0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SKB15N60

SKB15N60

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    TO263-3

  • 描述:

    IGBT, 31A, 600V, N-CHANNEL

  • 数据手册
  • 价格&库存
SKB15N60 数据手册
SKB15N60 Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode C  75% lower Eoff compared to previous generation combined with low conduction losses  Short circuit withstand time – 10 s  Designed for frequency inverters for washing machines, fans, pumps and vacuum cleaners  NPT-Technology for 600V applications offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability  Very soft, fast recovery anti-parallel Emitter Controlled Diode  Pb-free lead plating; RoHS compliant 1  Qualified according to JEDEC for target applications  Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type SKB15N60 G E PG-TO263-3-2 VCE IC VCE(sat) Tj Marking Package 600V 15A 2.3V 150C K15N60 PG-TO263-3-2 Maximum Ratings Parameter Symbol Collector-emitter voltage VCE DC collector current IC Value 600 Unit V A TC = 25C 31 TC = 100C 15 Pulsed collector current, tp limited by Tjmax ICpul s 62 Turn off safe operating area - 62 VCE  600V, Tj  150C IF Diode forward current TC = 25C 31 TC = 100C 15 Diode pulsed current, tp limited by Tjmax IFpul s 62 Gate-emitter voltage VGE 20 V tSC 10 s Ptot 139 W -55...+150 C 260 °C 2 Short circuit withstand time VGE = 15V, VCC  600V, Tj  150C Power dissipation TC = 25C Operating junction and storage temperature Tj , Tstg Soldering temperature (reflow soldering, MSL1) Ts 1 2 J-STD-020 and JESD-022 Allowed number of short circuits: 1s. 1 Rev. 2.3 12.06.2013 SKB15N60 Thermal Resistance Parameter Symbol Conditions Max. Value Unit RthJC 0.9 K/W RthJCD 1.7 RthJA 40 Characteristic IGBT thermal resistance, junction – case Diode thermal resistance, junction – case 1) SMD version, device on PCB Electrical Characteristic, at Tj = 25 C, unless otherwise specified Parameter Symbol Conditions Value min. Typ. max. 600 - - 1.7 2 2.4 - 2.3 2.8 1.2 1.4 1.8 T j =1 5 0 C - 1.25 1.65 3 4 5 T j =2 5 C - - 40 T j =1 5 0 C - - 2000 Unit Static Characteristic Collector-emitter breakdown voltage V ( B R ) C E S V G E = 0V , I C = 5 00 A Collector-emitter saturation voltage VCE(sat) V G E = 15 V , I C = 15 A T j =2 5 C T j =1 5 0 C VF Diode forward voltage V V G E = 0V , I F = 1 5 A T j =2 5 C Gate-emitter threshold voltage VGE(th) I C = 40 0 A , V C E = V G E Zero gate voltage collector current ICES V C E = 60 0 V, V G E = 0 V A Gate-emitter leakage current IGES V C E = 0V , V G E =2 0 V - - 100 nA Transconductance gfs V C E = 20 V , I C = 15 A 3 10.9 - S Input capacitance Ciss V C E = 25 V , - 800 960 pF Output capacitance Coss V G E = 0V , - 84 101 Reverse transfer capacitance Crss f= 1 MH z - 52 62 Gate charge QGate V C C = 48 0 V, I C =1 5 A - 76 99 nC - 7 - nH - 150 - A Dynamic Characteristic V G E = 15 V LE Internal emitter inductance measured 5mm (0.197 in.) from case Short circuit collector current 2) IC(SC) V G E = 15 V ,t S C  10 s V C C  6 0 0 V, T j  1 5 0 C 1) 2 Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm (one layer, 70m thick) copper area for collector connection. PCB is vertical without blown air. 2) Allowed number of short circuits: 1s. 2 Rev. 2.3 12.06.2013 SKB15N60 Switching Characteristic, Inductive Load, at Tj=25 C Parameter Symbol Conditions Value min. typ. max. - 32 38 - 23 28 - 234 281 - 46 55 - 0.30 0.36 - 0.27 0.35 - 0.57 0.71 Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets T j =2 5 C , V C C = 40 0 V, I C = 1 5 A, V G E = 0/ 15 V , R G = 21 , 1) L  = 18 0 nH , 1) C  = 25 0 pF Energy losses include “tail” and diode reverse recovery. trr T j =2 5 C , - 279 - tS V R = 2 00 V , I F = 1 5 A, - 28 - tF d i F / d t =2 0 0 A/ s - 254 - ns mJ Anti-Parallel Diode Characteristic Diode reverse recovery time ns Diode reverse recovery charge Qrr - 390 - nC Diode peak reverse recovery current Irrm - 5.0 - A Diode peak rate of fall of reverse recovery current during t b d i r r /d t - 180 - A/s Switching Characteristic, Inductive Load, at Tj=150 C Parameter Symbol Conditions Value min. typ. max. - 31 38 - 23 28 - 261 313 - 54 65 - 0.45 0.54 - 0.41 0.53 - 0.86 1.07 Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets T j =1 5 0 C V C C = 40 0 V, I C = 1 5 A, V G E = 0/ 15 V , R G = 21 , 1) L  = 18 0 nH , 1) C  = 25 0 pF Energy losses include “tail” and diode reverse recovery. trr T j =1 5 0 C - 360 - tS V R = 2 00 V , I F = 1 5 A, - 40 - tF d i F / d t =2 0 0 A/ s - 320 - ns mJ Anti-Parallel Diode Characteristic Diode reverse recovery time ns Diode reverse recovery charge Qrr - 1020 - nC Diode peak reverse recovery current Irrm - 7.5 - A Diode peak rate of fall of reverse recovery current during t b d i r r /d t - 200 - A/s 1) Leakage inductance L  a nd Stray capacity C  due to dynamic test circuit in Figure E. 3 Rev. 2.3 12.06.2013 SKB15N60 100A 80A Ic tp=5s 70A 15s IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 60A 50A 40A TC=80°C 30A TC=110°C 20A 10A 0A 10Hz 10A 50s 200s 1A 1ms Ic DC 0.1A 100Hz 1kHz 10kHz 1V 100kHz f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj  150C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 21) 10V 100V 1000V VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25C, Tj  150C) 35A 140W 30A IC, COLLECTOR CURRENT Ptot, POWER DISSIPATION 120W 100W 80W 60W 40W 20A 15A 10A 5A 20W 0W 25°C 25A 50°C 75°C 100°C 0A 25°C 125°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj  150C) 50°C 75°C 100°C 125°C TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE  15V, Tj  150C) 4 Rev. 2.3 12.06.2013 50A 50A 45A 45A 40A 40A 35A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT SKB15N60 VGE=20V 30A 15V 13V 11V 9V 7V 5V 25A 20A 15A 20A 15A 5A 5A 2V 3V 4V 0A 0V 5V 50A 45A Tj=+25°C -55°C +150°C 40A 35A 30A 25A 20A 15A 10A 5A 0A 0V 2V 4V 6V 8V 10V 1V 2V 3V 4V 5V VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150C) VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25C) 15V 13V 11V 9V 7V 5V 25A 10A 1V VGE=20V 30A 10A 0A 0V IC, COLLECTOR CURRENT 35A VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 10V) 4.0V 3.5V IC = 30A 3.0V 2.5V IC = 15A 2.0V 1.5V 1.0V -50°C 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) 5 Rev. 2.3 12.06.2013 SKB15N60 td(off) 100ns t, SWITCHING TIMES t, SWITCHING TIMES td(off) tf td(on) 100ns tf td(on) tr 10ns 5A 10A tr 15A 20A 25A 10ns 0 30A IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150C, VCE = 400V, VGE = 0/+15V, RG = 21, Dynamic test circuit in Figure E) 20 40 60 RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150C, VCE = 400V, VGE = 0/+15V, IC = 15A, Dynamic test circuit in Figure E) VGE(th), GATE-EMITTER THRESHOLD VOLTAGE 5.5V t, SWITCHING TIMES td(off) 100ns tf tr td(on) 10ns 0°C 5.0V 4.5V 4.0V max. 3.5V typ. 3.0V 2.5V min. 2.0V 50°C 100°C 150°C -50°C Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 15A, RG = 2 1, Dynamic test circuit in Figure E) 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.4mA) 6 Rev. 2.3 12.06.2013 SKB15N60 1.8mJ 1.4mJ 1.2mJ 1.0mJ Eon* 0.8mJ Eoff 0.6mJ 0.4mJ Ets* 1.0mJ 0.8mJ Eoff 0.6mJ Eon* 0.4mJ 0.2mJ 0.2mJ 0.0mJ 0A *) Eon and Ets include losses due to diode recovery. 1.2mJ E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES 1.6mJ 1.4mJ Ets* *) Eon and Ets include losses due to diode recovery. 5A 10A 15A 20A 25A 30A 0.0mJ 0 35A IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150C, VCE = 400V, VGE = 0/+15V, RG = 21, Dynamic test circuit in Figure E) 20 40 60 80 RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150C, VCE = 400V, VGE = 0/+15V, IC = 15A, Dynamic test circuit in Figure E) 1.0mJ 0 Ets* 0.8mJ 0.6mJ Eon* 0.4mJ Eoff 0.2mJ ZthJC, TRANSIENT THERMAL IMPEDANCE E, SWITCHING ENERGY LOSSES *) Eon and Ets include losses due to diode recovery. 10 K/W D=0.5 0.2 -1 10 K/W 0.1 0.05 0.02 R,(1/W) 0.5321 0.2047 0.1304 0.0027 -2 10 K/W 0.01 , (s) 0.04968 2.58*10-3 2.54*10-4 3.06*10-4 -3 10 K/W R1 R2 single pulse C 1= 1/R 1 C 2= 2/R 2 -4 0.0mJ 0°C 50°C 100°C 10 K/W 1µs 150°C 10µs 100µs 1ms 10ms 100ms 1s tp, PULSE WIDTH Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 15A, RG = 2 1, Dynamic test circuit in Figure E) Figure 16. IGBT transient thermal impedance as a function of pulse width (D = tp / T) 7 Rev. 2.3 12.06.2013 SKB15N60 25V 1nF Ciss C, CAPACITANCE VGE, GATE-EMITTER VOLTAGE 20V 15V 120V 480V 10V Crss 5V 0V 0nC 25nC 50nC 75nC 10pF 0V 100nC QGE, GATE CHARGE Figure 17. Typical gate charge (IC = 15A) 20V 30V IC(sc), SHORT CIRCUIT COLLECTOR CURRENT 250A 20  s 15  s 10  s 5 s 0 s 10V 10V VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz) 25  s tsc, SHORT CIRCUIT WITHSTAND TIME Coss 100pF 11V 12V 13V 14V 200A 150A 100A 50A 0A 10V 15V VGE, GATE-EMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE = 600V, start at Tj = 25C) 12V 14V 16V 18V 20V VGE, GATE-EMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (VCE  600V, Tj = 150C) 8 Rev. 2.3 12.06.2013 SKB15N60 500ns trr, REVERSE RECOVERY TIME 400ns IF = 30A 300ns IF = 15A 200ns IF = 7.5A 100ns 0ns 100A/s 300A/s 500A/s 700A/s Qrr, REVERSE RECOVERY CHARGE 2000nC IF = 7.5A 500nC 1000A/ s 16A 800A/ s 12A IF = 15A IF = 7.5A 8A 4A 0A 100A/s 300A/s 500A/s 700A/s OF REVERSE RECOVERY CURRENT 20A IF = 30A 300A/s 500A/s 700A/s 900A/s d i F / d t, DIODE CURRENT SLOPE Figure 22. Typical reverse recovery charge as a function of diode current slope (VR = 200V, Tj = 125C, Dynamic test circuit in Figure E) d i r r /d t, DIODE PEAK RATE OF FALL Irr, REVERSE RECOVERY CURRENT d i F / d t, DIODE CURRENT SLOPE Figure 21. Typical reverse recovery time as a function of diode current slope (VR = 200V, Tj = 125C, Dynamic test circuit in Figure E) IF = 15A 1000nC 0nC 100A/s 900A/s IF = 30A 1500nC 600A/ s 400A/ s 200A/ s 0A/ s 100A/ s 900A/s d i F / d t, DIODE CURRENT SLOPE Figure 23. Typical reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125C, Dynamic test circuit in Figure E) 300A/ s 500A/ s 700A/ s 900A/ s diF/dt, DIODE CURRENT SLOPE Figure 24. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125C, Dynamic test circuit in Figure E) 9 Rev. 2.3 12.06.2013 SKB15N60 30A 2.0V I F = 30A VF, FORWARD VOLTAGE IF, FORWARD CURRENT 25A 20A 150°C 15A 100°C 10A 25°C 5A 0.5V 1.0V 1.5V 1.0V 2.0V ZthJCD, TRANSIENT THERMAL IMPEDANCE VF, FORWARD VOLTAGE Figure 25. Typical diode forward current as a function of forward voltage 0 I F = 15A -55°C 0A 0.0V 10 K/W 1.5V -40°C 0°C 40°C 80°C 120°C Tj, JUNCTION TEMPERATURE Figure 26. Typical diode forward voltage as a function of junction temperature D=0.5 0.2 0.1 R,(1/W) 0.311 0.271 0.221 0.584 0.314 0.05 -1 10 K/W 0.02 R1 0.01 , (s) 7.83*10-2 1.21*10-2 1.36*10-3 1.53*10-4 2.50*10-5 R2 single pulse C 1= 1/ R 1 C 2 =  2 /R 2 -2 10 K/W 1µs 10µs 100µs 1ms 10ms 100ms 1s tp, PULSE WIDTH Figure 27. Diode transient thermal impedance as a function of pulse width (D = tp / T) 10 Rev. 2.3 12.06.2013 SKB15N60 PG-TO263-3-2 11 Rev. 2.3 12.06.2013 SKB15N60 i,v tr r =tS +tF diF /dt Qr r =QS +QF tr r IF tS QS Ir r m tF QF 10% Ir r m dir r /dt 90% Ir r m t VR Figure C. Definition of diodes switching characteristics 1 2 r1 r2 n rn Tj (t) p(t) r1 r2 rn Figure A. Definition of switching times TC Figure D. Thermal equivalent circuit Figure E. Dynamic test circuit Leakage inductance L =180nH an d Stray capacity C  =250pF. Figure B. Definition of switching losses Published by Infineon Technologies AG, 12 Rev. 2.3 12.06.2013 SKB15N60 Published by Infineon Technologies AG 81726 Munich, Germany © 2013 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 13 Rev. 2.3 12.06.2013
SKB15N60 价格&库存

很抱歉,暂时无法提供与“SKB15N60”相匹配的价格&库存,您可以联系我们找货

免费人工找货