0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BTS710404ESAXUMA1

BTS710404ESAXUMA1

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    TSSOP24

  • 描述:

    IC PWR DRVR N-CHAN 1:1 TSDSO-24

  • 数据手册
  • 价格&库存
BTS710404ESAXUMA1 数据手册
BTS71040-4ESA SPOC™ +2 4x 22.5 mΩ Serial Interface Power Controller 1 Package PG-TSDSO-24 Marking 71040-4ESA Overview Potential Applications • Suitable for resistive, inductive and capacitive loads • Replaces electromechanical relays, fuses and discrete circuits • Driving capability suitable for 3 A loads and high inrush current loads such as 27W bulb or equivalent electronic loads (e.g. LED modules) VBAT Optional ZWIRE Fail-safe Control RIN Optional CVSGND CVS1 Logic Supply RGND T1 CVDD RIN IN2 GPIO RIN IN3 RLHI LHI CSN RCSN CSN SCLK RSCLK SCLK RSO RIS_PROT CADC DZ1 ROL SI IS Logic GND COUT RSENSE COUT RADC COUT ADC OUT2 OUT3 SO RSI MOSI VSS OUT0 OUT1 ZWIRE GPIO ZLOAD* IN1 RPD IN0 RIN ZWIRE RIN GPIO ZLOAD* GPIO MISO VS COUT CVS2 Microcontroller DZ2 GND VDD SPOC™ +2 RVDD VDD Optional Application_4ch_noED.emf Power GND *See Chapter 1 „Potential Applications“ **See Chapter 11.2 „External Components“ Chassis GND Figure 1 Data Sheet Application Diagram. Further information in Chapter 11 www.infineon.com 1 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Overview Basic Features • High-Side Switch with Diagnosis and Embedded Protection • Part of SPOC™ +2 Family • Daisy Chain capable SPI interface • 3.3 V and 5 V compatible logic pins • Slew rate control for all Channels • ReverseON for low power dissipation in Reverse Polarity • Switch ON capability while Inverse Current condition (InverseON) • Green Product (RoHS compliant) Protection Features • Absolute and dynamic temperature limitation with controlled restart • Overcurrent protection (tripping) with Programmable Restart Control and Current Threshold • Undervoltage shutdown • Overvoltage protection with external components Diagnostic Features • Proportional load current sense multiplexed • Open Load in ON and OFF state • Short circuit to ground and battery • Diagnosis feedback via SPI Functional Safety Features • Limp Home mode • Monitoring of Input pin status (IN and LHI) • Checksum verification of Configuration Registers • Current Sense verification mode Product Validation Qualified for automotive applications. Product validation according to AEC-Q100 Grade 1. Description The BTS71040-4ESA is a Serial Interface Power Controller, providing protection functions and diagnosis. The device is integrated in SMART7 technology. Data Sheet 2 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Overview Table 1 Product Summary Parameter Symbol Values Minimum Operating voltage (at switch ON) VS(OP) 4.1 V Minimum Operating voltage (cranking) VS(UV) 3.1 V Maximum Operating voltage VS 28 V Digital Supply voltage VDD 3.3 V or 5 V Minimum Overvoltage protection (TJ ≥ 25 °C) VDS(CLAMP)_25 35 V Maximum current in Sleep mode (TJ ≤ 85 °C) IVS(SLEEP)_85 0.4 µA Maximum operative current IGND(ACTIVE) 7 mA Maximum ON-state resistance (TJ = 150 °C) RDS(ON)_150 38 mΩ Nominal load current (TA = 85 °C) IL(NOM) 3A Typical current sense ratio at IL = IL(NOM) kILIS 2000 Serial Clock Frequency fSCLK(max) 5 MHz Data Sheet 3 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Block Diagram and Terms 2 Block Diagram and Terms 2.1 Block Diagram VS Channel 0 Channel 1 Channel 2 Channel 3 VDD SO Voltage Sensor SI Overtemp eratur e SCLK CSN LHI IN0 Driver Logic ESD Protection + I/O Logic Gat e Co ntrol & Chargepump ReverseON In verseON T Overvolt age Clamping OUT0 OUT1 Overcurr ent Pr otec tion OUT2 OUT3 Outp ut Voltage Limitation IN1 IN2 Load Current Sense Mult iplexer IN3 In ternal Power Sup ply Overvolt age P rotection IS GND Reverse Polarity Pr otection VS Mo nitoring Limp Home Cont rol GND Cir cuitr y SPI Interface In ternal Logic Supply BlockDiagram_4chnoED.emf Figure 2 Data Sheet Block Diagram of BTS71040-4ESA 4 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Block Diagram and Terms 2.2 Terms Figure 3 shows all terms used in this data sheet, with associated convention for positive values. IVS VSIS VS IDD VDD ISO VS VDSn SO SI VDD SCLK VSO ICSN VSI CSN ILHI VSCLK OUTn LHI IINn VCSN VLHI I Ln INn IIS VOUTn IS GND VINn VIS IGND Terms_noED.emf Figure 3 Data Sheet Voltage and Current Convention 5 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Pin Configuration 3 Pin Configuration 3.1 Pin Assignment (top view) GND VDD SO SI SCLK CSN LHI IN0 IN1 IN2 IN3 IS 1 2 3 4 5 6 VS 7 8 9 10 11 12 exposed pad (bottom) 24 23 22 21 20 19 18 17 16 15 14 13 n.c. n.c. OUT0 OUT0 OUT1 OUT1 OUT2 OUT2 OUT3 OUT3 n.c. n.c. PinOut_SPOC_040_noED.emf Figure 4 Data Sheet Pin Configuration 6 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Pin Configuration 3.2 Pin Definitions and Functions Table 2 Pin Definition Pin Symbol I/O Function EP VS (exposed pad) - Power Supply Voltage Battery voltage 1 GND - Ground 2 VDD - Digital Supply Voltage 3 SO O Serial output of SPI interface 4 SI I Serial input of SPI interface (“high” active) 5 SCLK I Serial clock of SPI interface (“high” active) 6 CSN I Chip select of SPI interface (“low” active); integrated pull up to VDD 7 LHI I Limp Home activation signal (“high” active) 8, 9 10, 11 INn I Input Channel n Digital signal to switch ON the channel n (“high” active) If not used: connect with a 10 kΩ resistor either to GND pin or to module ground 12 IS O Current sense output signal 23-24 n.c. - Not connected, internally not bonded, shorted together 21-22 19-20 17-18 15-16 OUTn O Output n Protected high-side power output of channel n1) 13-14 n.c. - Not connected, internally not bonded, shorted together 1) All output pins of the channel must be connected together on the PCB. All pins of the output are internally connected together. PCB traces have to be designed to withstand the maximum current which can flow. Data Sheet 7 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings - General Table 3 Absolute Maximum Ratings1) TJ = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note or Number Test Condition Supply pins Power Supply Voltage VS -0.3 – 28 V – P_4.1.0.1 Digital Supply Voltage VDD -0.3 – 5.5 V – P_4.1.0.29 Load Dump Voltage VBAT(LD) – – 35 V suppressed Load Dump acc. to ISO16750-2 (2010). Ri = 2 Ω P_4.1.0.3 Supply Voltage for Short Circuit VBAT(SC) Protection 0 – 24 V Setup acc. to AEC-Q100-012 P_4.1.0.25 Reverse Polarity Voltage -VBAT(REV) – – 16 V t ≤ 2 min TA = +25 °C Setup as described in Chapter 11 P_4.1.0.5 Current through GND Pin IGND -50 – 50 mA RGND according P_4.1.0.9 to Chapter 11 Current through VDD Pin IVDD(REV) -10 – 30 mA t ≤ 2 min P_4.1.0.10 50 – – ms – P_4.1.0.35 Counter Reset Delay Time after tRETRY Fault Condition Logic & control pins (Digital Input = DI) DI = INn, CS, SCLK, SI, LHI Current through DI Pin IDI -1 – 2 mA 2) P_4.1.0.14 Current through DI Pin Reverse Battery Condition IDI(REV) -1 – 10 mA 2) P_4.1.0.36 t ≤ 2 min Logic & control pins (Digital Output = DO) DO = SO Current through DO Pin IDO -2 – 1 mA 2) P_4.1.0.33 Current through DO Pin Reverse Battery Condition IDO(REV) -10 – 1 mA 2) P_4.1.0.37 Data Sheet t ≤ 2 min 8 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 General Product Characteristics Table 3 Absolute Maximum Ratings1) (continued) TJ = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note or Number Test Condition V IIS = 10 μA P_4.1.0.16 – P_4.1.0.18 IS pin Voltage at IS Pin VIS -1.5 – VS Current through IS Pin IIS -25 – IIS(SAT),M mA AX Temperatures Junction Temperature TJ -40 – 150 °C – P_4.1.0.19 Storage Temperature TSTG -55 – 150 °C – P_4.1.0.20 ESD Susceptibility all Pins (HBM) VESD(HBM) -2 – 2 kV HBM3) P_4.1.0.21 ESD Susceptibility OUTn vs GND and VS connected (HBM) VESD(HBM)_OUT -4 – 4 kV HBM3) P_4.1.0.22 ESD Susceptibility all Pins (CDM) VESD(CDM) -500 – 500 V CDM4) P_4.1.0.23 ESD Susceptibility Corner Pins VESD(CDM)_CRN -750 (pins 1, 12, 13, 24) – 750 V CDM4) P_4.1.0.24 ESD Susceptibility 1) 2) 3) 4) Not subject to production test - specified by design. Maximum VDI to be considered for Latch-Up tests: 5.5 V. ESD susceptibility, Human Body Model "HBM", according to AEC Q100-002. ESD susceptibility, Charged Device Model "CDM", according to AEC Q100-011. Notes 1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. Data Sheet 9 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 General Product Characteristics 4.2 Absolute Maximum Ratings - Power Stages 4.2.1 Power Stages - 22.5 mΩ channels Table 4 Absolute Maximum Ratings - 22.5 mΩ channels1) TJ = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Maximum Energy Dissipation Single Pulse EAS – – 28 mJ IL = 2*IL(NOM) TJ(0) = 150 °C VS = 28 V P_4.2.16.1 Maximum Energy Dissipation Repetitive Pulse EAR – – 8.5 mJ IL = IL(NOM) TJ(0) = 85 °C VS = 13.5 V 1M cycles P_4.2.16.2 Load Current |IL| – – IL(OVL),MAX A – P_4.2.16.3 1) Not subject to production test - specified by design. Data Sheet 10 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 General Product Characteristics 4.3 Functional Range Table 5 Functional Range - Supply Voltages and Temperature1) Parameter Symbol Values Unit Note or Test Condition Number Min. Typ. Max. Power Supply Voltage VS(NOR) Range for Normal Operation 6 13.5 18 V – P_4.3.0.1 Lower Extended Power Supply Voltage Range for Operation VS(EXT,LOW) 3.1 – 6 V 2)3) P_4.3.0.2 Upper Extended Power Supply Voltage Range for Operation VS(EXT,UP) 18 Digital Supply Voltage Range VDD(NOR) 3.0 – 5.5 V – P_4.3.0.4 Junction Temperature TJ -40 – 150 °C – P_4.3.0.5 (parameter deviations possible) – 28 V 3) P_4.3.0.3 (parameter deviations possible) 1) Not subject to production test - specified by design. 2) In case of VS voltage decreasing: VS(EXT,LOW),MIN = 3.1 V. In case of VS voltage increasing: VS(EXT,LOW),MIN = 4.1 V. 3) Protection functions still operative. Note: Within the functional or operating range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the Electrical Characteristics tables. 4.4 Thermal Resistance Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org. Table 6 Thermal Resistance1) Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Thermal Characterization Parameter Junction-Top ΨJTOP – 0.9 1.5 K/W 2) P_4.4.0.17 Thermal Resistance Junction-to-Case RthJC – 0.5 0.9 K/W 2) P_4.4.0.18 Thermal Resistance Junction to Ambient RthJA – simulated at exposed pad 26.5 – K/W 2) P_4.4.0.10 1) Not subject to production test - specified by design. 2) According to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; the Product (Chip + Package) was simulated on a 76.2 × 114.3 × 1.5 mm board with 2 inner copper layers (2 × 70 µm Cu, 2 × 35 µm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer. Simulation done at TA = 105°C, PDISSIPATION = 1 W. Data Sheet 11 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 General Product Characteristics 4.4.1 PCB Setup 1,5 mm 70 µm modeled (traces, cooling area) 70 µm, 5% metalization* *: means percentual Cu metalization on each layer PCB_Zth_1s0p.emf Figure 5 1s0p PCB Cross Section 70 µm modeled (traces) 1,5 mm 35 µm, 90% metalization* 35 µm, 90% metalization* 70 µm, 5% metalization* *: means percentual Cu metalization on each layer PCB_Zth_2s2p.emf Figure 6 2s2p PCB Cross Section PCB 1s0p + 600 mm2 cooling PCB 2s2p / 1s0p footprint PCB_sim_setup_TSDSO24.emf Figure 7 PCB setup for thermal simulations PCB_2s2p_vias_TSDSO24.emf Figure 8 Data Sheet Thermal vias on PCB for 2s2p PCB setup 12 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 General Product Characteristics 4.4.2 Thermal Impedance BTS71040-4ESx 100 ZthJA [K/W] TAMBIENT = 105 °C 10 1 0.1 2s2p 1s0p - 600 mm² 1s0p - 300 mm² 1s0p - footprint 0.01 0.0001 0.001 0.01 0.1 1 10 100 1000 Time [s] Figure 9 Typical Thermal Impedance. PCB setup according Chapter 4.4.1 BTS71040-4ESx 90 1s0p - Ta = 105 °C 80 RthJA [K/W] 70 60 50 40 30 0 100 200 300 400 500 600 Cooling area [mm²] Figure 10 Data Sheet Thermal Resistance on 1s0p PCB with various cooling surfaces 13 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Logic Pins 5 Logic Pins The device has 9 digital pins to configure and control the device. They can be grouped based on their function into input pins, SPI pins and Limp Home pin. 5.1 Input Pins (INn) The input pins IN0 to IN3 activate the corresponding output channel, if the device is either in Sleep, Stand-by, Ready or in Limp Home mode. The input circuitry is compatible with 3.3V and 5V microcontroller. The electrical equivalent of the input circuitry is shown in Figure 11. In case the pin is not used, it must be connected with a 10 kΩ resistor either to GND pin or to module ground. VS IN VS(CLAMP) IDI ESD IDI VDI(CLAMP) VDI IGND RGND GND Input_IN_INTDIO.emf Figure 11 Input circuitry The logic thresholds for “low” and “high” states are defined by parameters VDI(TH) and VDI(HYS). The relationship between these two values is shown in Figure 12. The voltage VIN needed to ensure a “high” state is always higher than the voltage needed to ensure a “low” state. Data Sheet 14 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Logic Pins V DI V DI(TH ),M AX V DI(TH) V DI(HYS) V DI(TH ),M IN t Internal channel activation signal 0 x 1 x 0 t Input_VDITH_2.emf Figure 12 Input Threshold voltages and hysteresis There are two ways of using the input pins in combination with the register OUT by programming bit HWCR.COL in register HWCR (see Table 30). • HWCR.COL = 0B: A channel is switched ON either by the according OUT.OUTn bit or by the input pin. • HWCR.COL = 1B: A channel is switched ON by the according OUT.OUTn bit only, when the input pin is “high”. In this configuration, a PWM signal can be applied to the input pin and the channel is activated by the SPI register OUT (see Table 30). The default state (HWCR.COL = 0B) is the OR-combination of the input signal and the SPI-bit. In Limp Home mode (LHI pin set to “high”) the combinatorial logic is in default state to enable a channel activation via the input pins only. Figure 13 shows the complete input switch matrix. The logic level of the input pins can be monitored via the input status monitor. In case of a “high” level on an input pin, the corresponding ICS.INSTn bit is set and cleared on read. Data Sheet 15 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Logic Pins MUX≠111 OUT2 OUT1 & OUT3 & OUT0 & PCC0 & OR IN0 IIN 0 & Gate Control 0 OR Gate Control 3 OR IN3 IIN 1 & OR IN1 IIN 2 & Gate Control 1 OR Gate Control 2 OR IN2 IIN 3 & COL PCC1 LogicPins_InputMatrix_4chnoED_PCC.emf Figure 13 Input Switch Matrix 5.2 Advanced Features Pins 5.2.1 SPI Pins The serial peripheral interface (SPI) is a full duplex synchronous serial slave interface, which uses four lines: SO, SI, SCLK and CSN. See Chapter 10 for further information. 5.2.2 Limp Home Input (LHI) Pin For activating the fail-safe state, the device features a Limp Home Input pin. When the pin is set to “high” for a time longer than tLHI(AC), the Limp Home mode will be activated. See Chapter 6.1.7 and Chapter 6.1.8 for further information. Data Sheet 16 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Logic Pins 5.3 Electrical Characteristics Logic Pins VDD = 3.0 V to 5.5 V, VS = 6 V to 18 V, TJ = -40 °C to +150 °C Typical values: VDD = 5.0 V, VS = 13.5 V, TJ = 25 °C Digital Input (DI) pins = IN Table 7 Electrical Characteristics: Logic Pins - General Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Digital Input Voltage Threshold VDI(TH) 0.8 1.3 2 V See Figure 11 and P_5.4.0.1 Figure 12 Digital Input Clamping Voltage VDI(CLAMP1) – 7 – V 1) Digital Input Clamping Voltage VDI(CLAMP2) 6.5 7.5 8.5 V IDI = 2 mA P_5.4.0.3 See Figure 11 and Figure 12 Digital Input Hysteresis VDI(HYS) – 0.25 – V 1) IDI(H) 2 10 25 µA VDI = 2 V P_5.4.0.5 See Figure 11 and Figure 12 Digital Input Current (“low”) IDI(L) 2 10 25 µA VDI = 0.8 V P_5.4.0.6 See Figure 11 and Figure 12 Digital Input Current (“high”) P_5.4.0.2 IDI = 1 mA See Figure 11 and Figure 12 P_5.4.0.4 See Figure 11 and Figure 12 1) Not subject to production test - specified by design. 5.4 Electrical Characteristics Logic Pins - Advanced Features Table 8 Electrical Characteristics: Logic Pins - Advanced Parameter Symbol Values Min. Typ. Max. Unit Note or Number Test Condition SPI pins Digital Input Voltage Threshold of Pin CSN VCSN(TH) 0.8 1.3 2 V – P_5.5.0.1 Digital Input Voltage Threshold of Pin SCLK VSCLK(TH) 0.8 1.3 2 V 1) P_5.5.0.2 Digital Input Voltage Threshold of Pin SI VSI(TH) 0.8 1.3 2 V – P_5.5.0.3 Digital Input Clamping Voltage of Pin CSN VCSN(CLAMP1) – 7 – V 2) P_5.5.0.4 Digital Input Clamping Voltage of Pin CSN VCSN(CLAMP2) 6.5 Data Sheet ICSN = 1 mA 7.5 17 8.5 V ICSN = 2 mA P_5.5.0.5 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Logic Pins Table 8 Electrical Characteristics: Logic Pins - Advanced (continued) Parameter Symbol Values Min. Typ. Max. Unit Note or Number Test Condition 7 – V 2) Digital Input Clamping Voltage of Pin SCLK VSCLK(CLAMP1) – Digital Input Clamping Voltage of Pin SCLK VSCLK(CLAMP2) 6.5 7.5 8.5 V ISCLK = 2 mA P_5.5.0.7 Digital Input Clamping Voltage of Pin SI VSI(CLAMP1) – 7 – V 2) P_5.5.0.8 Digital Input Clamping Voltage of Pin SI VSI(CLAMP2) 6.5 7.5 8.5 V ISI = 2 mA P_5.5.0.9 Digital Input Hysteresis of Pin CSN VCSN(HYS) – 0.25 – V 2) P_5.5.0.11 Digital Input Hysteresis of Pin SCLK VSCLK(HYS) – Digital Input Hysteresis of Pin SI VSI(HYS) – Digital Input Current (“low”) of Pin CSN -ICSN(L) 2 10 25 μA VCSN = 0.5 V P_5.5.0.10 Digital Input Current (“high”) of Pin CSN -ICSN(H) 2 10 25 μA VCSN = 2.6 V P_5.5.0.12 Digital Input Current (“low”) of Pin SCLK ISCLK(L) 2 10 25 μA VSCLK = 0.5 V P_5.5.0.14 Digital Input Current (“high”) of Pin SCLK ISCLK(H) 2 10 25 μA VSCLK = 2.6 V P_5.5.0.16 Digital Input Current (“low”) of Pin SI ISI(L) 2 10 25 μA VSI = 0.5 V P_5.5.0.18 Digital Input Current (“high”) of Pin SI ISI(H) 2 10 25 μA VSI = 2.6 V P_5.5.0.20 Digital Output Voltage (“low”) of Pin SO VSO(L) 0 – 0.5 V ISO = -0.5 mA P_5.5.0.22 Digital Output Voltage (“high”) of Pin SO VSO(H) VDD 0.5 V – VDD V ISO = 0.5 mA P_5.5.0.23 Output Tristate Leakage Current of Pin SO ISO(OFF) -1 – 1 μA VCSN = VDD VSO = 0 V or VCSN = VDD VSO = VDD P_5.5.0.24 Digital Input Voltage Threshold of Pin LHI VLHI(TH) 1.4 1.9 2.6 V – P_5.5.0.25 Digital Input Clamping Voltage of Pin LHI VLHI(CLAMP1) – 7 – V 2) P_5.5.0.27 Digital Input Clamping Voltage of Pin LHI VLHI(CLAMP2) 6.5 P_5.5.0.6 ISCLK = 1 mA ISI = 1 mA See Figure 12 0.25 – V 2) P_5.5.0.13 See Figure 12 0.25 – V 2) P_5.5.0.15 See Figure 12 LHI pin Data Sheet ILHI = 1 mA 7.5 18 8.5 V ILHI = 2 mA P_5.5.0.28 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Logic Pins Table 8 Electrical Characteristics: Logic Pins - Advanced (continued) Parameter Symbol Values Min. Typ. Max. Unit Note or Number Test Condition Digital Input Hysteresis of Pin LHI VLHI(HYS) – 0.25 – V 2) P_5.5.0.29 Digital Input Current (“high”) of Pin LHI ILHI(H) 10 32 65 µA VLHI = 5 V VDD = 0 V P_5.5.0.30 Digital Input Current (“low”) of Pin LHI ILHI(L) 10 24 45 µA VLHI = 0.8 V VDD = 0 V P_5.5.0.32 1) Functional test only. 2) Not subject to production test - specified by design. Data Sheet 19 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Power Supply 6 Power Supply The BTS71040-4ESA is supplied by two supply voltages: • Power Supply Voltage (VS) • Digital Supply Voltage (VDD) The VS supply line is connected to a battery feed and used for the driving circuitry of the power stages, while VDD is used for the SPI logic and for driving SO pin. VS and VDD supply voltages have an undervoltage detection circuit, which prevents the activation of the associated function in case the measured voltage is below the undervoltage threshold. More in detail: • An undervoltage on VDD supply prevents SPI communication. SPI registers are reset to their default values • An undervoltage on VS supply switches OFF all channels, even in Limp Home mode. The channels are enabled again as soon as VS ≥ VS(OP) The voltage at pin VS is also monitored. In case of a negative voltage transient on VS resulting in VS < VS(TP) when the device is out of Sleep mode, any SPI command sent by the microcontroller is not accepted (see Chapter 6.2 and Chapter 10.5 for further information). An overview of channel behavior according to different VS and VDD supply voltages is shown in Table 9. Table 9 Device capability as function of VS and VDD1) VS ≤ VS(TP) (VS(TP) see P_6.4.0.5) VS(TP) < VS ≤ VS(UV) (VS(UV) see P_6.4.0.1) VS > VS(UV)3) VDD ≤ VDD(PO) (VDD(PO) see P_6.4.1.1) VDD > VDD(PO) Channels are OFF Channels are OFF SPI registers reset SPI registers protected SPI communication not available (fSCLK = 0 MHz) SPI communication available2) (fSCLK = 5 MHz) Limp Home mode not available Limp Home mode not available Channels are OFF Channels are OFF SPI registers reset SPI registers available SPI communication not available (fSCLK = 0 MHz) SPI communication available (fSCLK = 5 MHz) Limp Home mode available (channels are OFF) Limp Home mode available (channels are OFF) Channels cannot be controlled by SPI Channels can be controlled by SPI SPI registers reset SPI registers available SPI communication not available (fSCLK = 0 MHz) SPI communication available (fSCLK = 5 MHz) Limp Home mode available Limp Home mode available 1) Valid after a successful supply voltage ramp-up. 2) Write commands are ignored. Furthermore the device responds with STDDIAG only. 3) The undervoltage condition on VS supply must be considered. See Chapter 6.2. Data Sheet 20 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Power Supply 6.1 Operation Modes BTS71040-4ESA has the following operation modes: • Sleep mode • Active mode • Stand-by mode • Ready mode • Limp Home mode • Limp Home Active mode The transition between operation modes is determined according to these variables: • Digital supply level (VDD) • Logic level at INn pins • Logic level at LHI pin • Current sense multiplexer state (DCR.MUX) • Output register state (OUT.OUTn) • Configuration registers state The state diagram including the possible transitions is shown in Figure 14. The behavior of BTS71040-4ESA as well as some parameters may change in dependence from the operation mode of the device. Furthermore, due to the undervoltage detection circuitry which monitors VS supply voltage, some changes within the same operation mode can be seen accordingly. There are five parameters describing each operation mode of BTS71040-4ESA: • Status of the output channels • Status of SPI registers • Status of SPI communication • Current consumption at VS pin (measured by IVS in Sleep mode, IGND in all other operative modes) • Current consumption at VDD pin (IVDD) Table 10 shows the correlation between operation modes, VS and VDD supply voltages, and the state of the most important functions (channel status, SPI communication and SPI registers). Data Sheet 21 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Power Supply LHI = "high" Unsupplied Stand-by DCR.MUX = 111B or SPI_Reset Power-up LHI = "low" Sleep LHI = "high" DCR.MUX ≠ 111B OUT.OUTn = 1B or INn = "high" INn = "low" or INn = "low" & SPI_Reset INn = "low" & OUT.OUTn = 0B OUT.OUTn = 0B or SPI_Reset INn = "high" Limp Home OUT.OUTn = 1B DCR.MUX ≠ 111B or INn = "high" Active Ready DCR.MUX = 111B & INn = "low" LHI = "high" INn = "low" LHI = "high" & INn = "low" INn = "high" Limp Home Active LHI = "high" & INn = "high" LHI = "low" & INn = "high" Note: SPI bits which are not stated are considered to have the default value or are unchanged compared to the previous state. Supply voltages are considered to be in operative range if not specified different. SPI_Reset is performed if VDD < VDD(PO) or HWCR.RST = 1B Dashed lines indicate transitions between modes which should not be used for normal operation. PowerSuppl y_OpModes.emf Figure 14 Operation Mode state diagram Table 10 Device function in relation to operation modes, VDD and VS voltages Operative Mode Function VS ≤ VS(TP) VS(TP) ≤ VS ≤ VS(UV) VS > VS(UV) Sleep OFF OFF OFF SPI registers available1) available1) available1) SPI comm. available1) available1) available1) Channels OFF OFF OFF Stand-by Channels 1) 1) available1) SPI comm. all commands rejected1) available1) available1) Channels OFF OFF SPI registers protected Ready available OFF 1) 1) available1) SPI comm. all commands rejected1) available1) available1) Channels OFF OFF follow SPI and/or Input pins available1) available1) SPI comm. all commands rejected1) available1) available1) Channels OFF OFF follow Input pins SPI registers protected1) reset (Diagnosis available)1) reset (Diagnosis available)1) SPI comm. read-only1) read-only1) SPI registers protected Active available SPI registers protected1) Limp Home / Limp Home Active all commands rejected1)2) 1) In case VDD > VDD(PO) otherwise not available or in reset. 2) In case all input pins are set to “low”, SPI communication is in read-only mode. Data Sheet 22 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Power Supply 6.1.1 Unsupplied In this state, the device is either unsupplied (no voltage applied to VS pin and VDD pin) or the supply voltages are both below the corresponding undervoltage threshold. 6.1.2 Power-up The Power-up condition is entered when one of the supply voltages (VS or VDD) is applied to the device. Both supplies are rising until they are above the undervoltage thresholds VS(OP) and VDD(PO) therefore the internal Power-On signals are set. The SPI interface can be accessed after wake up time tWU(PO). 6.1.3 Sleep mode The device is in Sleep mode when all Digital Input pins (INn, LHI) are set to “low” and DCR.MUX is still set to 111B. When BTS71040-4ESA is in Sleep mode, all outputs are OFF. The SPI registers can be programmed if VDD > VDD(PO). The current consumption is minimum (see parameter IVS(SLEEP)). No Overtemperature or Overload protection mechanism is active when the device is in Sleep mode. The circuitry that monitors VS versus VS(UV) and VS versus VS(TP) is disabled. This allows the programming of the registers even if VS < VS(TP). 6.1.4 Stand-by mode The device is in Stand-by mode when DCR.MUX ≠ 111B and no command to switch ON a channel was received (either via SPI or via Input pins). All channels are OFF but the internal supply circuitry is working and therefore the device current consumption is increased. A command to switch ON one or more outputs is accepted and executed, bringing the device into Active mode. SPI communication is possible. 6.1.5 Ready mode In Ready mode, one or more outputs received a command to switch ON (either via SPI or via Input pins if HWCR.COL = 1B). Nevertheless, all outputs are OFF because of DCR.MUX bits still set to 111B. It is necessary to change the value of those bits to bring the device into Active mode and switch ON the channels. Note: Since OUT register is blanked with DCR.MUX = 111B it is not possible to enter Active mode when HWCR.COL bit is set to 1B. 6.1.6 Active mode Active mode is the normal operation mode of BTS71040-4ESA when no Limp Home condition is set and one or more outputs are switched ON. Device current consumption is specified by parameter IGND(ACTIVE). An undervoltage condition on VDD supply voltage brings the device into Sleep mode in case all Input pins are set to “low”. 6.1.7 Limp Home mode The device enters Limp Home mode when LHI pin is set to “high” for t > tLHI(AC). SPI registers are reset to the default values when Limp Home mode is entered. The corresponding bit in the standard diagnosis (STDDIAG.LHI) will be set to 1B once the LHI pin is set to “high” and latched until next STDDIAG transmission. See Figure 15 for further information. SPI registers are available for read access. ERRDIAG, STDDIAG, WRNDIAG and ICS can be used for diagnosis in Limp Home. When the device is in transient protection (VS ≤ VS(TP)) and the LHI pin is set to "high", the STDDIAG.LHI bit will be set but the device will not change its state to Limp Home mode. Furthermore STDDIAG.VSMON and STDDIAG.TER bits will be set to report the battery transient protection. Data Sheet 23 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Power Supply VS VS(TP) t LHI pin t < tLHI(AC ) t STDDIAG .LHI Read STDDIAG SPI tLHI(AC ) Read STDDIAG tLH I(AC ) Read STDDIAG tLHI(AC ) comm. available read-only available all command rejected registers available reset available protected Note: Device out o f Sleep mode when SPI comm. „available“ Figure 15 Limp Home Activation as function of VS 6.1.8 Limp Home Active mode t t PowerSupply_LimpHomeActiv e.emf Limp Home Active mode is entered when the device is in Limp Home mode and one of the IN pins is set to “high”. Overload, Overtemperature and Overvoltage protections are active. Since SPI registers cannot be written current sensing is not available. Data Sheet 24 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Power Supply 6.1.9 Definition of Operation modes transition times The channel turn-ON time is as defined by parameter tON when BTS71040-4ESA is in Active mode or in Limp Home mode. In all other cases, it is necessary to add the transition time required to reach one of the two aforementioned operation modes (as shown in Figure 16). tLHI(AC) tTRANS2STBY tON + tTRANS2STBY tOFF + tTRANS2SLP Active tON + tTRANS2STBY tOFF + tTRANS2SLP tLHI(AC) + tTRANS2STBY Ready Limp Home tLHI(AC) + tTRANS2STBY tOFF + tLHI(AC) tLHI(AC) tLHI(AC) tOFF tOFF tLHI(AC) + tTRANS2SLP Sleep tON tON tTRANS2SLP 1 SPI frame Stand-by tWU(PO) 1 SPI frame Unsupplied Limp Home Active Note: Dashed lines indicate transition timings between modes which should not be used for normal operation. PowerSuppl y_OpModes_Ti mings.emf Figure 16 Transition Time diagram 6.2 Undervoltage on VS Between VS(OP) and VS(UV) the undervoltage mechanism is triggered. If the device is operative (in Active or Limp Home Active mode) and the supply voltage drops below the undervoltage threshold VS(UV), the internal logic switches OFF the output channels. When the device is either in Stand-by, Active or Limp Home mode the bit STDDIAG.VSMON is set and latched until readout. When the state is changed from Sleep to any other state, a delay of t ≥ tTRANS2STBY has to be considered until STDDIAG.VSMON is valid. As soon as the supply voltage VS is above the operative threshold VS(OP), the channels having the corresponding input pin set to “high” or the bit in the OUT register set to 1B are switched ON again. The restart is delayed with a time tDELAY(UV) which protects the device in case the undervoltage condition is caused by a short circuit event (according to AEC-Q100-012), as shown in Figure 17. Data Sheet 25 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Power Supply VS VS(O P) VS(UV ) VS(HY S) VS(TP) t tDEL AY(UV ) VO UT t STDDIAG. VSMON Read STDDIAG t Read STDDIAG STDDIAG. TER Read STDDIAG Opera tion Mode Stand-by t Read STDDIAG Active Sleep Ready Active t PowerSupply_UVRVS.emf Figure 17 VS undervoltage behavior 6.3 Reset Condition One of the following conditions reset the SPI registers to their default value: • VDD is not present or below the undervoltage threshold VDD(PO) – SPI registers will be reset to their default values (in the first communication after reset the STDDIAG.TER will be set to 1B). – Restart counters will not be reset if VS is available or LHI is "high". • LHI pin is set to “high” for t > tLHI(AC) and VS > VS(TP) – Configuration registers will be reset to their default values. ERRDIAG and WRNDIAG will be reset. – Restart counters will be reset. • Reset command (HWCR.RST = 1B) is executed and VS > VS(TP) – Configuration registers will be reset to their default values. ERRDIAG, WRNDIAG and STDDIAG will not be reset. – Restart counters will not be reset. In case all Input pins are set to “low” after any reset condition, all channels are switched OFF. Data Sheet 26 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Power Supply 6.4 Electrical Characteristics Power Supply VDD = 3.0 V to 5.5 V, VS = 6 V to 18 V, TJ = -40 °C to +150 °C Typical values: VDD = 5.0 V, VS = 13.5 V, TJ = 25 °C Typical resistive loads connected to the outputs for testing (unless otherwise specified): 22.5 mΩ: RL = 4.8 Ω Table 11 Electrical Characteristics: Power Supply - General Parameter Symbol Values Unit Note or Test Condition Number Min. Typ. Max. Power Supply Undervoltage VS(UV) Shutdown 1.8 2.3 3.1 V VS decreasing IN = “high” or OUT.OUTn = 1B From VDS ≤ 0.5 V to VDS = VS See Figure 17 P_6.4.0.1 Power Supply Minimum Operating Voltage VS(OP) 2.0 3.0 4.1 V VS increasing IN = “high”or OUT.OUTn = 1B From VDS = VS to VDS ≤ 0.5 V See Figure 17 P_6.4.0.3 Power Supply Voltage Threshold for Battery Transients Protection VS(TP) 0.6 1.0 1.8 V P_6.4.0.5 VS decreasing STDDIAG.VSMON = 1B STDDIAG.TER = 1B DCR.MUX ≠111B See Figure 17 Power Supply Undervoltage VS(HYS) Shutdown Hysteresis – 0.7 – V 1) Power Supply Undervoltage tDELAY(UV) Recovery Time 2.5 Breakdown Voltage -VS(REV) between GND and VS Pins in Reverse Battery 16 VS pin P_6.4.0.6 VS(OP) - VS(UV) See Figure 17 4 5.5 ms 1) P_6.4.0.10 dVS/dt ≤ 0.5 V/µs VS ≥ 0 V See Figure 17 – 30 V 1) P_6.4.0.9 IGND(REV) = 14 mA TJ = 150 °C 1) Not subject to production test - specified by design. Data Sheet 27 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Power Supply 6.4.1 Electrical Characteristics Power Supply - SPOC™ Table 12 Electrical Characteristics: Power Supply - SPOC™ Parameter Symbol Values Min. Typ. Max. 4.3 5.5 Unit Note or Test Condition Number V 1) P_6.4.1.1 VDD pin Digital Supply Operating Voltage VDD(OP) 2.45 Digital Supply Power-On Reset Threshold Voltage VDD(PO) 1.4 Digital Supply Undervoltage VDD(UV) Shutdown 1.3 1.8 2.2 V VDD decreasing P_6.4.1.2 OUT.OUTn = 1B From VDS ≤ 0.5 V to VDS = VS Digital Supply Undervoltage VDD(HYS) Shutdown Hysteresis – 0.1 – V 1) P_6.4.1.3 Digital Supply Clamping Voltage VDD(CLAMP1) – 6.5 – V 1) P_6.4.1.11 Digital Supply Clamping Voltage VDD(CLAMP2) 6 7 8 V IDD = 20 mA P_6.4.1.12 Power-On Wake Up Time tWU(PO) – 10 30 μs 1) P_6.4.1.13 P_6.4.1.4 fSCLK = 5 MHz 1.9 2.3 V 1) P_6.4.1.9 VDD increasing IDD = 1 mA Transition Time to Stand-by tTRANS2STBY Mode 5 10 30 μs 1) Transition Time to Sleep Mode tTRANS2SLP 1 5 60 μs 1)2) P_6.4.1.5 Limp Home Acknowledgement Time tLHI(AC) 10 20 40 µs 1) P_6.4.1.6 1) Not subject to production test - specified by design. 2) If output channel enters inductive clamping, clamping time has to be added. Data Sheet 28 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Power Supply 6.5 Electrical Characteristics Power Supply - Product Specific VDD = 3.0 V to 5.5 V, VS = 6 V to 18 V, TJ = -40 °C to +150 °C Typical values: VDD = 5.0 V, VS = 13.5 V, TJ = 25 °C Typical resistive loads connected to the outputs for testing (unless otherwise specified): 22.5 mΩ: RL = 4.8 Ω 6.5.1 BTS71040-4ESA Table 13 Electrical Characteristics: Power Supply BTS71040-4ESA Parameter Symbol Values Unit Note or Test Condition Number Min. Typ. Max. – 80 200 µA fSCLK = 0 MHz VS > VS(UV) VCSN = VDD = 5 V DCR.MUX ≠ 111B P_6.5.32.1 Digital Supply Current IDD(ACTIVE) Consumption in Normal Operation during SPI Traffic (Average) – 2.5 – mA 1)2) P_6.5.32.2 Digital Supply Current IDD(SLEEP) Consumption in Sleep Mode – 17 50 µA fSCLK = 0 MHz VS > VS(UV) VCSN = VDD = 5 V DCR.MUX = 111B P_6.5.32.3 Digital Supply Current IDD(SLEEP) Consumption in Sleep Mode – 17 35 µA fSCLK = 0 MHz VS > VS(UV) VCSN = VDD = 5 V DCR.MUX = 111B TJ ≤ 85 °C P_6.5.32.12 IVS(SLEEP)_85 Power Supply Current Consumption in Sleep Mode with Loads at TJ ≤ 85 °C – 0.05 0.4 µA 2)3) P_6.5.32.4 Digital Supply Current Consumption in Normal Operation IDD fSCLK = 5 MHz VS > VS(UV) VDD = 5 V VCSN = 0 V CL(SO) = 50 pF DCR.MUX ≠ 111B VS = 18 V VOUT = 0 V INx = “low” TJ ≤ 85 °C Power Supply Current IVS(SLEEP)_150 – Consumption in Sleep Mode with Loads at TJ = 150 °C 2 100 µA VS = 18 V VOUT = 0 V INx = “low” TJ = 150 °C P_6.5.32.5 – 5 7 mA VS = 18 V VDD = 5 V INx = “high” or OUT.OUTn = 1B P_6.5.32.6 Operating Current in Active Mode (all Channels ON) Data Sheet IGND(ACTIVE) 29 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Power Supply Table 13 Parameter Electrical Characteristics: Power Supply BTS71040-4ESA (continued) Symbol Values Unit Note or Test Condition Number Min. Typ. Max. Operating Current in Ready IGND(READY) Mode – 80 200 µA VS = 18 V VCSN = VDD = 5 V fSCLK = 0 MHz DCR.MUX = 111B OUT.OUTn = 1B P_6.5.32.8 Operating Current in Stand- IGND(STBY) by Mode – 1.25 2 mA VS = 18 V VDD = 5 V DCR.MUX ≠ 111B P_6.5.32.9 1) Test pattern shifted-in on SI: 0101010101010101 and 1010101010101010. 2) Not subject to production test - specified by design. 3) If VDD < VDD(PO), LHI =”low” and any restart counter > 0, IGND(STBY) has to be considered. Data Sheet 30 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Power Stages 7 Power Stages The high-side power stages are built using a N-channel vertical Power MOSFET with charge pump. 7.1 Output ON-State Resistance The ON-state resistance RDS(ON) depends mainly on junction temperature TJ. Figure 18 shows the variation of RDS(ON) across the whole TJ range. The value “2” on the y-axis corresponds to the maximum RDS(ON) measured at TJ = 150 °C. RDS(ON) variation over TJ 2.20 Reference value: "2" = RDS(ON),MAX @ 150 °C 2.00 1.80 RDS(ON) variation factor 1.60 1.40 1.20 1.00 0.80 0.60 0.40 Typical 0.20 0.00 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 Junction Temperature (°C) Figure 18 RDS(ON) variation factor The behavior in Reverse Polarity is described in Chapter 8.4.1. 7.2 Switching loads 7.2.1 Switching Resistive Loads When switching resistive loads, the switching times and slew rates shown in Figure 19 can be considered. The switch energy values EON and EOFF are proportional to load resistance and times tON and tOFF. Data Sheet 31 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Power Stages IN / OUT.OUTn VIN(TH) VIN(HYS) t VOUT tON 90% of VS tOFF(DELAY) 70% of VS 70% of VS (dV/dt)ON -(dV/dt)OFF 30% of VS 10% of VS 30% of VS tOFF tON(DELAY) t PDMOS EON EOFF t Figure 19 Switching a Resistive Load 7.2.2 Switching Inductive Loads When switching OFF inductive loads with high-side switches, the voltage VOUT drops below ground potential, because the inductance intends to continue driving the current. To prevent the destruction of the device due to overvoltage, a voltage clamp mechanism is implemented. The clamping structure limits the negative output voltage so that VDS = VDS(CLAMP). Figure 20 shows a concept drawing of the implementation. The clamping structure protects the device in all operation modes listed in Chapter 6.1. VS High-side Channel VS VSIS(CLAMP) VDS VDS(CLAMP) IS IL RSENSE VS(CLAMP) OUTn GND VOUTn L, RL RGND IL PowerStage_Clamp_INTDIO.emf Figure 20 Data Sheet Output Clamp concept 32 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Power Stages During demagnetization of inductive loads, energy has to be dissipated in BTS71040-4ESA. The energy can be calculated with Equation (7.1): RL ⋅ IL V S – V DS ( CLAMP ) L -ö + I L ⋅ -----E = V DS ( CLAMP ) ⋅ -------------------------------------------- ⋅ ln æ 1 – ------------------------------------------è RL RL V S – V DS ( CLAMP )ø (7.1) The maximum energy, therefore the maximum inductance for a given current, is limited by the thermal design of the component. 7.2.3 Output Voltage Limitation To increase the current sense accuracy, VDS voltage is monitored. When the output current IL decreases while the channel is diagnosed (channel selected via DCR.MUX - see Figure 21) bringing VDS equal or lower than VDS(SLC), the output DMOS gate is partially discharged. This increases the output resistance so that VDS = VDS(SLC) even for very small output currents. The VDS increase allows the current sensing circuitry to work more efficiently, providing better kILIS accuracy for output current in the low range. IN / OUT.OUTn t CS DCR.MUX 110 000 110 t IL VDS VS tsIS(ON) tsIS(OFF) t VDS(SLC) t PowerStage_GBR_diag.emf Figure 21 Output Voltage Limitation activation during diagnosis 7.2.4 Switching Capacitive Loads When switching ON a capacitive load, the capacitance is causing a high inrush current. The current is depending on the value of the capacitance, the ESR, the impedance of the system and the slew rate of the driver. To improve the load driving capability, BTS71040-4ESA offers a slew rate control feature. When the slew rate bit SRC.SRCn is set, the slew rate of the respective channel is reduced to the half (see Chapter 7.4.1). Data Sheet 33 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Power Stages 7.3 Advanced Switching Characteristics 7.3.1 Inverse Current behavior When VOUT > VS, a current IINV flows into the power output transistor (see Figure 22). This condition is known as “Inverse Current”. If the channel is in OFF state, the current flows through the intrinsic body diode generating high power losses therefore an increase of overall device temperature. This may lead to a switch OFF of unaffected channels due to Overtemperature. If the channel is in ON state, RDS(INV) can be expected and power dissipation in the output stage is comparable to normal operation in RDS(ON). During Inverse Current condition, the channel remains in ON or OFF state as long as IINV < IL(INV). With InverseON, it is possible to switch ON the channel during Inverse Current condition as long as IINV < IL(INV) (see Figure 23). VBAT VS Gate Driver Device Logic IINV INV Comp. VINV = VOUT > VS OUT RGND GND PowerStage_InvCurr_IN TDIO.emf Figure 22 Data Sheet Inverse Current Circuitry 34 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Power Stages IN IN CASE 1 : Switch is ON CASE 2 : Switch is OFF OFF ON t IL NORMAL t IL NORMAL NORMAL t INVERSE NORMAL t INVERSE DMOS state DMOS state OFF ON t t CASE 3 : Switch ON into Inverse Current CASE 4 : Switch OFF into Inverse Current IN IN OFF ON IL NORMAL t IL NORMAL NORMAL t INVERSE OFF ON t NORMAL t INVERSE DMOS state DMOS state OFF ON ON OFF t t PowerStage_InvCurr_INVON.emf Figure 23 InverseON - Channel behavior in case of applied Inverse Current Note: No protection mechanism like Overtemperature or Overload protection is active during applied Inverse Currents. 7.3.2 Switching Channels in Parallel When switching channels in parallel to drive a single load it may happen that the two channels switch OFF asynchronously in case of a fault condition which brings additional stress to the channel that switches OFF last. In order to avoid this condition, it is possible to synchronize the protection of two channels when used in parallel. There are 2 bits in the SPI (PCS.PCCn), which allow to synchronize channels 0&3 and 1&2. When the corresponding PCS.PCCn bit is set, the switch-OFF and restart of the channels are synchronized and the current trip levels will be reduced to IL(OVL3). In case the current trip level for one channel is set to the low level (OCR.OCTn = 1B), the current for both channels will be reduced to IL(OVL2). Since the restart counters of the channels in parallel are synchronized, both channels will latch-OFF as soon one counter has reached nRESTART(CR). Due to this reason it is recommended to clear counters before switching channels in parallel. In case the slew rate adjustment for one channels is used, (SRC.SRCn = 1B), both channels operating in parallel mode will use the adjusted slew rate. When channels are switched in parallel (PCS.PCCn = 1B), the Output Voltage Drop Limitation at Small Load Currents is disabled. Therefore the current sense ratio specifications at lower currents are not valid. See Chapter 9.7 for further information. To improve current sense accuracy in parallel channel operation, parallel mode has to be deactivated (PCS.PCCn = 0B). Since the current sense of the two channels used in parallel is not synchronized, the total current has to be calculated out of the current sense reading of each single channel. Unless otherwise specified parameter deviations are possible when parallel mode is activated. Data Sheet 35 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Power Stages When two channels are used in parallel, the total current capability IL(NOM) is doubled. It has to be ensured that the outputs used in parallel mode are connected together with a symmetric and low impedance connection either on the PCB or in the wire harness. 7.3.3 Cross Current robustness with H-Bridge configuration When BTS71040-4ESA is used as high-side switch e.g. in a bridge configuration (therefore paired with a lowside switch as shown in Figure 24), the maximum slew rate applied to the output by the low-side switch must be lower than | dVOUT / dt |. Otherwise the output stage may turn ON in linear mode (not in RDS(ON)) while the low-side switch is commutating. This creates an unprotected overheating for the DMOS due to the crossconduction current. VBAT R/L cable VS T T ON (DC) INy INx OUTy OUTx Current through Motor OFF | dVOUT / dt | Cross Current M ON (PWM) OFF PowerStage_PassiveSlew_SPOC.emf Figure 24 Data Sheet High-Side switch used in Bridge configuration 36 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Power Stages 7.4 Electrical Characteristics Power Stages VDD = 3.0 V to 5.5 V, VS = 6 V to 18 V, TJ = -40 °C to +150 °C Typical values: VDD = 5.0 V, VS = 13.5 V, TJ = 25 °C Typical resistive loads connected to the outputs for testing (unless otherwise specified): 22.5 mΩ: RL = 4.8 Ω Table 14 Electrical Characteristics: Power Stages - General Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Voltages Drain to Source Clamping Voltage at TJ = -40 °C VDS(CLAMP)_-40 33 36.5 42 V IL = 5 mA TJ = -40°C See Figure 20 P_7.4.0.1 Drain to Source Clamping Voltage at TJ ≥ 25 °C VDS(CLAMP)_25 35 38 44 V 1) P_7.4.0.2 IL = 5 mA TJ ≥ 25°C See Figure 20 1) Tested at TJ = 150°C. 7.4.1 Electrical Characteristics Power Stages - SPOC™ Table 15 Electrical Characteristics: Power Stages - SPOC™ Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Timings Switch-ON Delay tON(DELAY) 10 30 60 μs VS = 13.5 V VOUT = 10% VS PCS.PCCn = 0B P_7.4.2.1 Switch-ON Delay (parallel mode) tON(DELAY) 10 40 80 μs 2) P_7.4.2.16 Switch-OFF Delay tOFF(DELAY) 10 30 60 μs VS = 13.5 V VOUT = 90% VS P_7.4.2.2 Switch-ON Time tON 20 55 100 μs VS = 13.5 V VOUT = 90% VS SRC.SRCn = 0B PCS.PCCn = 0B P_7.4.2.3 Switch-ON Time (parallel mode) tON 20 70 125 μs 2) P_7.4.2.20 Data Sheet VS = 13.5 V VOUT = 10% VS PCS.PCCn = 1B VS = 13.5 V VOUT = 90% VS SRC.SRCn = 0B PCS.PCCn = 1B 37 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Power Stages Table 15 Electrical Characteristics: Power Stages - SPOC™ (continued) Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Switch-ON Time tON 30 75 150 μs VS = 13.5 V VOUT = 90% VS SRC.SRCn = 1B P_7.4.2.4 Switch-OFF Time tOFF 20 55 100 μs VS = 13.5 V VOUT = 10% VS SRC.SRCn = 0B P_7.4.2.6 Switch-OFF Time tOFF 30 75 150 μs VS = 13.5 V VOUT = 10% VS SRC.SRCn = 1B P_7.4.2.7 Switch-ON/OFF Matching tON - tOFF ΔtSW -50 0 50 μs VS = 13.5 V PCS.PCCn = 0B P_7.4.2.9 Switch-ON Slew Rate (dV/dt)ON 0.3 0.6 0.9 V/μs VS = 13.5 V P_7.4.2.11 VOUT = 30% to 70% of VS SRC.SRCn = 0B Switch-ON Slew Rate (dV/dt)ON 0.15 0.3 0.45 V/μs VS = 13.5 V P_7.4.2.12 VOUT = 30% to 70% of VS SRC.SRCn = 1B Switch-OFF Slew Rate -(dV/dt)OFF 0.3 0.6 0.9 V/μs VS = 13.5 V P_7.4.2.14 VOUT = 70% to 30% of VS SRC.SRCn = 0B Switch-OFF Slew Rate -(dV/dt)OFF 0.125 0.3 0.45 V/μs VS = 13.5 V P_7.4.2.15 VOUT = 70% to 30% of VS SRC.SRCn = 1B Slew Rate Matching Δ(dV/dt)SW -30 0 30 % 1) VDS(SLC) 2 Voltage Slope P_7.4.2.17 VS = 13.5 V Voltages Output Voltage Drop Limitation at Small Load Currents 10 18 mV 2) P_7.4.2.18 IL = IL(OL) = 20 mA 1) Δ(dV/dt)SW = ((dV/dt)ON - (dV/dt)OFF) / (((dV/dt)ON + (dV/dt)OFF) / 2). 2) Not subject to production test - specified by design. Data Sheet 38 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Power Stages 7.5 Electrical Characteristics - Power Output Stages VDD = 3.0 V to 5.5 V, VS = 6 V to 18 V, TJ = -40 °C to +150 °C Typical values: VDD = 5.0 V, VS = 13.5 V, TJ = 25 °C Typical resistive loads connected to the outputs for testing (unless otherwise specified): 22.5 mΩ: RL = 4.8 Ω 7.5.1 Power Output Stage - 22.5 mΩ Table 16 Electrical Characteristics: Power Stages - 22.5 mΩ Parameter Symbol Values Min. Typ. Max. 22.5 – Unit Note or Test Condition Number mΩ 1) P_7.5.16.1 Output characteristics ON-State Resistance at TJ = 25 °C RDS(ON)_25 – ON-State Resistance at TJ = 150 °C RDS(ON)_150 – – 38 mΩ TJ = 150 °C P_7.5.16.2 ON-State Resistance in Cranking RDS(ON)_CRANK – – 44 mΩ TJ = 150 °C VS = 3.1 V P_7.5.16.3 22.5 – mΩ 1) P_7.5.16.4 TJ = 25 °C RDS(INV)_25 ON-State Resistance in Inverse Current at TJ = 25 °C – ON-State Resistance in RDS(INV)_150 Inverse Current at TJ = 150 °C – RDS(REV)_25 ON-State Resistance in Reverse Polarity at TJ = 25 °C – TJ = 25 °C IL = -IL(NOM) 44 mΩ 1) P_7.5.16.5 TJ = 150 °C IL = -IL(NOM) 45 – mΩ 1) P_7.5.16.6 TJ = 25 °C VS = -13.5 V IL = -IL(NOM) RSENSE = 1.2 kΩ ON-State Resistance in Reverse Polarity at TJ = 150 °C RDS(REV)_150 – Nominal Load Current per Channel (all Channels Active) IL(NOM) – Output Leakage Current at TJ ≤ 85 °C IL(OFF)_85 – Data Sheet – – 70 mΩ 1) P_7.5.16.7 TJ = 150 °C VS = -13.5 V IL = -IL(NOM) RSENSE = 1.2 kΩ 3 – A 1) P_7.5.16.8 TA = 85 °C TJ ≤ 150 °C 0.03 0.15 μA 1) P_7.5.16.9 VOUT = 0 V VIN = “low” and OUT.OUTn = 0B TA ≤ 85 °C 39 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Power Stages Table 16 Electrical Characteristics: Power Stages - 22.5 mΩ (continued) Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Output Leakage Current at TJ = 150 °C IL(OFF)_150 – – 10 μA VOUT = 0 V P_7.5.16.10 VIN = “low” and OUT.OUTn = 0B TA = 150 °C Inverse Current Capability IL(INV) – 3 – A 1) |dVOUT / dt| – |VDS(DIODE)| – EON – EOFF – P_7.5.16.11 VS < VOUT IN = “high” or OUT.OUTn = 1B Voltage Slope Passive Slew Rate (e.g. for Half Bridge Configuration) – 10 V/μs 1) P_7.5.16.12 VS = 13.5 V Voltages Drain Source Diode Voltage 500 600 mV 1) P_7.5.16.13 IL = -190 mA TJ = 150 °C Switching Energy Switch-ON Energy Switch-OFF Energy 0.30 – mJ 1) P_7.5.16.14 VS = 18 V SRC.SRCn = 0B PCS.PCCn = 0B 0.38 – mJ 1) P_7.5.16.15 VS = 18 V SRC.SRCn = 0B PCS.PCCn = 0B 1) Not subject to production test - specified by design. Data Sheet 40 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Protection 8 Protection The BTS71040-4ESA is protected against Overtemperature, Overload, Reverse Battery (with ReverseON) and Overvoltage. Overtemperature and Overload protections are working when the device is not in Sleep mode. Overvoltage protection works in all operation modes. Reverse Battery protection works when the GND and VS pins are reverse supplied. 8.1 Overtemperature Protection The device incorporates both an absolute (TJ(ABS)) and a dynamic (TJ(DYN)) temperature protection circuitry for each channel. An increase of junction temperature TJ above either one of the two thresholds (TJ(ABS) or TJ(DYN)) switches OFF the overheated channel to prevent destruction. The corresponding WRNDIAG.WRNn bits are set and cleared on read. The channel remains switched OFF until junction temperature has reached the “Restart” condition described in Table 17. The behavior is shown in Figure 25 (absolute Overtemperature Protection) and Figure 26 (dynamic Overtemperature Protection). TJ(REF) is the reference temperature used for dynamic temperature protection. IN / OUT.OUTn t IL IL(O VL) t TJ TJ(ABS) t IIS t Internal counter 0 1 2 t WRNDIAG.WRNn 0 1 Read WRNDIAG 0 t Protection_OT_Restart.emf Figure 25 Data Sheet Overtemperature Protection (Absolute) 41 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Protection IN / OUT.OUTn t IL IL(O VL) t TJ TJ(DY N) TJ(ABS) TJ(start) TJ(REF) t IIS t Internal counter 0 1 2 3 4 5 6 nRESTART(CR) + 1 0 1 t WRNDIAG.WRNn 0 1 0 Read WRNDIAG ERRDIAG.ERRn 1 1 0 1 t Read WRNDIAG 0 1 HWCR.CLC = 1B 0 t Protection_dT_Restart.emf Figure 26 Overtemperature Protection (Dynamic) When the Overtemperature protection circuitry allows the channel to be switched ON again, the restart strategy described in Chapter 8.3.1 is followed. Data Sheet 42 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Protection 8.2 Overload Protection The BTS71040-4ESA is protected in case of Overload or short circuit to ground. Two Overload thresholds are defined (see Figure 27) and selected automatically depending on the voltage VDS across the power DMOS: • IL(OVL0) when VDS < 13 V • IL(OVL1) when VDS > 22 V In addition, the Overload threshold can be reduced by setting OCR.OCTn. Overload threshold variation ("1" = IL(OVL0) @ VDS = 5 V) 1.1 IL(OVL0) OCR.OCTn = 0 1 OCR.OCTn = 1 0.9 0.8 0.7 IL(OVL1) 0.6 0.5 0.4 0.3 0.2 0.1 0 4 8 12 16 20 24 28 Drain Source Voltage (V) Figure 27 Overload current thresholds When IL ≥ IL(OVL) (either IL(OVL0) or IL(OVL1)), the channel is switched OFF. The channel is allowed to restart according to the restart strategy described in Chapter 8.3.1. 8.3 Protection and Diagnosis in case of Fault Any event that triggers a protection mechanism (either Overtemperature or Overload) has 3 consequences: • The affected channel switches OFF and the internal counter is incremented • The current sense of the affected channel is set to high impedance • The corresponding WRNDIAG.WRNn are set to 1B and latched until readout. The channel can be switched ON again if all the protection mechanisms fulfill the “restart” conditions described in Table 17 and the internal restart counter is enabled (RCD.RCDn set to 0B). Data Sheet 43 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Protection Table 17 Protection “Restart” Condition Fault condition Switch OFF event “Restart” Condition Overtemperature TJ ≥ TJ(ABS) or (TJ - TJ(REF)) ≥ TJ(DYN) TJ < TJ(ABS) and (TJ - TJ(REF)) < TJ(DYN) (including hysteresis) nRESTART < nRESTART(CR) RCD.RCDn = 0 Overload IL ≥ IL(OVL) IL < 50 mA TJ within TJ(ABS) and TJ(DYN) ranges (including hysteresis) nRESTART < nRESTART(CR) RCD.RCDn = 0 8.3.1 Restart Strategy When INx or OUT.OUTn is set to “high”, the corresponding channel is switched ON. In case of fault condition the output stage is switched OFF. The channel is allowed to restart only in case the “restart” conditions for the protection mechanisms are fulfilled (see Table 17). The WRNDIAG.WRNn is set during Overcurrent shutdown. It is reset when the internal fault signal is cleared and the WRNDIAG is transmitted, unless latched state is reached by exceeding nRESTART(CR). The next Overcurrent event set the WRNDIAG.WRNn again. In case the automatic restarts are not required, they can be deactivated by setting RCD.RCDn to 1B. When RCD.RCDn is set to 1B, the restart counter will be reset. When a channel reaches latched state, the corresponding ERRDIAG.ERRn bit is set. The restart latch and counter are cleared by setting the SPI bit HWCR.CLC to 1B. If the input pin is “high” or OUT.OUTn is still set to 1B, the channel is switched ON immediately after the command that set HWCR.CLC bit to 1B. To ensure an adequate cool down after latch-OFF condition, application software needs to wait for t > tRETRY before restarting the channel. The restart strategy is shown in Figure 28. IN/ OUT.OUTn t Short circuit to ground t t > tRETRY 1) IL IL(O VL ) 0 Internal counter 0 1 2 3 4 5 6 nRESTART(CR) + 1 2 ... nRESTART(CR) + 1 0 0 WRNDIAG.WRNn 1 0 0 RCS.RCSn 1 2 3 1 5 6 7 Figure 28 Data Sheet 0 t 0 1 2 ... 7 RCD.RCDn = 1B HWCR.CLC = 1B 1) 0 t 1 0 4 1 0 1 Read WRNDIAG t 0 1 Note: Maximum peak current depending on s ystem impedance 1 HWCR.CLC = 1B 0 t Protection_Restart.emf Restart Strategy timing diagram 44 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Protection t < tDEL AY(CR) t ≥ tDEL AY(CR) t ≥ tRETRY tL HI(AC) IN t LHI t Short circuit to ground t 1) IL IL(O VL) t Internal counter 0 1 2 3 4 5 6 nRESTART(CR) + 1 0 1 2 3 4 5 6 nRESTART(CR) + 1 0 1 2 3 4 5 6 nRESTART(CR) + 1 t 0 WRNDIAG.WRNn 1 Read WRNDIAG 1) 0 1 Read WRNDIAG 1 0 1 Read WRNDIAG 1 0 Read WRNDIAG 1 Read WRNDIAG t Protection_Restart_LH.emf Note: Maximum peak current depending on s ystem impedance Figure 29 Restart Strategy timing diagram in Limp Home 8.4 Additional protections 8.4.1 Reverse Polarity Protection In Reverse Polarity condition (also known as Reverse Battery), the output stages are switched ON (see parameter RDS(REV)) because of ReverseON feature which limits the power dissipation in the output stages. Each ESD diode of the logic contributes to total power dissipation. The reverse current through the output stages must be limited by the connected loads. The current through digital power supply VDD and Digital Input pins has to be limited as well by an external resistor (please refer to the Absolute Maximum Ratings listed in Chapter 4.1 and to Application Information in Chapter 11). Figure 30 shows a typical application including a device with ReverseON. A current flowing into GND pin (-IGND) during Reverse Polarity condition is necessary to activate ReverseON, therefore a resistive path between module ground and device GND pin must be present. Data Sheet 45 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Protection -VBAT(REV) 5V (reverse protected) IVDD RVDD VDD µC VS High-side Channel VDD IDI DO RDI DI ReverseON OUTn -IO UT -IIS GND RGN D IS RSENSE GND L, C, R -IGN D Protection_RevBatt_SPI.emf Figure 30 Reverse Battery Protection (application example) 8.4.2 Overvoltage Protection In the case of supply voltages between VS(EXT,UP) and VBAT(LD), the output transistors are still operational and follow the input pins or the OUT register. In addition to the output clamp for inductive loads as described in Chapter 7.2.2, there is a clamp mechanism available for Overvoltage protection for the logic and the output channels, monitoring the voltage between VS and GND pins (VS(CLAMP)). Data Sheet 46 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Protection 8.5 Protection against loss of connection 8.5.1 Loss of Battery and Loss of Load The loss of connection to battery or to the load has no influence on device robustness when load and wire harness are purely resistive. In case of driving an inductive load, the energy stored in the inductance must be handled. BTS71040-4ESA can handle the inductivity of the wire harness up to 10 µH with IL(NOM). In case of applications where currents and/or the aforementioned inductivity are exceeded, an external suppressor diode (like diode DZ2 shown in Chapter 11) is recommended to handle the energy and to provide a welldefined path to the load current. Note: In case of a lost battery connection the VS monitoring function protects the SPI registers as soon the device is out of Sleep mode. This means that any command sent to the device will be ignored and the device will just send back the STDDIAG. Furthermore, the status of the LHI pin is blanked, which means that it is not possible to enter Limp Home mode. 8.5.2 Loss of Ground In case of loss of device ground, it is recommended to have a resistor connected between any Digital Input pin and the microcontroller to ensure a channel switch OFF (as described in Chapter 11). Note: Data Sheet In case any Digital Input pin is pulled to ground (either by a resistor or active) a parasitic ground path is available, which could keep the device operational during loss of device ground. The same behavior applies for the SPI functionality. 47 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Protection 8.6 Electrical Characteristics Protection VDD = 3.0 V to 5.5 V, VS = 6 V to 18 V, TJ = -40 °C to +150 °C Typical values: VDD = 5.0 V, VS = 13.5 V, TJ = 25 °C Typical resistive loads connected to the outputs for testing (unless otherwise specified): 22.5 mΩ: RL = 4.8 Ω Table 18 Electrical Characteristics: Protection - General Parameter Symbol Values Min. Typ. Max. 175 200 Thermal Shutdown Temperature (Absolute) TJ(ABS) 150 Thermal Shutdown Hysteresis (Absolute) THYS(ABS) – Thermal Shutdown Temperature (Dynamic) TJ(DYN) – Power Supply Clamping Voltage at TJ = -40 °C VS(CLAMP)_-40 33 Power Supply Clamping Voltage at TJ ≥ 25 °C VS(CLAMP)_25 Power Supply Voltage VS(JS) Threshold for Overcurrent Threshold Reduction in case of Short Circuit Unit Note or Test Condition Number °C 1)2) P_8.6.0.1 See Figure 25 30 – K 3) P_8.6.0.2 See Figure 25 80 – K 3) P_8.6.0.3 See Figure 26 35 36.5 42 V IVS = 5 mA TJ = -40 °C See Figure 20 P_8.6.0.6 38 44 V 2) P_8.6.0.7 IVS = 5 mA TJ ≥ 25 °C See Figure 20 20.5 22.5 24.5 V 3) P_8.6.0.8 Setup acc. to AECQ100-012 1) Functional test only. 2) Tested at TJ = 150°C only. 3) Not subject to production test - specified by design. 8.6.1 Electrical Characteristics Protection - SPOC™ Table 19 Electrical Characteristics: Protection - SPOC™ Parameter Symbol Values Min. Typ. Max. Counter Reset Delay Time tDELAY(CR) after Fault Condition in Limp Home 40 70 100 Automatic Restarts in Case of Fault after a Counter Reset – nRESTART(CR) Unit Note or Test Condition Number ms 1) P_8.6.2.1 LHI = “high” INx = “low” 6 – – 1) P_8.6.2.2 1) Not subject to production test - specified by design. Data Sheet 48 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Protection 8.7 Electrical Characteristics Protection - Power Output Stages VDD = 3.0 V to 5.5 V, VS = 6 V to 18 V, TJ = -40 °C to +150 °C Typical values: VDD = 5.0 V, VS = 13.5 V, TJ = 25 °C Typical resistive loads connected to the outputs for testing (unless otherwise specified): 22.5 mΩ: RL = 4.8 Ω 8.7.1 Protection Power Output Stage - 22.5 mΩ Table 20 Electrical Characteristics: Protection - 22.5 mΩ Parameter Symbol Values Min. Typ. Max. Overload Detection Current IL(OVL0) High Level 44 48 53 Overload Detection Current IL(OVL0) High Level 35 Overload Detection Current IL(OVL2) Low Level 19 Overload Detection Current IL(OVL3) High Level (parallel mode) 22 Overload Detection Current IL(OVL1) at High VDS – Overload Detection Current IL(OVL_JS) Jump Start Condition – Unit Note or Test Condition Number A 1) P_8.7.16.3 OCR.OCTn= 0B TJ = -40 °C to 50 °C dI/dt = 0.2 A/µs 39 44 A 2) P_8.7.16.4 OCR.OCTn= 0B TJ = 150 °C dI/dt = 0.2 A/µs 24 29 A 2) P_8.7.16.2 OCR.OCTn= 1B dI/dt = 0.2 A/µs 31 36 A 2)3) P_8.7.16.6 OCR.OCTn= 0B PCS.PCCn= 1B dI/dt = 0.2 A/µs 29 – A 2) P_8.7.16.5 dI/dt = 0.2 A/µs 29 – A 2) P_8.7.16.7 OCR.OCTn= 0B VS > VS(JS) dI/dt = 0.2 A/µs 1) Tested at TJ = -40 °C. 2) Not subject to production test - specified by design. 3) IL(OVL3) applies for one channel. Total current for two channels in parallel IL(OVL) ≤ 2 x IL(OVL3). Data Sheet 49 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Diagnosis 9 Diagnosis For diagnosis purpose, the BTS71040-4ESA provides a current sense at pin IS as well as a diagnosis feedback via SPI. In case of disabled diagnostic, IS pin becomes high impedance. The integrated current sense multiplexer is controlled via SPI. A sense resistor RSENSE must be connected between IS pin and module ground if the current sense diagnosis is used. RSENSE value has to be higher than 820 Ω (or 400 Ω when a central Reverse Battery protection is present on the battery feed) to limit the power losses in the sense circuitry. A typical value is RSENSE = 1.2 kΩ. Due to the internal connection between IS pin and VS supply voltage, it is not recommended to connect the IS pin to the sense current output of other devices, if they are supplied by a different battery feed or using a different sense concept. See Figure 31 for details as an overview. For diagnosis feedback at different operation modes, please see Chapter 9.2. VS IIS0 Latch Temperature Sensor T Gate Control OR Overcurrent Protection OUT3 OUT2 OUT1 OUT0 Latch Load Current Sense ERR0 Channel 0 VS DCR.MUX VDS(SB) Current Sense Multiplexer DCR.SBM IS RSENSE Diag nosis_4ch.emf Figure 31 Data Sheet Diagnosis block diagram 50 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Diagnosis 9.1 Overview Table 21 gives a quick reference to the state of the IS pin during BTS71040-4ESA operation. Table 21 Diagnosis feedback, Function of Operation Mode Operation Mode Input level VOUT OUT.OUTn Current sense IIS WRNDIAG STDDIAG .WRNn .SBM Low / 0B OFF Short circuit to GND ~ GND Z 0 1 ~ GND Z 0 1 Overtemperature Z Z 1 x Short circuit to VS VS Z 0 0 Open Load < VS - VDS(SB) > VS - VDS(SB)1) Z Z 0 0 1 0 Sense verification2) x IIS(VER) x 0 ~ VS IIS = IL(NOM) / kILIS 0 0 < VS IIS = IL / kILIS 0 x Short circuit to GND ~ GND Z 1 1 Overtemperature Z Z 1 x Short circuit to VS VS IIS < IL / kILIS 0 0 IIS = IIS(EN) 0 0 IIS(VER) x 0 IIS(EN) < IIS < IL(NOM) / kILIS 0 0 Normal operation Normal operation Overload High / 1B ON Open Load ~ VS Sense verification2) x Under load (e.g. Output Voltage Limitation condition) 1) 2) 3) 4) ~ VS 3) 4) With additional pull-up resistor. DCR.MUX = 101B. The output current has to be smaller than IL(OL). The output current has to be higher than IL(OL). Data Sheet 51 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Diagnosis 9.2 Diagnosis Word at SPI Diagnostic information about the status of each channel is provided through SPI. The fault flags, an OR combination of the overtemperature flags and the Overload monitoring signals are provided in the WRNDIAG register. The Overload monitoring signals are latched in the WRNDIAG.WRNn bits and cleared each time the WRNDIAG is transmitted via SPI unless the maximum number of restarts is reached and the channel protects itself. The protection latches are cleared by SPI command HWCR.CLC. 9.3 Diagnosis in ON state A current proportional to the load current (ratio kILIS = IL / IIS) is provided at pin IS when the following conditions are fulfilled: • A power output stage is switched ON with VDS < VDS(SB) • The diagnosis is enabled for that channel • No fault (as described in Chapter 8.3) is present If a “hard” failure mode is present or occurs for the channel selected using the DCR.MUX bits, the IS pin remains in or changes to “high impedance” state. 9.3.1 Current Sense (kILIS) The accuracy of the sense current depends on temperature and load current. IIS increases linearly with IL output current until it reaches the saturation current IIS(SAT). In case of Open Load at the output stage (IL close to 0 A), the maximum sense current IIS(EN) (no load, diagnosis enabled) is specified. This condition is shown in Figure 33. The blue line represents the ideal kILIS line, while the red lines show the behavior of a typical product. An external RC filter between IS pin and microcontroller ADC input pin is recommended to reduce signal ripple and oscillations (a minimum time constant of 1 µs for the RC filter is recommended). The kILIS factor is specified with limits that take into account effects due to temperature, supply voltage and manufacturing process. Tighter limits are possible (within a defined current window) with calibration: • A well-defined and precise current (IL(CAL)) is applied at the output during End of Line test at customer side • The corresponding current at IS pin is measured and the kILIS is calculated (kILIS @ IL(CAL)) • Within the current range going from IL(CAL)_L to IL(CAL)_H the kILIS is equal to kILIS @ IL(CAL) with limits defined by ΔkILIS The derating of kILIS after calibration is calculated using the formulas in Figure 32 and it is specified by ΔkILIS Diagnosis_dKILIS.emf Figure 32 ΔkILIS calculation formulas The calibration is intended to be performed at TA(CAL) = 25°C. The parameter ΔkILIS includes the drift overtemperature as well as the drift over the current range from IL(CAL)_L to IL(CAL)_H. Data Sheet 52 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Diagnosis IIS IIS(OL) IIS(EN) IL IL( OL) Di ag nosis _O LO N.e mf Figure 33 Current Sense Ratio in Open Load at ON condition 9.3.2 Current Sense Multiplexer There is a current sense multiplexer implemented in the BTS71040-4ESA that routes the sense current of the selected channel to the diagnosis pin IS. The channel is selected via SPI register DCR.MUX. The sense current can also be disabled by SPI register DCR.MUX. For details on timing of the current sense multiplexer, refer to Figure 34. In addition DCR.MUX is used in combination with other SPI bits to address further functions of the device. To verify the function of the current sensing path in ON and OFF state, the device offers a sense verification mode. In this mode a predefined current IIS(VER) is provided on the current sense pin independent on the load condition of any channel. This enables the microcontroller to verify the sense path at any time. The sense verification mode is enabled when DCR.MUX = 101B. All commands and functions involving the DCR.MUX bits are listed below: • The main function of DCR.MUX is to switch the current sense multiplexer • Executing PCS.CLCS = 1B clears the counter and latches OFF the channel selected by DCR.MUX • Executing PCS.SRCS = 1B the slew rate of the channel selected by DCR.MUX will be changed. See Chapter 7.4.1 for further information • When reading RCS.RCSn bits, the status of the internal counter of the channel selected by DCR.MUX is responded • When setting DCR.MUX = 101B the sense verification mode is enabled • When setting PCS.SRCS = 1b, the slew rate of the channel selected by DCR.MUX will be adjusted Data Sheet 53 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Diagnosis CSN DCR.MUX 110 001 010 110 tsI S(ON) IIS tsI S(CC) t tsIS (O FF) t Diagnosis_MuxTiming.emf Figure 34 Current Sense Multiplexer Timings 9.4 Diagnosis in OFF state When a power output stage is in OFF state, the BTS71040-4ESA can measure the output voltage and compare it with a threshold voltage. In this way, using some additional external components (a pull-down resistor and a switchable pull-up current source), it is possible to detect if the load is missing or if there is a short circuit to battery. 9.4.1 Switch Bypass Monitor To detect short circuit to VS, there is a switch bypass monitor implemented. In case of short circuit between the output pin OUT and VS in ON state, the current flows through the power transistor as well as through the short circuit (bypass) with undefined share between the two. As a result, the current sense signal shows lower values than expected by the load current. In OFF state, the output voltage remains close to VS potential which leads to a small VDS. The switch bypass monitor compares the threshold VDS(SB) with the voltage VDS across the power transistor of that channel which is selected by the current sense multiplexer (DCR.MUX). The result of the comparison can be read in the standard diagnosis STDDIAG.SBM. In addition the switch bypass monitor can be used to detect an Open Load in OFF state. In this case a switchable pull-up resistor has to be placed to pull the OUT to VS potential. 9.5 SENSE Timings Figure 35 shows the timing during settling tsIS(ON) and disabling tsIS(OFF) of the SENSE (including the case of load change). As a proper signal cannot be established before the load current is stable (therefore before tON), tsIS(DIAG) = tsIS(ON) + tON. IN / OUT.OUTn OFF ON OFF t tOFF SEN SE EN ABLE tON IL t tOFF(D ELA Y) tON(D ELA Y) tsIS(D IAG ) tsIS(LC ) tsIS (OFF) tsIS(ON) tdI S(OFF) t IIS t Diagnosis_SenseTiming.emf Figure 35 Data Sheet SENSE Settling / Disabling Timing 54 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Diagnosis 9.6 Electrical Characteristics Diagnosis VDD = 3.0 V to 5.5 V, VS = 6 V to 18 V, TJ = -40 °C to +150 °C Typical values: VDD = 5.0 V, VS = 13.5 V, TJ = 25 °C Typical resistive loads connected to the outputs for testing (unless otherwise specified): 22.5 mΩ: RL = 4.8 Ω Table 22 Electrical Characteristics: Diagnosis - General Parameter Symbol Values Unit Note or Test Condition Number mA 1) P_9.6.0.12 Min. Typ. Max. IIS(SAT) 4.2 – 15 IIS(SAT) 5 SENSE Leakage Current when Disabled IIS(OFF) – 0.01 0.5 µA IL ≥ IL(NOM) VIS = 0 V DCR.MUX = 110B P_9.6.0.2 SENSE Leakage Current when Enabled at TJ ≤ 85 °C IIS(EN)_85 – 0.2 1 µA 1) P_9.6.0.3 SENSE Saturation Current SENSE Saturation Current SENSE Leakage Current IIS(EN)_150 when Enabled at TJ = 150 °C RSENSE = 1.2 kΩ – 15 mA 1) P_9.6.0.17 RSENSE = 1.2 kΩ VS = 8 V to 18 V TJ ≤ 85 °C DCR.MUX ≠ See Figure 33 – 1 2 µA TJ = 150 °C DCR.MUX ≠ See Figure 33 P_9.6.0.11 – 0.5 1 V 1) P_9.6.0.6 Saturation Voltage in kILIS Operation (VS - VIS) VSIS_k Power Supply to IS Pin Clamping Voltage at TJ = -40 °C VSIS(CLAMP)_-40 33 36.5 42 V IIS = 1 mA TJ = -40 °C See Figure 20 P_9.6.0.9 Power Supply to IS Pin Clamping Voltage at TJ ≥ 25 °C VSIS(CLAMP)_25 35 38 44 V 2) P_9.6.0.10 VS = 6 V INx = “high” or OUT.OUTn = 1B IL ≤ 2 * IL(NOM) IIS = 1 mA TJ ≥ 25 °C See Figure 20 1) Not subject to production test - specified by design. 2) Tested at TJ = 150°C. Data Sheet 55 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Diagnosis 9.6.1 Electrical Characteristics Diagnosis - SPOC™ Table 23 Electrical Characteristics: Diagnosis - Thresholds, Timings Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Switch Bypass Monitor Threshold VDS(SB) 1.3 1.9 2.5 V OFF state P_9.6.2.1 SENSE Settling Time with Nominal Load Current Stable tsIS(ON) – 8 20 µs VS = 13.5 V IL = IL(NOM) DCR.MUX: 110B → 001B P_9.6.2.2 SENSE Settling Time with Small Load Current Stable tsIS(ON)_SLC – – 60 µs 2) P_9.6.2.10 SENSE Settling Time after Channel Change tsIS(CC) – VS = 13.5 V IL = IL(CAL)_OL DCR.MUX: 110B → 001B – 20 µs 1) P_9.6.2.4 VS = 13.5 V IL = IL(NOM) DCR.MUX: 001B → 010B – 60 µs 2) SENSE Settling Time after tsIS(CC)_SLC Channel Change with Small Load Current – P_9.6.2.11 SENSE Disable Time tsIS(OFF) – SENSE Settling Time after Load Change tsIS(LC) – – 20 µs 2) P_9.6.2.6 SENSE Settling Time after Load Change with Small Load Current tsIS(LC)_SLC – 250 400 µs 2) P_9.6.2.12 SENSE Disable Time after Channel Deactivation tdIS(OFF) – – 20 µs 2) P_9.6.2.7 SENSE Current in Sense Verification Mode IIS(VER) 400 500 600 µA DCR.MUX = 101B P_9.6.2.8 VS = 13.5 V Start channel: IL = IL(CAL) End channel: IL = IL(CAL)_OL DCR.MUX: 001B → 010B – 20 µs 1) P_9.6.2.5 VS = 13.5 V IL = IL(NOM) DCR.MUX: 010B → 110B VS = 13.5 V from IL = IL(CAL) to IL = IL(CAL)_OL 1) Production test for functionality within parameter limits. 2) Not subject to production test - specified by design. Data Sheet 56 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Diagnosis 9.7 Electrical Characteristics Diagnosis - Power Output Stages VDD = 3.0 V to 5.5 V, VS = 6 V to 18 V, TJ = -40 °C to +150 °C Typical values: VDD = 5.0 V, VS = 13.5 V, TJ = 25 °C Typical resistive loads connected to the outputs for testing (unless otherwise specified): 22.5 mΩ: RL = 4.8 Ω 9.7.1 Diagnosis Power Output Stage - 22.5 mΩ Table 24 Electrical Characteristics: Diagnosis - 22.5 mΩ - high range1) Parameter Symbol Values Min. Typ. Max. 7 15 Unit Note or Test Condition Number mA 2) P_9.7.16.1 Open Load Output Current at IIS = 4 µA IL(OL)_4u 2 Current Sense Ratio at IL = IL01 kILIS01 -65% Current Sense Ratio at IL = IL03 kILIS03 -60% Current Sense Ratio at IL = IL05 kILIS05 -55% Current Sense Ratio at IL = IL07 kILIS07 -45% Current Sense Ratio at IL = IL10 kILIS10 -24% 2000 +24% IL10 = 1 A P_9.7.16.12 Current Sense Ratio at IL = IL12 kILIS12 -8% 2000 +8% IL12 = 2 A P_9.7.16.14 Current Sense Ratio at IL = IL15 kILIS15 -8% 2000 +8% IL15 = 5.5 A P_9.7.16.17 SENSE Current Derating with Low Current Calibration ΔkILIS(OL) -30 0 +30 2)3) P_9.7.16.37 SENSE Current Derating with Nominal Current Calibration ΔkILIS(NOM) -9 IIS = IIS(OL) = 4 µA 2000 2) +65% P_9.7.16.3 IL01 = 10 mA 2000 2) +60% P_9.7.16.5 IL03 = 30 mA 2000 2) +55% P_9.7.16.7 IL05 = 100 mA 2000 2) +45% P_9.7.16.9 IL07 = 250 mA % IL(CAL)_OL = IL03 IL(CAL)_OL_H = IL05 IL(CAL)_OL_L = IL01 TA(CAL) = 25 °C 0 +9 % 3) P_9.7.16.38 IL(CAL) = IL12 IL(CAL)_H = IL15 IL(CAL)_L = IL10 TA(CAL) = 25 °C 1) Parameter valid only if KRC.KRCn = 0B. 2) Parameter valid only if PCS.PCCn = 0B. 3) Not subject to production test - specified by design. Data Sheet 57 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Diagnosis Table 25 Electrical Characteristics: Diagnosis - 22.5 mΩ - low range1) Parameter Symbol Values Min. Typ. Max. 3.2 6 Open Load Output Current at IIS = 4 µA IL(OL)_4u 0.5 Current Sense Ratio at IL = IL00 kILIS00 -65% Current Sense Ratio at IL = IL01 kILIS01 -60% Current Sense Ratio at IL = IL03 kILIS03 -55% Current Sense Ratio at IL = IL05 kILIS05 -45% Current Sense Ratio at IL = IL07 kILIS07 -30% Current Sense Ratio at IL = IL08 kILIS08 -20% Current Sense Ratio at IL = IL10 kILIS10 -8% Current Sense Ratio at IL = IL12 kILIS12 -8% SENSE Current Derating with Low Current Calibration ΔkILIS(OL) -30 SENSE Current Derating with Nominal Current Calibration ΔkILIS(NOM) -9 1) 2) 3) 4) Unit Note or Test Condition Number mA 2)3) P_9.7.16.18 IIS = IIS(OL) = 4 µA 660 2)3) +65% P_9.7.16.19 IL00 = 5 mA 660 2)3) +60% P_9.7.16.20 IL01 = 10 mA 660 2)3) +55% P_9.7.16.23 IL03 = 30 mA 660 2)3) +45% P_9.7.16.26 IL05 = 100 mA 660 2)3) +30% P_9.7.16.29 IL07 = 250 mA 660 3) +20% P_9.7.16.31 IL08 = 450 mA 660 3) +8% P_9.7.16.33 IL10 = 1 A 660 3) +8% P_9.7.16.35 IL12 = 2 A 0 +30 % 2)4) P_9.7.16.39 IL(CAL)_OL = IL01 IL(CAL)_OL_H = IL03 IL(CAL)_OL_L = IL00 TA(CAL) = 25 °C 0 +9 % 2)4) P_9.7.16.40 IL(CAL) = IL10 IL(CAL)_H = IL12 IL(CAL)_L = IL08 TA(CAL) = 25 °C Parameter valid only if KRC.KRCn = 1B. Parameter valid only if PCS.PCCn = 0B. kILIS accuracy valid if 1 µs RC filter is placed at ADC input. Not subject to production test - specified by design. Data Sheet 58 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Serial Peripheral Interface (SPI) 10 Serial Peripheral Interface (SPI) The serial peripheral interface (SPI) is a full duplex synchronous serial slave interface, which uses four lines: SO, SI, SCLK and CSN. Data is transferred by the lines SI and SO at the rate given by SCLK. The falling edge of CSN indicates the beginning of an access. Data is sampled-in on line SI at the falling edge of SCLK and shifted out on line SO at the rising edge of SCLK. Each access must be terminated by a rising edge of CSN. A modulo 8 counter ensures that data is taken only when a multiple of 8 bit has been transferred. The interface provides daisy chain capability with modulo 8 bit SPI devices. SO SI MSB MSB 6 5 4 3 2 1 6 5 4 3 2 1 LSB LSB CSN SCLK time SPI_8bit.emf Figure 36 Serial Peripheral Interface 10.1 SPI Signal Description CSN - Chip Select Negated The system microcontroller selects the BTS71040-4ESA by means of the CSN pin. Whenever the pin is in “low” state, data transfer can take place. When CSN is in “high” state, any signals at the SCLK and SI pins are ignored and SO is forced into a “high impedance” state. CSN “high” to “low” Transition • The requested information is transferred into the shift register. • SO changes from “high impedance” state to “low” state. CSN “low” to “high” Transition • Command decoding is only done, when after the falling edge of CSN exactly a multiple (1, 2, 3, …) of eight SCLK signals have been detected. In case of an incorrect SCLK count, the transmission error flag (STDDIAG.TER) is set and the command is ignored. • Data from shift register is transferred into the addressed register. SCLK - Serial Clock This input pin clocks the internal shift register. The serial input (SI) transfers data into the shift register on the falling edge of SCLK while the serial output (SO) shifts diagnostic information out on the rising edge of the serial clock. It is essential that the SCLK pin is in “low” state whenever chip select CSN makes any transition, otherwise the command may not be accepted. SI - Serial Input Serial input data bits are shifted in at this pin, the most significant bit first. SI information is read on the falling edge of SCLK. The input data consists of two parts, control bits followed by data bits. Please refer to Chapter 10.5 for further information. Data Sheet 59 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Serial Peripheral Interface (SPI) SO Serial Output Data is shifted out serially at this pin, the most significant bit first. SO is in “high impedance” state until the CSN pin goes to “low” state. New data will appear at the SO pin following the rising edge of SCLK. Please refer to Chapter 10.5 for further information. 10.2 Daisy Chain Capability The SPI of BTS71040-4ESA provides daisy chain capability for modulo 8 bit SPI devices. In this configuration several devices are activated by the same CSN signal MCSN. The SI line of one device is connected with the SO line of another device (see Figure 37), in order to build a chain. The end of the chain is connected to the output and input of the master device, MO and MI respectively. The master device provides the master clock MCLK which is connected to the SCLK line of each device in the chain. SO SPI MISO MCSN MCLK Figure 37 SI SO SPI SCLK SCLK SI device 3 CSN SO SPI CSN SI CSN MOSI device 2 SCLK device 1 SPI_D aisyChain_1.emf Daisy Chain Configuration In the SPI block of each device, there is one shift register where each bit from SI line is shifted in each SCLK. The bit is shifted out on SO pin. After eight SCLK cycles, the data transfer for one device is finished. In single chip configuration, the CSN line must turn “high” to make the device acknowledge the transferred data. In daisy chain configuration, the data shifted out at device 1 has been shifted into device 2. When using three devices in daisy chain, three times 8 bits have to be shifted through the devices. After that, the MCSN line must turn “high” (see Figure 38). MOSI frame device 3 frame device 2 frame device 1 MISO response device 3 response device 2 response device 1 8 clocks 8 clocks 8 clocks MCSN MSCLK SPI_DaisyChain_2.emf Figure 38 Data Sheet Data Transfer in Daisy Chain Configuration 60 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Serial Peripheral Interface (SPI) 10.3 Timing Diagrams tCSN(L EAD) tSCLK (P) tCSN(L AG ) tCSN(TD) VCSN(TH), ma x VCSN(TH), mi n CSN tSCLK (H) tSCLK (L) VSCLK (TH), ma x VSCLK (TH), mi n SCLK tSI(SU) tSI(H) VSI(TH), ma x VSI(TH), mi n SI tSO(EN) tSO(V) tSO(DI S) VSO(H) VSO(L) SO SPI_Timings.emf Figure 39 Data Sheet Timing Diagram SPI Access 61 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Serial Peripheral Interface (SPI) 10.4 Electrical Characteristics VDD = 3.0 V to 5.5 V, VS = 6 V to 18 V, TJ = -40 °C to +150 °C Typical values: VDD = 5.0 V, VS = 13.5 V, TJ = 25 °C Table 26 Electrical Characteristics Serial Peripheral Interface (SPI) Parameter Symbol Values Min. Typ. Max. Unit Note or Number Test Condition Timings Enable Lead Time (falling CSN to rising SCLK) tCSN(LEAD) 200 – – ns 1) P_10.4.0.1 Enable Lag Time (falling SCLK to rising CSN) tCSN(LAG) 200 – – ns 1) P_10.4.0.2 Transfer Delay Time (rising CSN tCSN(TD) to falling CSN) 500 – – ns 1) P_10.4.0.3 Output Enable Time (falling CSN to SO valid) tSO(EN) – 30 100 ns 1) P_10.4.0.4 Output Disable Time (rising CSN to SO tristate) tSO(DIS) – Serial Clock Frequency fSCLK 0 CL(SO) = 50 pF 30 100 ns 1) P_10.4.0.5 CL(SO) = 50 pF – 5 MHz 1) P_10.4.0.6 P_10.4.0.7 Serial Clock Period tSCLK(P) 200 – – ns 1) Serial Clock “High” Time tSCLK(H) 90 – – ns 1) P_10.4.0.8 ns 1) P_10.4.0.9 P_10.4.0.10 Serial Clock “Low” Time tSCLK(L) 90 – – 20 – – ns 1) Data Hold Time (falling SCLK to tSI(H) SI) 20 – – ns 1) P_10.4.0.11 Output Data Valid Time with Capacitive Load – – 60 ns 1) P_10.4.0.12 Data Setup Time (required Time SI to falling SCLK) tSI(SU) tSO(V) CL(SO) = 50 pF 1) Not subject to production test - specified by design. Data Sheet 62 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Serial Peripheral Interface (SPI) 10.5 SPI Protocol The relationship between SI and SO content during SPI communication is shown in Figure 40. SI line represents the frame sent from the µC and SO line is the answer provided by BTS71040-4ESA. The “previous response” means that the frame sent back depends on the command frame sent from the µC before. SI frame A frame B frame C SO previous response response to frame A response to frame B SPI_SI2SO.emf Figure 40 Relationship between SI and SO during SPI communication The SPI protocol provides the answer to a command frame only with the next transmission triggered by the µC. The responses of write commands are deterministic and can be decoded as STDDIAG or WRNDIAG frame. For responses of read commands previous transmission has to be considered for decoding. More in detail, the sequence of commands to “read” and “write” the content of a register will look as follows: SI write register A write register B read register A new command SO previous response STDDIAG WRNDIAG register A content SPI_RWseq_a.emf Figure 41 Register content sent back to µC (a) SI write register A read register A write register B new command SO previous response STDDIAG register A content WRNDIAG SPI_RWseq_b.emf Figure 42 Register content sent back to µC (b) There are 3 special situations where the frame sent back to the µC doesn't depend on the previous received frame: • In case an error in transmission happened during the previous frame (for instance, the clock pulses were not multiple of 8), shown in Figure 43 • When BTS71040-4ESA digital supply comes out of Power-On reset condition, as shown in Figure 44 • When VS < VS(TP) and DCR.MUX ≠ 111B, as shown in Figure 45 Data Sheet 63 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Serial Peripheral Interface (SPI) SI frame A (error in transmission) (new command) SO (previous response) STDDIAG + TER SPI_SO_TER.emf Figure 43 SPI response after an error in transmission VDD VDD(PO) SI frame A frame B frame C SO (SO=“Z“) STDDIAG + TER + SLP response frame B SPI_SO_POR.emf Figure 44 SPI response after coming out of Power-On reset at VDD VS VS(TP),max VS(TP),min t STDDIAG. VSMON 0 x 1 x 1 0 t SI SO frame A frame B frame C frame D frame E (response) (response to frame A) STDDIAG + TER + VSMON STDDIAG + TER + VSMON (response to frame D) Note: Valid if the device is out of Sleep mode. Figure 45 SPI_SO_VS MON.emf SPI response in case of voltage drop on battery A summary of all possible SPI commands is presented in Table 27, including the answer that BTS71040-4ESA will send back at the next transmission. Data Sheet 64 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Serial Peripheral Interface (SPI) Table 27 SPI Command Summary Requested Operation Frame sent to SPOC™ (SI pin) Frame received from SPOC™ (SO pin) with the next command Write OUT register DCR.SWR = xB 100xddddB where: “xddddB” = new OUT register content (“xB” = don't care) 00ddddddB - STDDIAG or 01ddddddB - WRNDIAG (Standard Diagnosis or Warning Diagnosis will be sent alternating) Read OUT register 0xxxaaaaB where: “aaaaB” = ADDR1 1) (“xB” = don't care) 1000ddddB (“ddddB” = OUT register content) Read RCS register 0xxxaaaaB where: “aaaaB” = ADDR1 1) (“xB” = don't care) 10000dddB (“dddB” = RCS register content) Write Configuration registers 11aaddddB where: “aaB” = ADDR0 1) “ddddB” = new register content 00ddddddB - STDDIAG 01ddddddB - WRNDIAG (Standard Diagnosis or Warning Diagnosis will be sent alternating) Read Configuration registers 0xxxaaaaB where: “aaaaB” = ADDR1 1) (“xB” = don't care) 11aaddddB where: “aaB” = ADDR0 1) “ddddB” = register content Read Warning Diagnosis 0xxxx001B (“xB” = don't care) 0100ddddB - WRNDIAG (Warning Diagnosis) Read Standard Diagnosis 0xxxx010B (“xB” = don't care) 00ddddddB - STDDIAG (Standard Diagnosis) Read Error Diagnosis 0xxxx011B (“xB” = don't care) 0100ddddB - ERRDIAG (Error Diagnosis) 1) ADDR0 and ADDR1 are defined according to Table 28. Data Sheet 65 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Serial Peripheral Interface (SPI) 10.6 SPI Diagnosis Registers 10.6.1 Diagnosis Registers - Read Commands Name 7 6 5 4 3 2 1 0 WRNDIAG 0 x x x 0 0 0 1 STDDIAG 0 x x x 0 0 1 0 ERRDIAG 0 x x x 0 0 1 1 10.6.2 Diagnosis Registers - Responses Name 7 6 5 4 0 3 2 1 0 Default WRNDIAG 0 1 0 STDDIAG 0 0 STDDIAG STDDIAG STDDIAG STDDIAG STDDIAG STDDIAG 24H .TER .CSV .LHI .SLP .SBM .VSMON ERRDIAG 0 1 0 0 WRNDIAG.WRNn ERRDIAG.ERRn 40H 40H Field Bits Type Description STDDIAG.TER 5 r Transmission Error 0B Previous transmission was successful (modulo 8 clocks received) 1B (default) Previous transmission failed or first transmission after Power-On reset or VS < VS(TP) if STDDIAG.VSMON = 1B STDDIAG.CSV 4 r Checksum Verification1) 0B (default) Checksum verification was pass or no checksum calculated 1B Previous checksum verification was fail STDDIAG.LHI 3 r Limp Home monitor 0B (default) “Low” level at pin LHI 1B “High” level at pin LHI STDDIAG.SLP 2 r Sleep mode monitor 0B Device out of Sleep mode 1B (default) Device is in Sleep mode STDDIAG.SBM 1 r Switch Bypass Monitor2) 0B VDS < VDS(SB) 1B VDS > VDS(SB) STDDIAG.VSMON 0 r VS monitor 0B (default) VS always > VS(UV) since last Standard Diagnosis readout 1B VS < VS(UV) at least once or VS < VS(TP) if STDDIAG.TER = 1B Data Sheet 66 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Serial Peripheral Interface (SPI) Field Bits Type Description WRNDIAG.WRNn n = 3 to 0 3:0 r Warning Diagnosis of Channel n 0B (default) No failure 1B Overcurrent, Overtemperature or delta T detected ERRDIAG.ERRn n = 3 to 0 3:0 r Error Diagnosis of Channel n 0B (default) No failure 1B Channel latched OFF 1) See Chapter 10.8 for details on checksum calculation. 2) The switch bypass monitor compares the threshold VDS(SB) with the voltage VDS across the power transistor of that channel which is selected by the current sense multiplexer (DCR.MUX). 10.7 SPI Configuration Registers The following table provides an overview on the registers available and the available address space. Table 28 Register Overview Name SWR 1) 2) RB ADDR0 ADDR1 Content 0 (na) 0000 Output configuration OUT x/0 RCS 1 0 (na) 1000 Restart counter status (read-only) SRC 1 0 (na) 1001 Slew Rate Control register (read-only) OCR 0 1 00 0100 Overcurrent threshold configuration RCD 1 1 00 1100 Restart counter disable KRC 0 1 01 0101 KILIS range control PCS 1 1 01 1101 Parallel channel and Slew Rate control HWCR 0 1 10 0110 Hardware configuration ICS 1 1 10 1110 Input status & checksum input DCR x 1 11 x111 Diagnostic configuration and Swap bit 1) DCR.SWR bit is only changed for write commands. For read commands it is used as part of the read address. 2) For writing to OUT register DCR.SWR = x, for read address DCR.SWR = 0B. Table 29 Configuration Registers - Write Commands RB-0 Bit 7 6 5 4 3 2 1 0 Name SWR 7 RB 5 4 3 2 1 0 OUT x Table 30 1 0 0 x OUT.OUTn Configuration Registers - Write Commands RB-1 Bit 7 6 Name SWR 7 RB 5 4 ADDR0 3 2 1 0 3 2 1 0 OCR 0 1 1 0 0 OCR.OCTn RCD 1 1 1 0 0 RCD.RCDn KRC 0 1 1 0 1 KRC.KRCn PCS 1 1 1 0 1 PCS.PCCn Data Sheet 67 PCS.CLCS PCS.SRCS Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Serial Peripheral Interface (SPI) Table 30 Configuration Registers - Write Commands RB-1 Bit 7 6 Name SWR 7 RB 5 4 ADDR0 3 2 1 0 3 2 1 0 HWCR 0 1 1 1 0 0 ICS 1 1 1 1 0 ICS.CSRn 1) DCR x 1 1 1 1 DCR.SWR HWCR.COL HWCR.RST HWCR.CLC DCR.MUX 1) See Chapter 10.8 for details on checksum calculation. Table 31 Configuration Registers - Read Commands Bit 7 6 5 4 Name 7 6 5 4 3 2 1 0 ADDR1 OUT 0 x x x 0 0 0 0 RCS 0 x x x 1 0 0 0 SRC 0 x x x 1 0 0 1 OCR 0 x x x 0 1 0 0 RCD 0 x x x 1 1 0 0 KRC 0 x x x 0 1 0 1 PCS 0 x x x 1 1 0 1 HWCR 0 x x x 0 1 1 0 ICS 0 x x x 1 1 1 0 DCR 0 x x x x 1 1 1 Data Sheet 68 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Serial Peripheral Interface (SPI) Table 32 Configuration Registers - Responses Bit 7 6 5 4 3 2 1 0 Name 7 6 5 4 3 2 1 0 Default OUT 1 0 0 x OUT.OUTn 80H RCS 1 0 0 0 0 SRC 1 0 0 1 SRC.SRCn 90H OCR 1 1 0 0 OCR.OCTn C0H RCD 1 1 0 0 RCD.RCDn C0H KRC 1 1 0 1 KRC.KRCn D0H PCS 1 1 0 1 PCS.PCCn HWCR 1 1 1 0 0 ICS 1 1 1 0 ICS.INSTn DCR 1 1 1 1 DCR.SWR 80H RCS.RCSn 0 0 D0H HWCR.COL HWCR.SLP 0 E2H E0H DCR.MUX Field Bits Type Description RB 6 rw Register Bank 0B (default) Read/write to OUT/RCS register 1B Read/write to other registers OUT.OUTn n = 3 to 0 3:0 rw Output Control Register of Channel n 0B (default) channel is OFF 1B Channel is ON RCS.RCSn n = 2 to 0 2:0 r Restart Counter Status of Channel selected via MUX 000B (default) Restart counter value = 0 001B Restart counter value = 1 010B Restart counter value = 2 011B Restart counter value = 3 100B Restart counter value = 4 101B Restart counter value = 5 110B Restart counter value = 6 111B Restart counter value = 7 SRC.SRCn n = 3 to 0 3:0 r Set Slew Rate control for Channel n (read only) 0B (default) Normal Slew Rate 1B Adjusted Slew Rate OCR.OCTn n = 3 to 0 3:0 rw Set Overcurrent Level for Channel n 0B (default) High level of overcurrent threshold IL(OVL0) 1B Low level of overcurrent threshold IL(OVL2) RCD.RCDn n = 3 to 0 3:0 rw Set Restart Strategy for Channel n 0B (default) Automatic restart mode 1B Latch mode KRC.KRCn n = 3 to 0 3:0 rw Set Current Sense Ratio Range for Channel n 0B (default) High range of current sense ratio 1B Low range of current sense ratio Data Sheet 69 F7H Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Serial Peripheral Interface (SPI) Field Bits Type Description PCS.SRCS 0 w Set Slew Rate control for Channel selected by DCR.MUX 0B (default) Normal Slew Rate 1B Adjusted Slew Rate PCS.CLCS 1 w Clear Restart Counters and Latches for Channel selected by DCR.MUX 0B (default) Restart counters and latches are untouched 1B Restart counters and latches are reset PCS.PCCn n = 1 to 0 3:2 rw Parallel Channel Configuration 00B (default) Channels are operating independent 01B OUT0 + OUT3 are in parallel configuration 10B OUT1 + OUT2 are in parallel configuration 11B OUT0 + OUT3 and OUT1 + OUT2 are in parallel configuration HWCR.CLC 0 w Clear Restart Counters and Latches 0B (default) Restart counters and latches are untouched 1B Restart counters and latches are reset for all channels HWCR.RST 1 w Reset Command 0B (default) Normal operation 1B Execute reset command HWCR.SLP 1 r Sleep Mode 0B Device is awake 1B (default) DCR.MUX = 111B HWCR.COL 2 rw Input Combinatorial Logic Configuration 0B (default) Input signal OR-combined with according OUT register bit1) 1B Input signal AND-combined with according OUT register bit ICS.CSRn n = 3 to 0 3:0 w Checksum Input Register 4 bit Checksum is written to this register ICS.INSTn n = 3 to 0 3:0 r Input Status Monitor Channel n 0B (default) Input signal is “low” 1B Input signal is “high” Data Sheet 70 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Serial Peripheral Interface (SPI) Field Bits Type Description DCR.MUX 2:0 rw Set Current Sense Multiplexer Configuration in OFF state 000B IS pin is “high impedance” 001B IS pin is “high impedance” 010B IS pin is “high impedance” 011B IS pin is “high impedance” 100B IS pin is “high impedance” 101B Current sense verification mode 110B IS pin is “high impedance” 111B Sleep mode (IS pin is “high impedance”) Set Multiplexer Configuration in ON state 000B Current sense of channel 0 is routed to IS pin 001B Current sense of channel 1 is routed to IS pin 010B Current sense of channel 2 is routed to IS pin 011B Current sense of channel 3 is routed to IS pin 100B IS pin is “high impedance” 101B Current sense verification mode 110B IS pin is “high impedance” 111B Sleep mode (IS pin is “high impedance”) DCR.SWR 3 rw Switch Register 0B (default) Registers OUT, OCR, KRC, HWCR and DCR can be written Registers OUT, RCD, PCS, ICS and DCR can be written 1B 1) In Limp Home mode (LHI pin set to “high”) the combinatorial logic is switched to OR-mode. Data Sheet 71 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Serial Peripheral Interface (SPI) 10.8 SPI Checksum Verification BTS71040-4ESA offers a simple parity check to identify unexpected content or unintended changes of configuration registers. For the checksum calculation a subset of the configuration bits is used, which is expected not to be changed periodically. The checksum calculation is an easy column parity calculation. The configuration bits which are used for the calculation are shown in Table 34. The SPI master writes the result to ICS.CSRn. After the 4bit checksum is written to ICS register, the device is doing once the comparison and the result can be read within the next STDDIAG frame in the bit STDDIAG.CSV. The STDDIAG.CSV bit is cleared with the next STDDIAG readout. In case the ICS register is not written, the checksum comparison is disabled and the bit STDDIAG.CSV = 0B. If Limp Home mode is entered after ICS.CSRn is written but before STDDIAG.CSV is read, the checksum verification is not valid. Same applies in case STDDIAG.TER and STDDIAG.VSMON are set to 1B. In these cases checksum verification result shall be discarded. Table 33 Conventions for parity calculation Number of ‘1’ in a column Result with EVEN-parity Result with ODD-parity EVEN 0 1 ODD 1 0 Table 34 Checksum calculation bit matrix Name 3 2 1 0 OCR OCT3 OCT2 OCT1 OCT0 RCD RCD3 RCD2 RCD1 RCD0 KRC KRC3 KRC2 KRC1 KRC0 SRC SRC3 SRC2 SRC1 SRC0 HWCR/PCS 0 COL PCC PCC0 Parity even odd even odd ICS CSR3 CSR2 CSR1 CSR0 Table 35 Checksum calculation bit matrix example Name 3 2 1 0 OCR 0 1 0 0 RCD 1 0 0 0 KRC 0 1 1 0 SRC 0 0 1 0 HWCR/PCS 0 0 0 0 Parity even odd even odd ICS 1 1 0 1 Data Sheet 72 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Serial Peripheral Interface (SPI) 10.9 SPI command quick list A summary of the most used SPI commands (read and write operations) is shown in Table 154. Table 36 SPI command quick list Name “read” command 1) “write” command 2) SWR 3) OUT 0xxx0000B 10ddddddB x RCS 0xxx1000B SRC 0xxx1001B OCR 0xxx0100B 1100ddddB 0 RCD 0xxx1100B 1100ddddB 1 KRC 0xxx0101B 1101ddddB 0 PCS 0xxx1101B 1101ddddB 1 HWCR 0xxx0110B 1110ddddB 0 ICS 0xxx1110B 1110ddddB 1 DCR 0xxxx111B 1111ddddB x WRNDIAG 0xxx0001B STDDIAG 0xxx0010B ERRDIAG 0xxx0011B 1) x = don’t care bits. 2) d = data bits. 3) DCR.SWR bit needs to be set for writing a register. For reading a register the DCR.SWR bit is part of the read address. Data Sheet 73 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Application Information 11 Application Information Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. 11.1 Application setup - SPOC™ VBAT Optional ZWIRE Fail-safe Control RIN Optional CVSGND CVS1 Logic Supply RGND T1 CVDD RIN IN3 RLHI LHI CSN RCSN CSN SCLK RSCLK SCLK GPIO RSO RIS_PROT CADC DZ1 SI IS Logic GND COUT RSENSE COUT RADC COUT ADC OUT3 SO RSI MOSI VSS OUT2 COUT MISO OUT0 OUT1 ZWIRE IN2 ZLOAD* IN1 RIN ROL RIN GPIO RPD GPIO VS ZWIRE IN0 ZLOAD* VDD RIN SPOC™ +2 CVS2 Microcontroller DZ2 GND RVDD GPIO VDD Optional Application_4ch_noED.emf Power GND *See Chapter 1 „Potential Applications“ **See Chapter 11.2 „External Components“ Chassis GND Figure 46 Application Diagram Note: This is a very simplified example of an application circuit. The function must be verified in the real application. Data Sheet 74 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Application Information 11.2 External Components Table 37 Suggested Component values Reference Value Purpose RVDD 470 Ω Device logic protection RIN 4.7 kΩ Protection of the microcontroller during overvoltage, reverse polarity Guarantee BTS71040-4ESA output OFF during Loss of Ground RIS_PROT 4.7 kΩ Protection resistor for overvoltage, reverse polarity and Loss of Ground Value to be tuned with µC specification RSENSE 1.2 kΩ Sense resistor RADC 4.7 kΩ µC-ADC voltage spikes filtering RCSN 1.2 kΩ Protection of the µC during overvoltage and reverse polarity RSCLK 1.2 kΩ Protection of the µC during overvoltage and reverse polarity RSO 1.2 kΩ Protection of the µC during overvoltage and reverse polarity RSI 1.2 kΩ Protection of the µC during overvoltage and reverse polarity RLHI 4.7 kΩ Protection of the µC during overvoltage and reverse polarity CADC 220 pF µC-ADC voltage spikes filtering A time constant (RADC * CADC) longer than 1 µs is recommended CVDD 470 nF Digital supply voltage spikes filtering and for improved robustness against battery voltage transients CVS1 100 nF Battery voltage spikes filtering CVS2 - Filtering / buffer capacitor located at VBAT connector CVSGND 22 nF Battery voltage spikes filtering COUT 10 nF For improved electromagnetic compatibility (EMC) RGND 47 Ω Ground voltage spikes filtering for improved robustness against battery voltage transients T1 BC 807 Switch the battery voltage for Open Load in OFF diagnosis RPD 47 kΩ Output polarization (pull-down) Ensure polarization of BTS71040-4ESA output to distinguish between Open Load and Short to VS in OFF diagnosis ROL 1.5 kΩ Output polarization (pull-up) Ensure polarization of BTS71040-4ESA output during Open Load in OFF diagnosis Note: Data Sheet The suggested component values above are determined for typical applications with 5 V microcontrollers. Based on the application circuit and the used components connected to BTS71040-4ESA, it could be necessary to adjust the recommended values to stay below the maximum ratings for all components under all operating conditions (e.g. reverse battery, transients on battery, etc.). 75 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Application Information 11.3 Further Application Information • Please contact us for information regarding the Pin FMEA • For further information you may contact http://www.infineon.com/ Data Sheet 76 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Package Outlines  ' [ s  $% & [      '     s %    %27720 9,(: s  $ ,1'(; 0$5.,1*  [ s &  & [ 6($7,1* &23/$1$5,7< 3/$1( s  s  *$8*( 3/$1( ' rr  [  0$;  s  s 67$1'2)) Package Outlines  12  $%  '2(6 127 ,1&/8'( 3/$67,& 25 0(7$/ 3527586,21 2)  0$; 3(5 6,'(  '$0%$5 352786,21 6+$// %( 0$;,080 00 727$/ ,1 (;&(66 2) /($' :,'7+  ',67$1&( )520 &(1(5/,1( (;326(' 3$' 72 3$&.$*( &(17(5/,1( $// ',0(16,216 $5( ,1 81,76 00 7+( '5$:,1* ,6 ,1 &203/,$1&( :,7+ ,62  352-(&7,21 0(7+2'  > @ Figure 47 Data Sheet PG-TSDSO-24 (Thin (Slim) Dual Small Outline 24 pins) Package drawing 77 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Package Outlines        FRSSHU            VROGHU PDVN  VWHQFLO DSHUWXUHV $// ',0(16,216 $5( ,1 81,76 00 Figure 48 PG-TSDSO-24 (Thin (Slim) Dual Small Outline 24 pins) Package pads and stencil Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). Further information on packages https://www.infineon.com/packages Data Sheet 78 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Revision History 13 Revision History Table 38 BTS71040-4ESA - List of changes Revision Changes 1.10, 2021-03-23 General: Datasheet quality improved General: updated (ReverSave™ → ReverseON) General: updated (channel description) Icon “PRO-SIL™ ISO 26262-ready” added to front page Chapter 1 updated (Potential Applications updated and Product Validation added) Harmonization of Application Diagram (Figure 1, Figure 46) P_4.4.0.17, P_4.4.0.18 updated (Typ. value and Max. value) P_6.4.0.10 updated (Note or Test Condition) P_6.4.1.5 updated (Note or Test Condition) P_6.4.1.7 removed P_6.5.32.2 added P_9.6.0.6 updated parameter name P_9.6.0.17 added Figure 28 and Figure 29 updated Figure 33 updated Figure 37 and Figure 38 updated Chapter 10.4 typical value for VDD harmonized Chapter 11 updated (figures and descriptions) 1.00, 2018-10-16 Data Sheet available Data Sheet 79 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Table of Contents Table of Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 2.1 2.2 Block Diagram and Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 3.1 3.2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 4.1 4.2 4.2.1 4.3 4.4 4.4.1 4.4.2 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Absolute Maximum Ratings - General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Absolute Maximum Ratings - Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Power Stages - 22.5 mΩ channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 PCB Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5 5.1 5.2 5.2.1 5.2.2 5.3 5.4 Logic Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Pins (INn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Advanced Features Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Limp Home Input (LHI) Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Logic Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Logic Pins - Advanced Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 14 16 16 16 17 17 6 6.1 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 6.1.9 6.2 6.3 6.4 6.4.1 6.5 6.5.1 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unsupplied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stand-by mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ready mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Active mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Limp Home mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Limp Home Active mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition of Operation modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Undervoltage on VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reset Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Power Supply - SPOC™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Power Supply - Product Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BTS71040-4ESA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 21 23 23 23 23 23 23 23 24 25 25 26 27 28 29 29 7 7.1 7.2 7.2.1 7.2.2 Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output ON-State Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching Resistive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching Inductive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 31 31 31 32 Data Sheet 80 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Table of Contents 7.2.3 7.2.4 7.3 7.3.1 7.3.2 7.3.3 7.4 7.4.1 7.5 7.5.1 Output Voltage Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching Capacitive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Advanced Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inverse Current behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching Channels in Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cross Current robustness with H-Bridge configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Power Stages - SPOC™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics - Power Output Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Output Stage - 22.5 mΩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 33 34 34 35 36 37 37 39 39 8 8.1 8.2 8.3 8.3.1 8.4 8.4.1 8.4.2 8.5 8.5.1 8.5.2 8.6 8.6.1 8.7 8.7.1 Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overtemperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection and Diagnosis in case of Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Restart Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Additional protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection against loss of connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loss of Battery and Loss of Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loss of Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Protection - SPOC™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Protection - Power Output Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection Power Output Stage - 22.5 mΩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 41 43 43 44 45 45 46 47 47 47 48 48 49 49 9 9.1 9.2 9.3 9.3.1 9.3.2 9.4 9.4.1 9.5 9.6 9.6.1 9.7 9.7.1 Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnosis Word at SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnosis in ON state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current Sense (kILIS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current Sense Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnosis in OFF state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switch Bypass Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Diagnosis - SPOC™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Diagnosis - Power Output Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnosis Power Output Stage - 22.5 mΩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 51 52 52 52 53 54 54 54 55 56 57 57 10 10.1 10.2 10.3 10.4 10.5 10.6 10.6.1 Serial Peripheral Interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Daisy Chain Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI Diagnosis Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnosis Registers - Read Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 59 60 61 62 63 66 66 Data Sheet 81 Rev. 1.10 2021-03-23 BTS71040-4ESA SPOC™ +2 Table of Contents 10.6.2 10.7 10.8 10.9 Diagnosis Registers - Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI Checksum Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI command quick list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 67 72 73 11 11.1 11.2 11.3 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application setup - SPOC™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 74 75 76 12 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 13 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Data Sheet 82 Rev. 1.10 2021-03-23 Please read the Important Notice and Warnings at the end of this document Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2021-03-23 Published by Infineon Technologies AG 81726 Munich, Germany © 2021 Infineon Technologies AG. All Rights Reserved. Do you have a question about any aspect of this document? Email: erratum@infineon.com Document reference Z8F65320942 IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.
BTS710404ESAXUMA1 价格&库存

很抱歉,暂时无法提供与“BTS710404ESAXUMA1”相匹配的价格&库存,您可以联系我们找货

免费人工找货