS758B – DECEMBER 2003 – REVISED JUNE 2014 www.ti.com 9.4 Device Functional Modes Table 3. Function Table (Each 4-Bit Buffer) INPUTS OE A OUTPUT Y L H H L L L H X Z 10 Application and Implementation 10.1 Application Information The SN74LVC162244A is a 16 bit buffer driver. This device can be used as four 4-bit, two 8-bit, or one 16-bit buffer. It allows data transmission from the A bus to the Y bus with 4 separate enable pins that control 4 bits each. The output-enable (OE) input can be used to disable sections of the device so the buses are effectively isolated. The device has 5.5 V tolerant inputs at any valid VCC which allows it to be used in multi-power systems and can be used for down translation. 10.2 Typical Application Regulated 3.6 V uC or System Logic OE Vcc A1 Y1 A4 uC System Logic LEDs Y4 GND Figure 4. Typical Application Schematic 12 Submit Documentation Feedback Copyright © 2003–2014, Texas Instruments Incorporated Product Folder Links: SN74LVC162244A SN74LVC162244A www.ti.com SCAS758B – DECEMBER 2003 – REVISED JUNE 2014 Typical Application (continued) 10.2.1 Design Requirements This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads so routing and load conditions should be considered to prevent ringing. 10.2.2 Detailed Design Procedure 1. Recommended Input Conditions – Rise time and fall time specs: See (Δt/ΔV) in the Recommended Operating Conditions table. – Specified high and low levels: See (VIH and VIL) in the Recommended Operating Conditions table. – Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid VCC. 2. Recommend Output Conditions – Load currents should not exceed 25 mA per output and 50 mA total for the part. – Outputs should not be pulled above VCC. 10.2.3 Application Curves 300 250 ICC - mA 200 150 100 ICC 1.8 V ICC 2.5 V ICC 3.3 V 50 0 0 10 20 30 40 Frequency - MHz 50 60 D003 Figure 5. ICC vs Frequency 11 Power Supply Recommendations The power supply can be any voltage between the MIN and MAX supply voltage rating located in the Recommended Operating Conditions table. Each VCC pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1 μF is recommended; if there are multiple VCC pins, then 0.01 μF or 0.022 μF is recommended for each power pin. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. A 0.1 μF and a 1 μF are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results. Submit Documentation Feedback Copyright © 2003–2014, Texas Instruments Incorporated Product Folder Links: SN74LVC162244A 13 SN74LVC162244A SCAS758B – DECEMBER 2003 – REVISED JUNE 2014 www.ti.com 12 Layout 12.1 Layout Guidelines When using multiple bit logic devices inputs should not ever float. In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified below are the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or VCC whichever make more sense or is more convenient. It is generally OK to float outputs unless the part is a transceiver. If the transceiver has an output enable pin it will disable the outputs section of the part when asserted. This will not disable the input section of the IOs, so they also cannot float when disabled. 12.2 Layout Example Vcc Input Unused Input Output Unused Input Output Input Figure 6. Layout Diagram 13 Device and Documentation Support 13.1 Trademarks Widebus is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. 13.2 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. 13.3 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms and definitions. 14 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 14 Submit Documentation Feedback Copyright © 2003–2014, Texas Instruments Incorporated Product Folder Links: SN74LVC162244A PACKAGE OPTION ADDENDUM www.ti.com 14-Oct-2022 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) 74LVC162244ADGGRG4 ACTIVE TSSOP DGG 48 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 LVC162244A Samples SN74LVC162244ADGGR ACTIVE TSSOP DGG 48 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 LVC162244A Samples SN74LVC162244ADGVR ACTIVE TVSOP DGV 48 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 LD2244A Samples SN74LVC162244ADL ACTIVE SSOP DL 48 25 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 LVC162244A Samples SN74LVC162244ADLR ACTIVE SSOP DL 48 1000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 LVC162244A Samples (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
SN74LVC162244ADGGR 价格&库存

很抱歉,暂时无法提供与“SN74LVC162244ADGGR”相匹配的价格&库存,您可以联系我们找货

免费人工找货