0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BTT6200-4ESA

BTT6200-4ESA

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    TSDSO24

  • 描述:

    BTT6200-4ESA

  • 数据手册
  • 价格&库存
BTT6200-4ESA 数据手册
PROFET™+ 24V BTT6200-4ESA Feature list • • • • • • • • Quad channel device Very low stand-by current 3.3 V and 5 V compatible logic inputs Electrostatic discharge protection (ESD) Optimized electromagnetic compatibility Logic ground independent from load ground Very low power DMOS leakage current in OFF state Green product (RoHS compliant) Potential applications • • • • Suitable for resistive, inductive and capacitive loads Replaces electromechanical relays, fuses and discrete circuits Most suitable for loads with high inrush current, such as lamps Suitable for 12 V and 24 V trucks and transportation systems VBAT Voltage Regulator OUT VS GND T1 CVDD Z CVS ROL VS VDD RDEN DEN I/O RDSEL DSEL0 I/O RDSEL DSEL1 OUT0 COUT RPD I/O Relay 86 30 85 87 OUT1 COUT RPD I/O Micro controller I/O RIN IN0 RIN IN1 I/O RIN IN2 I/O RIN IN3 + OUT2 OUT3 RLED CSENSE GND COUT R5W LED RIS GND OUT4 RPD IS RSENSE E.C.U. - RPD OUT3 A/D COUT RGND D Page-1 Figure 1 Application Diagram with BTT6200-4ESA Product Type Package Marking BTT6200-4ESA PG-TSDSO-24 BTT62004ESA Datasheet www.infineon.com Please read the Important Notice and Warnings at the end of this document Rev. 1.00 2019-03-09 PROFET™+ 24V BTT6200-4ESA Product summary Product summary The BTT6200-4ESA is a 200 mΩ quad channel Smart High-Side Power Switch, embedded in a PG-TSDSO-24 package, providing protective functions and diagnosis. The power transistor is built by an N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 HV technology. It is specially designed to drive lamps up to R10 W 24 V or R5 W 12 V, as well as LEDs in the harsh automotive environment. Table 1 Product summary Parameter Symbol Value Operating voltage range VS(OP) 5 V to 36 V Maximum supply voltage VS(LD) 65 V Maximum ON state resistance at TJ = 150°C per channel RDS(ON) 400 mΩ Nominal load current (one channel active) IL(NOM)1 1.5 A Nominal load current (all channels active) IL(NOM)2 1A Typical current sense ratio kILIS 300 Minimum current limitation IL5(SC) 9A Maximum standby current with load at TJ = 25°C IS(OFF) 500 nA Diagnostic functions • • • • • • Proportional load current sense multiplexed for the 4 channels Open load detection in ON and OFF Short circuit to battery and ground indication Overtemperature switch off detection Stable diagnostic signal during short circuit Enhanced kILIS dependency with temperature and load current Protection functions • • • • • • Stable behavior during undervoltage Reverse polarity protection with external components Secure load turn-off during logic ground disconnection with external components Overtemperature protection with latch Overvoltage protection with external components Enhanced short circuit operation Product validation Qualified for Automotive Applications. Product validation according to AEC-Q100/101. Datasheet 2 Rev. 1.00 2019-03-09 PROFET™+ 24V BTT6200-4ESA Table of contents Table of contents Feature list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Product summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 2 Block diagram reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 3.1 3.2 3.3 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Voltage and current definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4 4.1 4.2 4.3 4.3.1 4.3.2 Electrical characteristics and parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 PCB set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Thermal impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5 5.1 5.2 5.3 5.3.1 5.3.2 5.4 5.5 Power stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Output ON-state resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Turn ON/OFF characteristics with resistive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Inductive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Output clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Maximum load inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Inverse current capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Electrical characteristics - power stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6 6.1 6.2 6.3 6.4 6.5 6.5.1 6.5.2 6.6 Protection functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Loss of ground protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Undervoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Reverse polarity protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Overload protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Current limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 Temperature limitation in the power DMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Electrical characteristics for the protection functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7 7.1 Diagnostic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 IS pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 Datasheet 3 Rev. 1.00 2019-03-09 PROFET™+ 24V BTT6200-4ESA Table of contents 7.2 7.3 7.3.1 7.3.2 7.3.3 7.3.3.1 7.3.3.2 7.3.3.3 7.3.4 7.3.5 7.3.6 7.4 SENSE signal in different operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 SENSE signal in nominal current range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 SENSE signal variation as a function of temperature and load current . . . . . . . . . . . . . . . . . . . . . .28 SENSE signal timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 SENSE signal in open load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Open load in ON diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Open load in OFF diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Open load diagnostic timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 SENSE signal in short circuit to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 SENSE signal in case of overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 SENSE signal in case of inverse current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Electrical characteristics diagnostic function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 8 8.1 8.2 8.3 8.4 Input pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Input circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 DEN / DSEL0, 1 pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 Input pin voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 9 9.1 9.2 9.3 9.4 9.5 Characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Power stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 Protection functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Diagnostic mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Input pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 10 10.1 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Further application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 11 Package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Datasheet 4 Rev. 1.00 2019-03-09 PROFET™+ 24V BTT6200-4ESA Description 1 Description The BTT6200-4ESA is a 200 mΩ quad channel Smart High-Side Power Switch, embedded in a PG-TSDSO-24 package, providing protective functions and diagnosis. The power transistor is built by an N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 HV technology. It is specially designed to drive lamps up to R10 W 24 V or R5 W 12 V, as well as LEDs in the harsh automotive environment. Datasheet 5 Rev. 1.00 2019-03-09 PROFET™+ 24V BTT6200-4ESA Block diagram reference 2 Block diagram reference Channel 0 VS voltage sensor internal power supply IN0 over temperature driver logic DEN gate control & charge pump ESD protection T clamp for inductive load over current switch limit OUT 0 load current sense and open load detection IS forward voltage drop detection VS Channel 1 T IN1 Control and protection circuit equivalent to channel 0 DSEL0 DSEL1 OUT 1 Channel 2 T Control and protection circuit equivalent to channel 0 IN2 OUT 2 Channel 3 T Control and protection circuit equivalent to channel 0 IN3 OUT 3 GND Figure 2 Datasheet Block diagram DxS.vsd Block diagram for BTT6200-4ESA 6 Rev. 1.00 2019-03-09 PROFET™+ 24V BTT6200-4ESA Pin configuration 3 Pin configuration 3.1 Pin assignment NC IN0 NC GND IN1 DEN IS DSEL0 IN2 IN3 DSEL1 NC 1 2 3 4 5 6 7 8 9 10 11 12 24 23 22 21 20 19 18 17 16 15 14 13 OUT0 NC NC NC OUT1 NC NC OUT2 NC NC NC OUT3 PG-TSDSO-24-21_Pinout.vsd Figure 3 Pin configuration 3.2 Pin definitions and functions Table 2 Pin definitions and functions Pin Symbol Function 1, 3, 12, 14, 15, 16, 18, 19 , 21, 22, 23 NC Not Connected; No internal connection to the chip 2 IN0 INput channel 0; Input signal for channel 0 activation 4 GND GrouND; Ground connection 5 IN1 INput channel 1; Input signal for channel 1 activation 6 DEN Diagnostic ENable; Digital signal to enable/disable the diagnosis of the device 7 IS Sense; Sense current of the selected channel 8 DSEL0 Diagnostic SELection; Digital signal to select the channel to be diagnosed 9 IN2 INput channel 2; Input signal for channel 2 activation 10 IN3 INput channel 3; Input signal for channel 3 activation 11 DSEL1 Diagnostic SELection; Digital signal to select the channel to be diagnosed 13 OUT3 OUTput 3; Protected high side power output channel 3 17 OUT2 OUTput 2; Protected high side power output channel 2 20 OUT1 OUTput 1; Protected high side power output channel 1 Datasheet 7 Rev. 1.00 2019-03-09 PROFET™+ 24V BTT6200-4ESA Pin configuration Table 2 Pin definitions and functions (continued) Pin Symbol Function 24 OUT0 OUTput 0; Protected high side power output channel 0 Cooling tab VS Voltage Supply; Battery voltage 3.3 Voltage and current definition Figure 4 shows all terms used in this data sheet, with associated convention for positive values. VDS1 VDS0 IS VS VDS2 VDS3 VOUT2 VOUT3 VS IIN0 VIN0 IN0 IOUT0 OUT0 IIN1 IN1 VIN1 IIN2 IN2 VIN2 IIN3 IN3 IDEN VIN3 IOUT1 OUT1 VDEN DEN DSEL0 IDSEL1 VDSEL0 IOUT2 OUT2 IDSEL0 IIS VDSEL1 DSEL1 IOUT3 OUT3 IS VIS GND IGND VOUT0 VOUT1 voltage and current convention.vsd Figure 4 Datasheet Voltage and current definition 8 Rev. 1.00 2019-03-09 PROFET™+ 24V BTT6200-4ESA Electrical characteristics and parameters 4 Electrical characteristics and parameters 4.1 Absolute maximum ratings Table 3 Absolute maximum ratings1) TJ = -40°C to 150°C; (unless otherwise specified) Parameter Symbol Values Min. Typ. Unit Note or Test Condition Number Max. Supply voltages Supply voltage VS -0.3 – 48 V – P_4.1.1 Reverse polarity voltage -VS(REV) 0 – 28 V t < 2 min TA = 25°C RL ≥ 47 Ω ZGND = Diode +27 Ω P_4.1.2 Supply voltage for short circuit protection VBAT(SC) 0 – 36 V RSupply = 10 mΩ P_4.1.3 LSupply = 5 µH RECU= 20 mΩ RCable= 16 mΩ/m LCable= 1 µH/m, l = 0 or 5 m See Chapter 6 and Figure 29 – – 65 V 2) R Supply voltage for Load dump VS(LD) protection I=2Ω P_4.1.12 RL = 47 Ω Short circuit capability nRSC1 – – 100 k cycles 3)_ P_4.1.4 Voltage at INPUT pins VIN -0.3 – – 6 7 V – t < 2 min P_4.1.13 Current through INPUT pins IIN -2 – 2 mA – P_4.1.14 Voltage at DEN pin VDEN -0.3 – – 6 7 V – t < 2 min P_4.1.15 Current through DEN pin IDEN -2 – 2 mA – P_4.1.16 Permanent short circuit IN pin toggles Input pins 1 2 3 Not subject to production test. Specified by design. VS(LD) is setup without the DUT connected to the generator per ISO 7637-1. Threshold limit for short circuit failures: 100 ppm. Please refer to the legal disclaimer for short-circuit capability at the end of this document. Datasheet 9 Rev. 1.00 2019-03-09 PROFET™+ 24V BTT6200-4ESA Electrical characteristics and parameters Table 3 Absolute maximum ratings1) (continued) TJ = -40°C to 150°C; (unless otherwise specified) Parameter Symbol Values Min. Typ. Unit Note or Test Condition Number Max. Voltage at DSEL pin VDSEL -0.3 – – 6 7 V – t < 2 min P_4.1.17 Current through DSEL pin IDSEL -2 – 2 mA – P_4.1.18 Voltage at IS pin VIS -0.3 – VS V – P_4.1.19 Current through IS pin IIS -25 – 50 mA – P_4.1.20 Load current | IL | – – IL(LIM) A – P_4.1.21 Power dissipation (DC) PTOT – – 1.8 W TA = 85°C TJ < 150°C P_4.1.22 Maximum energy dissipation Single pulse (one channel) EAS – – 20 mJ IL(0) = 1 A TJ(0) = 150°C VS = 28 V P_4.1.23 Voltage at power transistor VDS – – 65 V – P_4.1.26 I GND -20 -150 – 20 20 mA – t < 2 min P_4.1.27 Junction temperature TJ -40 – 150 °C – P_4.1.28 Storage temperature TSTG -55 – 150 °C – P_4.1.30 VESD -2 – 2 kV 4) HBM P_4.1.31 ESD susceptibility OUT pin vs. VESD GND and VS connected -4 – 4 kV 4) HBM P_4.1.32 ESD susceptibility VESD -500 – 500 V 5) CDM P_4.1.33 ESD susceptibility pin (corner pins) VESD -750 – 750 V 5) CDM P_4.1.34 Sense pin Power stage Currents Current through ground pin Temperatures ESD susceptibility ESD susceptibility (all pins) Notes: 1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 1 4 5 Not subject to production test. Specified by design. ESD susceptibility Human Body Model "HBM" according to AEC Q100-002 ESD susceptibility Charged Device Model "CDM" according to AEC Q100-011 Datasheet 10 Rev. 1.00 2019-03-09 PROFET™+ 24V BTT6200-4ESA Electrical characteristics and parameters 2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. 4.2 Functional range Table 4 Functional range TJ = -40°C to 150°C; (unless otherwise specified) Parameter Symbol Values Min. Typ. Unit Note or Test Condition Number Max. Nominal operating voltage VNOM 8 28 36 V – P_4.2.1 Extended operating voltage VS(OP) 5 – 48 V 7) V = 4.5 V IN P_4.2.2 RL = 47 Ω VDS < 0.5 V Minimum functional supply voltage VS(OP)_MIN Undervoltage shutdown VS(UV) 3.8 4.3 5 V 6) V IN = 4.5 V P_4.2.3 RL = 47 Ω From IOUT = 0 A to VDS < 0.5 V; see Figure 16 3 3.5 4.1 V 6) V IN = 4.5 V P_4.2.4 VDEN = 0 V RL = 47 Ω From VDS < 1 V; to IOUT = 0 A See Chapter 9.1 and Figure 16 Undervoltage shutdown hysteresis VS(UV)_HYS – 850 – mV 7) – P_4.2.13 Operating current One channel active IGND_1 – 2 4 mA VIN = 5.5 V VDEN = 5.5 V Device in RDS(ON) VS = 36 V See Chapter 9.1 P_4.2.5 7 6 Not subject to production test. Specified by design. Test at TJ = -40°C only. Datasheet 11 Rev. 1.00 2019-03-09 PROFET™+ 24V BTT6200-4ESA Electrical characteristics and parameters Table 4 Functional range (continued) TJ = -40°C to 150°C; (unless otherwise specified) Parameter Symbol Values Min. Typ. Unit Note or Test Condition Number Max. Operating current All channels active IGND_4 – 6 9 mA VIN = 5.5 V VDEN = 5.5 V Device in RDS(ON) VS = 36 V See Chapter 9.1 P_4.2.6 Standby current for whole device with load (ambient) IS(OFF) – 0.1 0.5 µA 6) V P_4.2.7 Maximum standby current for whole device with load IS(OFF)_150 – – 20 µA VS = 36 V VOUT = 0 V VIN floating VDEN floating TJ = 150 °C P_4.2.10 Standby current for whole device with load, diagnostic active IS(OFF_DEN) – 0.6 – mA 7) V = 36 V S P_4.2.8 Note: S = 36 V VOUT = 0 V VIN floating VDEN floating TJ ≤ 85 °C VOUT = 0 V VIN floating VDEN = 5.5 V Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. 4.3 Thermal resistance Table 5 Thermal resistance Parameter Symbol Values Min. Typ. Unit Note or Test Condition Number Max. Junction to case RthJC – 3 – K/W 8) P_4.3.1 Junction to ambient All channels active RthJA – 28 – K/W 8)9) P_4.3.2 6 7 8 Test at TJ = -40°C only. Not subject to production test. Specified by design. Not subject to production test. Specified by design. Datasheet 12 Rev. 1.00 2019-03-09 PROFET™+ 24V BTT6200-4ESA Electrical characteristics and parameters 4.3.1 PCB set-up 70µm 1.5mm 35µm 0.3mm PCB 2s2p.vsd Figure 5 2s2p PCB cross section Figure 6 PC board top and bottom view for thermal simulation with 600 mm2 cooling area 9 Specified Rthja value is according to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board with 1 W power dissipation equally dissipated for all channel at TA = 105°C ; The product (chip + package) was simulated on a 76.4 mm x 114.3 mm x 1.5 mm board with 2 inner copper layers (2 x 70 μm Cu, 2 x 35 μm Cu). Where applicable, a thermal via array under the exposed pad contacts the first inner copper layer. Please refer to Figure 5 . Datasheet 13 Rev. 1.00 2019-03-09 PROFET™+ 24V BTT6200-4ESA Electrical characteristics and parameters 4.3.2 Thermal impedance BTT6200-4ESA 100 ZthJA (K/W) TAMBIENT = 105°C 10 1 2s2p 1s0p - 600 mm² 1s0p - 300 mm² 1s0p - footprint 0,1 0,0001 Figure 7 0,001 0,01 0,1 1 Time (s) 10 100 1000 Typical thermal impedance. 2s2p PCB set-up according to Figure 5 BTT6200-4ESA 120 1s0p - Tambient = 105°C 110 100 RthJA (K/W) 90 80 70 60 50 40 30 0 Figure 8 Datasheet 100 200 300 Cooling area (mm²) 400 500 600 Typical thermal resistance. PCB set-up 1s0p 14 Rev. 1.00 2019-03-09 PROFET™+ 24V BTT6200-4ESA Power stage 5 Power stage The power stages are built using an N-channel vertical power MOSFET (DMOS) with charge pump. 5.1 Output ON-state resistance The ON-state resistance RDS(ON) depends on the supply voltage as well as the junction temperature TJ. Figure 9 shows the dependencies in terms of temperature and supply voltage for the typical ON-state resistance. The behavior in reverse polarity is described in Chapter 6.4. Figure 9 Typical ON-state resistance A high signal at the input pin (see Chapter 8) causes the power DMOS to switch ON with a dedicated slope, which is optimized in terms of EMC emission. 5.2 Turn ON/OFF characteristics with resistive load Figure 10 shows the typical timing when switching a resistive load. IN VIN_H VIN_L t VOUT dV/dt ON dV/dt OFF t ON 90% VS tOFF_delay 70% VS 30% VS 10% VS tON_delay tOFF t Switching times.vsd Figure 10 Datasheet Switching a resistive load timing 15 Rev. 1.00 2019-03-09 PROFET™+ 24V BTT6200-4ESA Power stage 5.3 Inductive load 5.3.1 Output clamping When switching OFF inductive loads with high side switches, the voltage VOUT drops below ground potential, because the inductance intends to continue driving the current. To prevent the destruction of the device by avalanche due to high voltages, there is a voltage clamp mechanism ZDS(AZ) implemented that limits negative output voltage to a certain level (VS - VDS(AZ)). Please refer to Figure 11 and Figure 12 for details. Nevertheless, the maximum allowed load inductance is limited. VS ZDS(AZ) INx VDS LOGIC IL VBAT GND VIN OUTx L, RL ZGND VOUT Output_clamp.vsd Figure 11 Output clamp IN t VOUT VS t VS-VDS(AZ) IL t Switching an inductance.vsd Figure 12 Datasheet Switching an inductive load timing 16 Rev. 1.00 2019-03-09 PROFET™+ 24V BTT6200-4ESA Power stage 5.3.2 Maximum load inductance During demagnetization of inductive loads, energy has to be dissipated in the BTT6200-4ESA. This energy can be calculated with following equation: E = V DS AZ ⋅ L RL ⋅ V S − V DS AZ RL ⋅ ln 1 − RL ⋅ IL V S − V DS AZ + IL Equation 1 The following equation simplifies under the assumption of RL = 0 Ω. E= VS 1 ⋅ L ⋅ I2 ⋅ 1 − 2 V S − V DS AZ Equation 2 The energy, which is converted into heat, is limited by the thermal design of the component. See Figure 13 for the maximum allowed energy dissipation as a function of the load current. Figure 13 Maximum energy dissipation single pulse, TJ_START = 150°C; VS = 28 V 5.4 Inverse current capability In case of inverse current, meaning a voltage VINV at the OUTput higher than the supply voltage VS, a current IINV will flow from output to VS pin via the body diode of the power transistor (please refer to Figure 14). The output stage follows the state of the IN pin, except if the IN pin goes from OFF to ON during inverse. In that particular case, the output stage is kept OFF until the inverse current disappears. Nevertheless, the current IINV should not be higher than IL(INV). If the channel is OFF, the diagnostic will detect an open load at OFF. If the affected channel is ON, the diagnostic will detect open load at ON (the overtemperature signal is inhibited). At the appearance of VINV, a parasitic diagnostic can be observed. After, the diagnosis is valid and reflects the output state. At VINV vanishing, the diagnosis is valid and reflects the output state. During inverse current, no protection functions are available. Datasheet 17 Rev. 1.00 2019-03-09 PROFET™+ 24V BTT6200-4ESA Power stage VBAT VS Gate driver Device logic INV Comp. VINV IL(INV) OUT GND ZGND inverse current.vsd Figure 14 Inverse current circuitry 5.5 Electrical characteristics - power stage Table 6 Electrical characteristics: Power stage VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified). Typical values are given at VS = 28 V, TJ = 25°C Parameter Symbol Values Min. Typ. Unit Note or Test Condition Number Max. ON-state resistance per channel RDS(ON)_150 300 360 400 mΩ IL = IL4 = 1 A VIN = 4.5 V TJ = 150°C See Figure 9 P_5.5.1 ON-state resistance per channel RDS(ON)_25 – 200 – mΩ 10)T P_5.5.21 Nominal load current One channel active IL(NOM)1 – 1.5 – A 10) T Nominal load current All channels active IL(NOM)2 J = 25 °C A = 85°C P_5.5.2 TJ < 150°C – 1 – A Output voltage drop limitation at VDS(NL) small load currents – 10 22 mV IL = IL0 = 25 mA See Chapter 9.3 P_5.5.4 Drain to source clamping voltage VDS(AZ) VDS(AZ) = [VS - VOUT] 65 70 75 V IDS = 5 mA See Figure 12 See Chapter 9.1 P_5.5.5 Output leakage current per channel TJ ≤ 85 °C – 0.1 0.5 µA 11) V floating IN P_5.5.6 10 11 IL(OFF) P_5.5.3 VOUT = 0 V TJ ≤ 85°C Not subject to production test, specified by design. Test at TJ = -40°C only Datasheet 18 Rev. 1.00 2019-03-09 PROFET™+ 24V BTT6200-4ESA Power stage Table 6 Electrical characteristics: Power stage (continued) VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified). Typical values are given at VS = 28 V, TJ = 25°C Parameter Symbol Values Min. Typ. Unit Note or Test Condition Number Max. Output leakage current per channel TJ = 150 °C IL(OFF)_150 – 1 5 µA VIN floating VOUT = 0 V TJ = 150°C P_5.5.8 Inverse current capability IL(INV) – 1 – A 10)V S< VOUTX See Figure 14 P_5.5.9 Slew rate 30% to 70% VS dV/dtON 0.3 0.8 1.3 V/µs P_5.5.11 Slew rate 70% to 30% VS -dV/dtOFF 0.3 0.8 1.3 V/µs RL = 47 Ω VS = 28 V See Figure 10 See Chapter 9.1 Slew rate matching dV/dtON - dV/dtOFF ΔdV/dt -0.15 0 0.15 V/µs P_5.5.13 Turn-ON time to VOUT = 90% VS tON 20 70 150 µs P_5.5.14 Turn-OFF time to VOUT = 10% VS tOFF 20 70 150 µs P_5.5.15 Turn-ON / OFF matching tOFF - tON ΔtSW -50 0 50 µs P_5.5.16 Turn-ON time to VOUT = 10% VS tON_delay – 35 70 µs P_5.5.17 Turn-OFF time to VOUT = 90% VS tOFF_delay – 35 70 µs P_5.5.18 Switch ON energy EON – 190 – µJ 10) R = 47 Ω L P_5.5.12 P_5.5.19 VOUT = 90% VS VS = 36 V See Chapter 9.1 Switch OFF energy EOFF – 210 – µJ 10) R = 47 Ω L P_5.5.20 VOUT = 10% VS VS = 36 V See Chapter 9.1 10 Not subject to production test, specified by design. Datasheet 19 Rev. 1.00 2019-03-09 PROFET™+ 24V BTT6200-4ESA Protection functions 6 Protection functions The device provides integrated protection functions. These functions are designed to prevent the destruction of the IC from fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are designed for neither continuous nor repetitive operation. 6.1 Loss of ground protection In case of loss of the module ground and the load remains connected to ground, the device protects itself by automatically turning OFF (when it was previously ON) or remains OFF, regardless of the voltage applied on IN pins. In case of loss of device ground, it’s recommended to use input resistors between the microcontroller and the BTT6200-4ESA to ensure switching OFF of channels. In case of loss of module or device ground, a current (IOUT(GND)) can flow out of the DMOS. Figure 15 sketches the situation. ZGND is recommended to be a resistor in series to a diode . VS ZIS(AZ) ZD(AZ) IS RSENSE VBAT ZDS(AZ) DSEL0 RDSEL DSEL1 RDSEL DEN RDEN LOGIC INx RIN IOUT(GND) OUTx ZDESD GND RIS IS ZGND Loss of ground protection.vsd Figure 15 Loss of ground protection with external components 6.2 Undervoltage protection Between VS(UV) and VS(OP), the undervoltage mechanism is triggered. VS(OP) represents the minimum voltage where the switching ON and OFF can takes place. VS(UV) represents the minimum voltage the switch can hold ON. If the supply voltage is below the undervoltage mechanism VS(UV), the device is OFF (turns OFF). As soon as the supply voltage is above the undervoltage mechanism VS(OP), then the device can be switched ON. When the switch is ON, protection functions are operational. Nevertheless, the diagnosis is not guaranteed until VS is in the VNOM range. Figure 16 illustrates the undervoltage mechanism. Datasheet 20 Rev. 1.00 2019-03-09 PROFET™+ 24V BTT6200-4ESA Protection functions VOUT undervoltage behavior.vsd VS(UV) Figure 16 Undervoltage behavior 6.3 Overvoltage protection VS(OP) VS There is an integrated clamp mechanism for overvoltage protection (ZD(AZ)). To guarantee this mechanism operates properly in the application, the current in the Zener diode has to be limited by a ground resistor. Figure 17 shows a typical application to withstand overvoltage issues. In case of supply voltage higher than VS(AZ), the power transistor switches ON and in addition the voltage across the logic section is clamped. As a result, the internal ground potential rises to VS - VS(AZ). Due to the ESD Zener diodes, the potential at pin INx, DSELx, and DEN rises almost to that potential, depending on the impedance of the connected circuitry. In the case the device was ON, prior to overvoltage, the BTT6200-4ESA remains ON. In the case the BTT6200-4ESA was OFF, prior to overvoltage, the power transistor can be activated. In the case the supply voltage is in above VBAT(SC) and below VDS(AZ), the output transistor is still operational and follows the input. If at least one channel is in the ON state, parameters are no longer guaranteed and lifetime is reduced compared to the nominal supply voltage range. This especially impacts the short circuit robustness, as well as the maximum energy EAS capability. ZGND is recommended to be a resistor in series to a diode. Datasheet 21 Rev. 1.00 2019-03-09 PROFET™+ 24V BTT6200-4ESA Protection functions ISOV ZIS(AZ) VS ZD(AZ) IS RSENSE VBAT ZDS(AZ) DSEL0 RDSEL DSEL1 RDSEL DEN RDEN LOGIC INx RIN OUTx ZDESD RIS GND ZGND Overvoltage protection.vsd Figure 17 Overvoltage protection with external components 6.4 Reverse polarity protection In case of reverse polarity, the intrinsic body diodes of the power DMOS causes power dissipation. The current in this intrinsic body diode is limited by the load itself. Additionally, the current into the ground path and the logic pins has to be limited to the maximum current described in Chapter 4.1 with an external resistor. Figure 18 shows a typical application. RGND resistor is used to limit the current in the Zener protection of the device. Resistors RDSEL, RDEN, and RIN are used to limit the current in the logic of the device and in the ESD protection stage. RSENSE is used to limit the current in the sense transistor which behaves as a diode. The recommended value for RDEN = RDSEL = RIN = RSENSE = 10 kΩ. It is recommended to use a resistor in series to a diode in the ground path. During reverse polarity, no protection functions are available. Datasheet 22 Rev. 1.00 2019-03-09 PROFET™+ 24V BTT6200-4ESA Protection functions Microcontroller protection diodes ZIS(AZ) VS ZD(AZ) IS RSENSE ZDS(AZ) VDS(REV) DSEL0 RDSEL0 DSEL1 RDSEL1 DEN RDEN LOGIC INx RIN -VS(REV) IN0 OUTx ZDESD GND IS RGND L,RL RIS D Reverse Polarity.vsd Figure 18 Reverse polarity protection with external components 6.5 Overload protection In case of overload, such as high inrush of cold lamp filament, or short circuit to ground, the BTT6200-4ESA offers several protection mechanisms. 6.5.1 Current limitation At first step, the instantaneous power in the switch is maintained at a safe value by limiting the current to the maximum current allowed in the switch IL(SC). During this time, the DMOS temperature increases, which affects the current flowing in the DMOS. 6.5.2 Temperature limitation in the power DMOS Each channel incorporates both an absolute (TJ(SC)) and a dynamic (TJ(SW)) temperature sensor. Activation of either sensor will cause an overheated channel to switch OFF to prevent destruction. Any protective switch OFF latches the output until the temperature has reached an acceptable value which is depicted in Figure 19. No retry strategy is implemented such that when the DMOS temperature has cooled down enough, the switch is switched ON again. Only the IN pin signal toggling can re-activate the power stage (latch behavior). Datasheet 23 Rev. 1.00 2019-03-09 PROFET™+ 24V BTT6200-4ESA Protection functions IN t IL LOAD CURRENT LIMITATION PHASE IL(x)SC LOAD CURRENT BELOW LIMITATION PHASE IL(NOM) t TDMOS TJ(SC) Temperature protection phase TJ(SW) TA tsIS(FAULT) t tsIS(OC_blank) IIS IIS(FAULT) IL(NOM) / kILIS 0A VDEN t tsIS(OFF) 0V t Hard start.vsd Figure 19 Note: Datasheet Overload protection For better understanding, the time scale is not linear. The real timing of this drawing is application dependant and cannot be described. 24 Rev. 1.00 2019-03-09 PROFET™+ 24V BTT6200-4ESA Protection functions 6.6 Electrical characteristics for the protection functions Table 7 Electrical Characteristics: Protection VS = 8 V to 36 V, TJ = -40°C to 150°C, (unless otherwise specified). Typical values are given at VS = 28 V, TJ = 25°C Parameter Symbol Values Min. Typ. Unit Note or Test Condition Number mA 12)13)V = 28 V S P_6.6.1 Max. Loss of ground Output leakage current while GND disconnected IOUT(GND) – 0.1 – See Figure 15 Reverse polarity Drain source diode voltage during reverse polarity VDS(REV) 200 650 700 mV 14)I L=-1A P_6.6.2 See Figure 18 Overvoltage Overvoltage protection VS(AZ) 65 70 75 V ISOV = 5 mA See Figure 17 P_6.6.3 Load current limitation IL5(SC) 9 11 14 A 15)V P_6.6.4 Dynamic temperature increase while switching ΔTJ(SW) – 80 – K 16)See Figure 19 P_6.6.8 Thermal shutdown temperature TJ(SC) 150 170 200 °C 14)See Figure 19 P_6.6.10 Thermal shutdown hysteresis – 30 – K 13) P_6.6.11 Overload condition 12 13 14 15 16 ΔTJ(SC) DS = 5 V See Figure 19 and Chapter 9.3 All pins are disconnected except VS and OUT. Not Subject to production test, specified by design. Test at TJ = +150°C only. Test at TJ = -40°C only. Functional test only Datasheet 25 Rev. 1.00 2019-03-09 PROFET™+ 24V BTT6200-4ESA Diagnostic functions 7 Diagnostic functions For diagnosis purposes, the BTT6200-4ESA provides a combination of digital and analog signals at pin IS. These signals are called SENSE. In case the diagnostic is disabled via DEN, pin IS becomes high impedance. In case DEN is activated, the sense current of the channel X is enabled/disabled via associated pins DSEL0 and DSEL1. Table 8 gives the truth table. Table 8 Diagnostic truth table DEN DSEL1 DSEL0 IS 0 don't care don't care Z Z Z Z 1 0 0 IIS(0) 0 0 0 1 0 1 0 IIS(1) 0 0 1 1 0 0 0 IIS(2) 0 1 1 1 0 0 0 IIS(3) 7.1 IS pin The BTT6200-4ESA provides a sense signal called IIS at pin IS. As long as no “hard” failure mode occurs (short circuit to GND / current limitation / overtemperature / excessive dynamic temperature increase or open load at OFF) a proportional signal to the load current (ratio kILIS = IL / IIS) is provided. The complete IS pin and diagnostic mechanism is described in Figure 20. The accuracy of the sense current depends on temperature and load current. The sense pin multiplexes the currents IIS(0), IIS(1), IIS(2) and IIS(3) via the pins DSEL0 and DSEL1. Thanks to this multiplexing, the matching between kILISCHANNEL0, kILISCHANNEL1, kILISCHANNEL2 and kILISCHANNEL3 is optimized. Due to the ESD protection, in connection to VS, it is not recommended to share the IS pin with other devices if these devices are using another battery feed. The consequence is that the unsupplied device would be fed via the IS pin of the supplied device. VS IIS0 = IL0 / k ILIS IIS(FAULT) IIS1 = IL1 / kILIS IIS2 = I L2 / kILIS IIS3 = IL3 / kILIS ZIS(AZ) 0 0 IS 0 FAULT 1 1 1 0 DEN FAULT 1 DSEL1 DSEL0 Figure 20 Datasheet Sense schematic.vsd Diagnostic block diagram 26 Rev. 1.00 2019-03-09 PROFET™+ 24V BTT6200-4ESA Diagnostic functions 7.2 SENSE signal in different operating modes Table 9 gives a quick reference for the state of the IS pin during device operation. Table 9 Sense signal, function of operation mode Operation mode Input level channel x DEN17) Output level Diagnostic output Normal operation OFF H Z Z Short circuit to GND ~GND Z Overtemperature Z Z Short circuit to VS VS IIS(FAULT) Open load < VOL(OFF)18) Z > VOL(OFF)18) IIS(FAULT) ~VINV IIS(FAULT) ~VS IIS = IL / kILIS Current limitation
BTT6200-4ESA 价格&库存

很抱歉,暂时无法提供与“BTT6200-4ESA”相匹配的价格&库存,您可以联系我们找货

免费人工找货
BTT6200-4ESA
    •  国内价格
    • 1+22.49100
    • 10+21.65800
    • 100+19.15900
    • 500+18.65920

    库存:0

    BTT6200-4ESA
      •  国内价格
      • 1+15.21450

      库存:0

      BTT6200-4ESA
        •  国内价格
        • 1+18.91080
        • 10+16.32960
        • 30+14.72040
        • 100+13.06800

        库存:0

        BTT6200-4ESA
          •  国内价格
          • 3000+12.20400

          库存:0