0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LT1001MJ8

LT1001MJ8

  • 厂商:

    LINER

  • 封装:

  • 描述:

    LT1001MJ8 - Precision Operational Amplifier - Linear Technology

  • 数据手册
  • 价格&库存
LT1001MJ8 数据手册
FEATURES s LT1001 Precision Operational Amplifier DESCRIPTIO The LT ®1001 significantly advances the state-of-theart of precision operational amplifiers. In the design, processing, and testing of the device, particular attention has been paid to the optimization of the entire distribution of several key parameters. Consequently, the specifications of the lowest cost, commercial temperature device, the LT1001C, have been dramatically improved when compared to equivalent grades of competing precision amplifiers. Essentially, the input offset voltage of all units is less than 50µV (see distribution plot below). This allows the LT1001AM/883 to be specified at 15µV. Input bias and offset currents, common-mode and power supply rejection of the LT1001C offer guaranteed performance which were previously attainable only with expensive, selected grades of other devices. Power dissipation is nearly halved compared to the most popular precision op amps, without adversely affecting noise or speed performance. A beneficial by-product of lower dissipation is decreased warm-up drift. Output drive capability of the LT1001 is also enhanced with voltage gain guaranteed at 10mA of load current. For similar performance in a dual precision op amp, with guaranteed matching specifications, see the LT1002. Shown below is a platinum resistance thermometer application. , LTC and LT are registered trademarks of Linear Technology Corporation. s s s s s s Guaranteed Low Offset Voltage LT1001AM 15µV max LT1001C 60µV max Guaranteed Low Drift LT1001AM 0.6µV/°C max LT1001C 1.0µV/°C max Guaranteed Low Bias Current LT1001AM 2nA max LT1001C 4nA max Guaranteed CMRR LT1001AM 114dB min LT1001C 110dB min Guaranteed PSRR LT1001AM 110dB min LT1001C 106dB min Low Power Dissipation LT1001AM 75mW max LT1001C 80mW max Low Noise 0.3µVP-P APPLICATIO S s s s s Thermocouple amplifiers Strain gauge amplifiers Low level signal processing High accuracy data acquisition TYPICAL APPLICATIO +15 R plat. † 1k = 0°C 1.2k** 10k* Linearized Platinum Resistance Thermometer with ± 0.025°C Accuracy Over 0 to 100°C 1MEG.** 330k* 20k 200 GAIN TRIM NUMBER OF UNITS 2 – LT1001 6 10k* 3 2 1µf – LT1001 6 200Ω LINEARITY TRIM OUTPUT 0 TO 10V = 0 TO 100°C 3 + + LM129 90k* 20k OFFSET TRIM 10k* 0 –60 –40 0 20 40 –20 INPUT OFFSET VOLTAGE (µV) 60 1001 TA02 * ULTRONIX 105A WIREWOUND ** 1% FILM † PLATINUM RTD 118MF (ROSEMOUNT, INC.) ‡ Trim sequence: trim offset (0°C = 1000.0Ω), trim linearity (35°C = 1138.7Ω), trim gain (100°C = 1392.6Ω). Repeat until all three points are fixed with ± 0.025°C. 1001 TA01 U U U Typical Distribution of Offset Voltage VS = ± 15V, TA = 25°C 954 UNITS FROM THREE RUNS 150 100 50 1001fb 1 LT1001 ABSOLUTE MAXIMUM RATINGS (Note 1) Supply Voltage ...................................................... ± 22V Differential Input Voltage ...................................... ± 30V Input Voltage ........................................................ ± 22V Output Short Circuit Duration ......................... Indefinite PACKAGE/ORDER INFORMATION ORDER PART NUMBER TOP VIEW OFFSET ADJUST 8 1 –IN 2 3 +IN 4 – + 5 NC 7 V+ 6 OUT TOP VIEW VOS TRIM 1 –IN 2 +IN 3 V– 4 N8 PACKAGE 8 PIN PLASTIC DIP – + VOS 8 TRIM 7 V+ 6 OUT 5 NC S8 PACKAGE 8 PIN PLASTIC SO LT1001AMH/883 LT1001MH LT1001ACH LT1001CH V– (CASE) H PACKAGE METAL CAN TJMAX = 150°C, θJA = 150°C/W, θjc = 45°C/W OBSOLETE PACKAGE Consider the N8 and S8 Packages for Alternate Source Consult LTC Marketing for parts specified with wider operating temperature ranges. ELECTRICAL CHARACTERISTICS SYMBOL PARAMETER VOS ∆VOS ∆Time IOS Ib en en AVOL CMRR PSRR Rin Input Offset Voltage Long Term Input Offset Voltage Stability Input Offset Current Input Bias Current Input Noise Voltage Input Noise Voltage Density Large Signal Voltage Gain Common Mode Rejection Ratio Power Supply Rejection Ratio Input Resistance Differential Mode The q denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VS = ± 15V, unless otherwise noted LT1001AM/883 LT1001AC MIN TYP MAX 7 15 10 0.2 0.3 ± 0.5 0.1Hz to 10Hz (Note 3) fO = 10Hz (Note 6) fO = 1000Hz (Note 3) RL ≥ 2kΩ, VO = ± 12V RL ≥ 1kΩ VO = ± 10V VCM = ± 13V VS = ± 3V to ± 18V 450 300 114 110 30 0.3 10.3 9.6 800 500 126 123 100 25 1.0 2.0 ± 2.0 0.6 18.0 11.0 400 250 110 106 15 LT1001M/LT1001C MIN TYP MAX 18 60 CONDITIONS LT1001AM/883 Note 2 LT1001AC Notes 3 and 4 2 U U W WW U W Operating Temperature Range LT1001AM/LT1001M (OBSOLETE) .. – 55°C to 150°C LT1001AC/LT1001C .............................. 0°C to 125°C Storage: All Devices.......................... – 65°C to 150°C Lead Temperature (Soldering, 10 sec.)................. 300°C ORDER PART NUMBER LT1001ACN8 LT1001CN8 LT1001CS8 S8 PART MARKING 1001 ORDER PART NUMBER LT1001AMJ8/883 LT1001MJ8 LT1001ACJ8 LT1001CJ8 TJMAX = 150°C, θJA = 130°C/W (N) TJMAX = 150°C, θJA = 150°C/W (S) J8 PACKAGE 8 PIN HERMETIC DIP TJMAX = 150°C, θJA = 100°C/W (J) OBSOLETE PACKAGE Consider the N8 and S8 Packages for Alternate Source UNITS µV µV/month nA nA µVp-p nV√Hz nV√Hz V/mV V/mV dB dB MΩ 1001fb 0.3 0.4 ± 0.7 0.3 10.5 9.8 800 500 126 123 80 1.5 3.8 ± 4.0 0.6 18.0 11.0 LT1001 The q denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VS = ± 15V, TA = 25°C, unless otherwise noted LT1001AM/883 LT1001AC MIN TYP MAX ± 13 ± 14 ± 13 ± 12 0.1 0.4 ± 14 ± 13.5 0.25 0.8 46 4 75 6 LT1001M/LT1001C MIN TYP MAX ± 13 ± 14 ± 13 ± 12 0.1 0.4 ± 14 ± 13.5 0.25 0.8 48 4 80 8 ELECTRICAL CHARACTERISTICS CONDITIONS RL ≥ 2kΩ RL ≥ 1kΩ SYMBOL PARAMETER Input Voltage Range VOUT SR GBW Pd Maximum Output Voltage Swing Slew Rate Gain-Bandwidth Product Power Dissipation UNITS V V V V/µs MHz mW mW RL ≥ 2kΩ (Note 5) (Note 5) No load No load, VS = ± 3V VS = ± 15V, – 55°C ≤ TA ≤ 125°C, unless otherwise noted SYMBOL PARAMETER VOS Input Offset Voltage ∆VOS ∆Temp IOS IB AVOL CMRR PSRR VOUT Pd Average Offset Voltage Drift Input Offset Current Input Bias Current Large Signal Voltage Gain Common Mode Rejection Ratio Power Supply Rejection Ratio Input Voltage Range Output Voltage Swing Power Dissipation RL ≥ 2kΩ No load RL ≥ 2kΩ, VO = ± 10V VCM = ± 13V VS = ± 3 to ± 18V CONDITIONS q q q q q q q q q q LT1001AM/883 MIN TYP MAX 30 60 0.2 0.8 ± 1.0 300 110 104 ± 13 700 122 117 ± 14 55 90 0.6 4.0 ± 4.0 MIN LT1001M TYP MAX 45 160 0.3 1.2 ± 1.5 1.0 7.6 ± 8.0 UNITS µV µV/°C nA nA V/mV dB dB V V 200 106 100 ± 13 ± 12.0 700 120 117 ± 14 ± 13.5 60 100 ± 12.5 ± 13.5 mW VS = ± 15V, 0°C ≤ TA ≤ 70°C, unless otherwise noted SYMBOL PARAMETER VOS Input Offset Voltage ∆VOS ∆Temp IOS IB AVOL CMRR PSRR VOUT Pd Average Offset Voltage Drift Input Offset Current Input Bias Current Large Signal Voltage Gain Common Mode Rejection Ratio Power Supply Rejection Ratio Input Voltage Range Output Voltage Swing Power Dissipation RL ≥ 2kΩ No load RL ≥ 2kΩ, VO = ± 10V VCM = ± 13V VS = ± 3V to ± 18V CONDITIONS q q q q q q q q q q MIN LT1001AC TYP MAX 20 60 0.2 0.5 ± 0.7 0.6 3.5 ± 3.5 MIN LT1001C TYP MAX 30 110 0.3 0.6 ± 1.0 1.0 5.3 ± 5.5 UNITS µV µV/°C nA nA V/mV dB dB V V 350 110 106 ± 13 750 124 120 ± 14 50 85 250 106 103 ± 13 ± 12.5 750 123 120 ± 14 ± 13.8 55 90 ± 12.5 ± 13.8 mW Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Note 2: Offset voltage for the LT1001AM/883 and LT1001AC are measured after power is applied and the device is fully warmed up. All other grades are measured with high speed test equipment, approximately 1 second after power is applied. The LT1001AM/883 receives 168 hr. burn-in at 125°C. or equivalent. Note 3: This parameter is tested on a sample basis only. Note 4: Long Term Input Offset Voltage Stability refers to the averaged trend line of VOS versus Time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in VOS during the first 30 days are typically 2.5µV. Note 5: Parameter is guaranteed by design. Note 6: 10Hz noise voltage density is sample tested on every lot. Devices 100% tested at 10Hz are available on request. 1001fb 3 LT1001 TYPICAL PERFORMANCE CHARACTERISTICS Typical Distribution of Offset Voltage Drift with Temperature 100 265 UNITS TESTED CHANGE IN OFFSET VOLTAGE (µV) 80 OFFSET VOLTAGE (µV) NUMBER OF UNITS 60 40 20 –1.0 –0.6 –0.2 0 +0.2 +0.6 +1.0 OFFSET VOLTAGE DRIFT (µV/°C) 1001 G01 0.1Hz to 10Hz Noise 100 OFFSET VOLTAGE CHANGE (µV) NOISE VOLTAGE 100nV/DIV VOLTAGE NOISE nV/√Hz 30 1/f CORNER 4Hz VOLTAGE 3 CURRENT NOISE pA/√Hz 0 2 6 4 TIME (SECONDS) Input Bias and Offset Current vs Temperature 1.4 INPUT BIAS AND OFFSET CURRENTS (nA) 1.0 0.8 0.6 BIAS CURRENT 0.4 0.2 INPUT BIAS CURRENT (nA) VS = ±15V VCM 0.5 0 –.5 INVERTING OR NON-INVERTING INPUT BIAS CURRENT (mA) 1.2 OFFSET CURRENT 50 25 75 0 TEMPERATURE (°C) 100 125 –50 –25 4 UW 8 1001 G04 Offset Voltage Drift withTemperature of Representative Units 50 40 30 20 10 0 –10 –20 –30 –40 –50 –50 –25 50 0 75 25 TEMPERATURE (°C) 100 125 LT1001 LT1001A VS = ±15V LT1001 Warm-Up Drift 4 VS = ±15V TA = 25°C LT1001A 3 METAL CAN (H) PACKAGE 2 DUAL-IN-LINE PACKAGE PLASTIC (N) OR CERDIP (J) 1 0 1 3 4 2 TIME AFTER POWER ON (MINUTES) 5 1001 G02 1001 G03 Noise Spectrum 10 TA = 25°C VS = ± 3 TO ± 18V 10 Long Term Stability of Four Representative Units 5 10 1.0 0 3 1/f CORNER 70Hz CURRENT 0.3 –5 10 1 1 10 100 FREQUENCY (Hz) 0.1 1000 1001 G05 –10 0 1 3 2 TIME (MONTHS) 4 5 1001 G06 Input Bias Current Over the Common Mode Range 1.5 1.0 Ib Input Bias Current vs Differential Input Voltage 30 VS = ± 15V TA = 25°C – + DEVICE WITH POSITIVE INPUT CURRENT VS = ± 15V TA = 25°C 20 10 DEVICE WITH NEGATIVE INPUT CURRENT –1.0 –1.5 –15 COMMON MODE INPUT RESISTANCE = 28V = 280GΩ 0.1nA 10 –5 0 5 –10 COMMON MODE INPUT VOLTAGE 15 IB ≈ 1 nA to VDIFF = 0.7V 0 0.1 0.3 1.0 3.0 10 ± DIFFERENTIAL INPUT (V) 30 1001 G09 1001 G07 1001 G08 1001fb LT1001 TYPICAL PERFORMANCE CHARACTERISTICS Open Loop Voltage Gain vs Temperature 140 OPEN LOOP VOLTAGE GAIN (V/V) OPEN LOOP VOLTAGE GAIN (dB) 1200k 1000k 800k 600k 400k 200k 0 –50 –25 VS = ± 15V, VO = ± 12V VS = ± 3V, VO = ± 1V VOLTAGE GAIN (dB) 80 60 40 20 0 VS = ± 15V 8 4 0 –4 GAIN 125°C GAIN 25°C & –55°C VS = ±15V 25°C PHASE MARGIN = 60° 140 160 180 200 220 2 1001 G12 VS = ± 3V 50 25 75 0 TEMPERATURE (°C) 100 125 –20 0.1 1 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) 1001 G11 –8 0.1 PHASE MARGIN –55°C = 63° 125°C = 57° 0.2 1 0.5 FREQUENCY (MHz) 1001 G10 Common Mode Limit vs Temperature V+ –0.2 –0.4 –0.6 –0.8 –1.0 Common Mode Rejection Ratio vs Frequency 140 COMMON MODE REJECTION (dB) 140 Power Supply Rejection Ratio vs Frequency POWER SUPPLY REJECTION (dB) 120 100 80 60 40 20 0 0.1 POSITIVE SUPPLY NEGATIVE SUPPLY VS = ± 15V ± 1V p-p TA = 25°C COMMON MODE LIMIT (V) REFERRED TO POWER SUPPLY V + = 1.2 to 4V V + = 12 to 18V 120 100 80 60 40 20 +1.0 +0.8 +0.6 +0.4 +0.2 V– –50 –25 V – = – 12 to –18V V – = – 1.2 to –4V VS = ± 15V TA = 25°C 0 50 25 75 TEMPERATURE °C 100 125 1 10 100 1k 10k FREQUENCY (Hz) 100k 1M 1 10 100 1k FREQUENCY (Hz) 10k 100k 1001 G13 1001 G14 1001 G15 Supply Current vs Supply Voltage 16 Output Swing vs Load Resistance 50 SHORT CIRCUIT CURRENT (mA) SOURCING SINKING 40 30 20 10 –10 –20 –30 –40 –50 Output Short-Circuit Current vs Time –55°C 25°C 125°C VS = ± 15V 125°C 25°C –55°C 2.0 NEGATIVE SWING –55°C SUPPLY CURRENT (mA) 1.5 125°C 1.0 OUTPUT SWING (V) 25°C 12 8 POSITIVE SWING 4 0.5 VS = ± 15V TA = 25°C ±3 ± 6 ± 9 ± 12 ± 15 ± 18 ± 21 SUPPLY VOLTAGE (V) 1001 G16 0 100 300 1000 3k LOAD RESISTANCE (Ω) 10k 1001 G17 0 1 3 4 2 TIME FROM OPUTPUT SHORT (MINUTES) 1001 G18 1001fb 5 PHASE SHIFT (DEG) UW Open Loop Voltage Gain Frequency Response 20 TA = 25°C 120 100 Gain, Phase Shift vs Frequency 80 PHASE 25°C 100 120 16 12 LT1001 TYPICAL PERFORMANCE CHARACTERISTICS Small Signal Transient Response 100 PERCENT OVERSHOOT AV = +1, CL = 50pF 1001 G19 Large Signal Transient Response 28 OUTPUT VOLTAGE, PEAK-TO-PEAK (V) 24 20 16 12 8 4 0 OUTPUT IMPEDANCE (Ω) APPLICATIONS INFORMATION Application Notes and Test Circuits The LT1001 series units may be inserted directly into OP-07, OP-05, 725, 108A or 101A sockets with or without removal of external frequency compensation or nulling components. The LT1001 can also be used in 741, LF156 or OP-15 applications provided that the nulling circuitry is removed. The LT1001 is specified over a wide range of power supply voltages from ± 3V to ± 18V. Operation with lower supplies is possible down to ± 1.2V (two Ni-Cad batteries). However, with ± 1.2V supplies, the device is stable only in closed loop gains of +2 or higher (or inverting gain of one or higher). 100Ω * 3 50k * –15V VO = 1000VOS 6 + – U W UW 1001 G22 Voltage Follower Overshoot vs Capacitive Load VS = ± 15V TA = 25°C VIN = 100mV RL > 50k Small Signal Transient Response 80 60 40 20 0 100 10,000 1000 CAPACITIVE LOAD (pF) 100,000 AV = +1, CL = 1000pF 1001 G20 1001 G21 Maximum Undistorted Output vs. Frequency 100 Closed Loop Output Impedance VS = ±15V TA = 25°C 10 AV = 1000 1 AV = + 1 0.1 IO = ± 1mA VS = ±15V TA = 25°C 1 10 1k 100 FREQUENCY (Hz) 10k 100k 1001 G24 0.01 0.001 1 10 100 FREQUENCY (kHz) 1000 1001 G23 U U Unless proper care is exercised, thermocouple effects caused by temperature gradients across dissimilar metals at the contacts to the input terminals, can exceed the inherent drift of the amplifier. Air currents over device leads should be minimized, package leads should be short, and the two input leads should be as close together as possible and maintained at the same temperature. Test Circuit for Offset Voltage and its Drift with Temperature *50k +15V 2 7 LT1001 4 * RESISTORS MUST HAVE LOW THERMOELECTRIC POTENTIAL. ** THIS CIRCUIT IS ALSO USED AS THE BURN-IN CONFIGURATION FOR THE LT1001, WITH SUPPLY VOLTAGES INCREASED TO ± 20V. 1001 F01 6 VO 1001fb LT1001 APPLICATIONS INFORMATION Offset Voltage Adjustment The input offset voltage of the LT1001, and its drift with temperature, are permanently trimmed at wafer test to a low level. However, if further adjustment of Vos is necessary, nulling with a 10k or 20k potentiometer will not degrade drift with temperature. Trimming to a value other than zero creates a drift of (Vos/300)µV/°C, e.g., if Vos is Improved Sensitivity Adjustment 7.5k 100kΩ VOLTAGE GAIN = 50,000 (PEAK-TO-PEAK NOISE MEASURED IN 10 SEC INTERVAL) 10Ω 1 7.5k 8 LT1001 7 6 OUTPUT INPUT 2.2µF TANTALUM + 3.9k 1N914 0.01µF 300Ω 200Ω* 2N5160 33Ω 1k 1.8k 2N3866 0.1µF RIN 1k INPUT 10k 15pF + 3 4 –15V 1001 F02 The device under test should be warmed up for three minutes and shielded from air currents. DC Stabilized 1000v/µsec Op Amp +15V 2N5486 200pF –15V 3 30k + LT1001 6 0.001µF 2 – 30k 470Ω 22Ω 390Ω 2N3904 0.01µF 2N3866 200pF 3.9k 15-60pF TUSONIX # 519-3188 200Ω* 1N914 300Ω 0.1µF –15V 1001 F04 1k Rf FULL POWER BANDWIDTH 8MHz + – 2 – 1k +15V U W U U adjusted to 300 µV, the change in drift will be 1 µV/°C. The adjustment range with a 10k or 20k pot is approximately ± 2.5mV. If less adjustment range is needed, the sensitivity and resolution of the nulling can be improved by using a smaller pot in conjunction with fixed resistors. The example below has an approximate null range of ± 100 µV. 0.1Hz to 10Hz Noise Test Circuit 0.1µF 2kΩ LT1001 4.7 µF + LT1001 4.3k 22µF SCOPE ×1 RIN = 1MΩ 110k DEVICE UNDER TEST – 100k 24.3k 0.1 µF 2.2µF 1001 F03 + 2N4440 22µF TANTALUM 2N3904 0.5Ω OUTPUT 0.5Ω 2N5160 2N3906 2N4440 22µF TANTALUM 1.2k – + *ADJUST FOR BEST SQUARE WAVE AT OUTPUT 1001fb 7 LT1001 TYPICAL APPLICATIONS Microvolt Comparator with TTL Output 5V 39.2Ω 1% 4.99k 1% 20k 5% 1.21M 1% NON INVERTING INPUT INVERTING INPUT 2 7 – LT1001 8 3 + 4 –5V POSITIVE FEEDBACK TO ONE OF THE NULLING TERMINALS CREATES 5µ TO 20µV OF HYSTERESIS. INPUT OFFSET VOLTAGE IS TYPICALLY CHANGED BY LESS THAN 5µV DUE TO THE FEEDBACK. Precision Current Source 5k 5V 3 5k R C RC ≈ 10 –4 6 2N3685 2N2219 10k VIN 0 to (V + – 1V) 2 3 + – 7 LT1001 VIN 2 0 to (V – + 1V) 4 1000pF V – = – 2 to –35V 15V 15V 8.2k 2k* 3 4.99k* 100Ω LT1001 2 6 2k 2N2219 IN4148 REFERENCE OUT TO MONITORING A/D CONVERTER + – LM329 350Ω BRIDGE * 301k 10k ZERO 2 – LT1001 6 3 + 8 U Photodiode Amplifier 100pF 5k 5% OUTPUT 500k 1% 2 λ 3 100pF 500k 1% – LT1001 6 OUTPUT 1V/µA 2N3904 IN914 + 1001 TA03 1001 TA04 Precision Current Sink V + = 2V to 35V V IOUT = IN R 6 2N3685 2N2219 10K + – 7 LT1001 4 –5V V IOUT = IN R R 1001 TA05 1001 TA06 Strain Gauge Signal Conditioner with Bridge Excitation 3 + LT1001 6 0V TO 10V OUT 340k* 2 – 1µF IN4148 2N2907 2k 100Ω 5W –15V *RN60C FILM RESISTORS 1.1k* GAIN TRIM 1001 TA07 1001fb LT1001 TYPICAL APPLICATIONS Large Signal Voltage Follower With 0.001% Worst Case Accuracy 12V TO 18V 2 RS 0k TO 10k 7 LT1001 3 6 OUTPUT –10V TO 10V – + INPUT –10V TO 10V 4 1001 TA08 –12V TO –18V The voltage follower is an ideal example illustrating the overall excellence of the LT1001. The contributing error terms are due to offset voltage, input bias current, voltage gain, common mode and power-supply +– * BATTERY –15V CIRCUIT USES TEMPERATURE DIFFERENCE BETWEEN BATTERY PACK MOUNTED THERMOCOUPLE AND AMBIENT THERMOCOUPLE TO SET BATTERY CHARGE CURRENT. PEAK CHARGING CURRENT IS 1 AMP. INPUT –10V TO 10V 10k 0.1% U rejections. Worst-case summation of guaranteed specifications is tabulated below. OUTPUT ACCURACY LT1001AM /883 Error Offset Voltage Bias Current Common Mode Rejection Power Supply Rejection Voltage Gain Worst-case Sum Percent of Full Scale (=20V) 25°C Max. 15µV 20µV 20µV 18µV 22µV 95µV 0.0005% LT1001C 25°C Max. 60µV 40µV 30µV 30µV 25µV 185µV 0.0009% LT1001AM /883 –55 to 125°C Max. 60µV 40µV 30µV 36µV 33µV 199µV 0.0010% LT1001C 0 to 70°C Max. 110µV 55µV 50µV 42µV 40µV 297µV 0.0015% Thermally Controlled NiCad Charger 15V 10V, 1.2A HR NICAD STACK 0.1µF –+ AMBIENT 620k 3 7 + LT1001 IN4001 6 2k 2 – 4 –15V 43k IN4148 2N6387 10Ω 1µF * SINGLE POINT GROUND THERMOCOUPLES ARE 40µV/°C CHROMEL-ALUMEL (TYPE K) * 0.6Ω 5W * 1001 TA09 Precision Absolute Value Circuit 10k 0.1% IN4148 LT1001 3 6 3 IN4148 10k 0.1% 1001 TA10 10k 0.1% 10k 0.1% 2 – + 2 – LT1001 6 OUTPUT 0V TO 10V + 1001fb 9 LT1001 TYPICAL APPLICATIONS Precision Power Supply with Two Outputs (1) 0V to 10V in 100µV STEPS (2) 0V to 100V in 1mV STEPS 22k* 43k* 100Ω (SELECT) 15V 100Ω 5W 2k LT1001 15V 3 8.2k VN-46 TRIAD TY-90 DIODES = SEMTECH # FF-15 VN-46 6 IN914 2N2219 OUTPUT 1 0V-10V 25mA 2 – + LM399 KVD 00000 – 99999 + 1 –15V KELVIN-VARLEY DIVIDER ESI#DP311 *JULIE RSCH. LABS #R-44 25k 680pF 2 – LT301A 6 33k 3 + 33k 15V 33k 1.8k 15V 5k BIPOLAR SYMMETRY IS EXCELLENT BECAUSE ONE DEVICE, Q2, SETS BOTH LIMITS INPUT Q4 100k** 100k** 2 10k* Q2 6 8 1 2 2N4393 Q1 30pF 3 IN914 15V 100k 15pF 2 4.7k 15pF 10k 2N4393 Q6 3.3k Q5 1k * 1% FILM ** RATIO MATCH 0.05% Q2, 3, 4, 5 CA 3096 TRANSISTOR ARRAY VSET VOUT VIN VSET 1001 TA12 – LM301A 3 100k + – LM301A 6 3 + 10 U + OUTPUT 2 0V-100V, 25mA 4µF 90k* 0.1µF + 2.2µF D CLK Q Q 2N6533 22µF 2k 10k* (SELECT) TRIM–100V 100Ω 2 – 6 IN914 LT1001 + 15Ω 15V 2N2907 + 3 74C74 CLAMP SET IN914 1001 TA11 Dead Zone Generator Q3 VSET DEAD ZONE CONTROL INPUT 0V TO 5V 47pF 2k 4.7k 10k* – LT1001 6 10k** 10k** 2 – LT1001 6 VOUT + 10k 3 + 4.7k IN914 –15V 1001fb LT1001 TYPICAL APPLICATIONS Instrumentation Amplifier with ± 300V Common Mode Range and CMRR > 150dB 15V 820Ω S1 INPUT 1µF** S2 (ACQUIRE) 01 OUT 74C906 IN IN OUT (READ) 02 A 74C04 74C86 C 4022 EN R 1 2 CLK 6 LM301A 1) ALL DIODES IN4148 2) S1–S4 OPTO MOS SWITCH OFM-1A, THETA-J CORP. 3) *FILM RESISTOR 4) **POLYPROPYLENE CAPACITORS 5) ADJUST R1 for 93 Hz AT TEST POINT A U 820Ω 3 10k 2 + LT1001 6 OUTPUT – 0.1µF + 330k* S3 0.2µF** 909Ω* 200Ω GAIN TRIM S4 2k* 2k* + – 10k 1k 3 2 5.6k* R1 0.1µF 1k LM329 A FLYING CAPACITOR CHARGED BY CLOCKED PHOTO DRIVEN FET SWITCHES CONVERTS A DIFFERENTIAL SIGNAL AT A HIGH COMMON MODE VOLTAGE TO A SINGLE ENDED SIGNAL AT THE LT1001 OUTPUT. 1001 TA13 1001fb 11 LT1001 SCHE ATIC DIAGRA V+ 7 6k 1 40k 8 40k 6k Q27 Q28 Q29 Q24 Q25 Q5 Q7 Q3 Q6 Q8 Q4 55pF 3k Q31 20pF Q33 20Ω + 3 500 Q1A Q1B Q2B Q2A – 2 Q10 500 T1 2k 180Ω Q9 V– 4 Q19 Q20 Q17 Q15 12 W Q11 Q13 Q14 Q12 1.5k 25k 30pF 3k Q21 Q16 Q34 Q26 OUT 6 20Ω Q22 2k Q18 Q23 Q32 Q30 8k 120Ω 240Ω 1001 SS W 1001fb LT1001 PACKAGE DESCRIPTION 0.040 (1.016) MAX SEATING PLANE 0.010 – 0.045* (0.254 – 1.143) 0.016 – 0.021** (0.406 – 0.533) 45°TYP 0.028 – 0.034 (0.711 – 0.864) 0.110 – 0.160 (2.794 – 4.064) INSULATING STANDOFF U H Package 8-Lead TO-5 Metal Can (.200 Inch PCD) (Reference LTC DWG # 05-08-1320) 0.335 – 0.370 (8.509 – 9.398) DIA 0.305 – 0.335 (7.747 – 8.509) 0.050 (1.270) MAX GAUGE PLANE 0.165 – 0.185 (4.191 – 4.699) REFERENCE PLANE 0.500 – 0.750 (12.700 – 19.050) 0.027 – 0.045 (0.686 – 1.143) PIN 1 0.200 (5.080) TYP *LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE AND 0.045" BELOW THE REFERENCE PLANE 0.016 – 0.024 **FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS (0.406 – 0.610) H8(TO-5) 0.200 PCD 1197 OBSOLETE PACKAGE 1001fb 13 LT1001 PACKAGE DESCRIPTION CORNER LEADS OPTION (4 PLCS) 0.045 – 0.068 (1.143 – 1.727) FULL LEAD OPTION 0.300 BSC (0.762 BSC) 0.008 – 0.018 (0.203 – 0.457) NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS 14 U J8 Package 8-Lead CERDIP (Narrow .300 Inch, Hermetic) (Reference LTC DWG # 05-08-1110) 0.005 (0.127) MIN 0.405 (10.287) MAX 8 7 6 5 0.023 – 0.045 (0.584 – 1.143) HALF LEAD OPTION 0.025 (0.635) RAD TYP 1 2 3 0.220 – 0.310 (5.588 – 7.874) 4 0.200 (5.080) MAX 0.015 – 0.060 (0.381 – 1.524) 0° – 15° 0.045 – 0.065 (1.143 – 1.651) 0.014 – 0.026 (0.360 – 0.660) 0.100 (2.54) BSC 0.125 3.175 MIN J8 1298 OBSOLETE PACKAGE 1001fb LT1001 PACKAGE DESCRIPTION 0.300 – 0.325 (7.620 – 8.255) 0.009 – 0.015 (0.229 – 0.381) ( +0.035 0.325 –0.015 8.255 +0.889 –0.381 *THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm) Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. U N8 Package 8-Lead PDIP (Narrow .300 Inch) (Reference LTC DWG # 05-08-1510) 0.400* (10.160) MAX 8 7 6 5 0.255 ± 0.015* (6.477 ± 0.381) 1 2 3 4 0.045 – 0.065 (1.143 – 1.651) 0.130 ± 0.005 (3.302 ± 0.127) 0.065 (1.651) TYP 0.125 (3.175) 0.020 MIN (0.508) MIN 0.018 ± 0.003 (0.457 ± 0.076) N8 1098 ) 0.100 (2.54) BSC 1001fb 15 LT1001 PACKAGE DESCRIPTION 0.010 – 0.020 × 45° (0.254 – 0.508) 0.008 – 0.010 (0.203 – 0.254) 0°– 8° TYP 0.014 – 0.019 (0.355 – 0.483) TYP *DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE **DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE 0.016 – 0.050 (0.406 – 1.270) 16 Linear Technology Corporation 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 q FAX: (408) 434-0507 q U S8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch) (Reference LTC DWG # 05-08-1610) 0.189 – 0.197* (4.801 – 5.004) 8 7 6 5 0.228 – 0.244 (5.791 – 6.197) 0.150 – 0.157** (3.810 – 3.988) SO8 1298 1 2 3 4 0.053 – 0.069 (1.346 – 1.752) 0.004 – 0.010 (0.101 – 0.254) 0.050 (1.270) BSC 1001fb LT/CPI 0102 1.5K REV B • PRINTED IN USA www.linear.com © LINEAR TECHNOLOGY CORPORATION 1983
LT1001MJ8 价格&库存

很抱歉,暂时无法提供与“LT1001MJ8”相匹配的价格&库存,您可以联系我们找货

免费人工找货