0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
NCV8406ASTT1G

NCV8406ASTT1G

  • 厂商:

    MURATA-PS(村田)

  • 封装:

    SOT223-3

  • 描述:

    NCV8406 是一款三端子保护低压侧智能分立器件。保护功能包括过电流、高温、ESD 和用于过电压保护的集成式漏极-门极箝位。此器件提供保护,适用于严苛的汽车环境。

  • 数据手册
  • 价格&库存
NCV8406ASTT1G 数据手册
NCV8406A, NCV8406B Self-Protected Low Side Driver with Temperature and Current Limit 65 V, 7.0 A, Single N−Channel NCV8406A/B is a three terminal protected Low-Side Smart Discrete device. The protection features include overcurrent, overtemperature, ESD and integrated Drain-to-Gate clamping for overvoltage protection. This device offers protection and is suitable for harsh automotive environments. www.onsemi.com VDSS (Clamped) RDS(on) TYP ID TYP (Limited) 65 V 210 mW 7.0 A Features • • • • • • • • • • Drain Short Circuit Protection Thermal Shutdown with Automatic Restart Over Voltage Protection Integrated Clamp for Inductive Switching ESD Protection dV/dt Robustness Analog Drive Capability (Logic Level Input) These Devices are Faster than the Rest of the NCV Devices NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS Compliant Overvoltage Protection Gate Input ESD Protection Temperature Limit Current Sense Source 4 Typical Applications • Switch a Variety of Resistive, Inductive and Capacitive Loads • Can Replace Electromechanical Relays and Discrete Circuits • Automotive / Industrial Current Limit 1 2 DRAIN 4 3 SOT−223 CASE 318E STYLE 3 4 1 2 MARKING DIAGRAM 3 DPAK CASE 369C AYW xxxxxG G 1 2 3 SOURCE GATE DRAIN YWW xxxxxG A = Assembly Location Y = Year W, WW = Work Week xxxxx = 8406A or 8406B G or G = Pb−Free Package (Note: Microdot may be in either location) ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet. © Semiconductor Components Industries, LLC, 2017 October, 2018 − Rev. 7 1 Publication Order Number: NCV8406/D NCV8406A, NCV8406B MAXIMUM RATINGS (TJ = 25°C unless otherwise noted) Rating Symbol Value Unit Drain−to−Source Voltage Internally Clamped VDSS 60 Vdc Gate−to−Source Voltage VGS "14 Vdc Drain Current Continuous ID Total Power Dissipation − SOT−223 Version @ TA = 25°C (Note 1) @ TA = 25°C (Note 2) PD Total Power Dissipation − DPAK Version @ TA = 25°C (Note 1) @ TA = 25°C (Note 2) PD Internally Limited 1.25 1.81 1.31 2.31 W W Thermal Resistance − SOT−223 Version Junction−to−Soldering Point Junction−to−Ambient (Note 1) Junction−to−Ambient (Note 2) RqJS RqJA RqJA 7.0 100 69 Thermal Resistance − DPAK Version Junction−to−Soldering Point Junction−to−Ambient (Note 1) Junction−to−Ambient (Note 2) RqJS RqJA RqJA 1.0 95 54 Single Pulse Inductive Load Switching Energy (Starting TJ = 25°C, VDD = 50 Vdc, VGS = 5.0 Vdc, IL = 2.1 Apk, L = 50 mH, RG = 25 W) EAS 110 mJ Load Dump Voltage (VGS = 0 and 10 V, RI = 2 W, RL = 7 W, td = 400 ms) VLD 75 V Operating Junction Temperature Range TJ −40 to 150 °C Storage Temperature Range Tstg −55 to 150 °C °C/W °C/W Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Surface mounted onto minimum pad size (100 sq/mm) FR4 PCB, 1 oz cu. 2. Mounted onto 1″ square pad size (700 sq/mm) FR4 PCB, 1 oz cu. + ID DRAIN IG + VDS GATE SOURCE VGS − − Figure 1. Voltage and Current Convention www.onsemi.com 2 NCV8406A, NCV8406B MOSFET ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit 60 65 70 V − 22 100 − 30 100 1.2 − 1.66 4.0 2.0 − − 185 210 − − 210 445 240 520 − 0.9 1.1 OFF CHARACTERISTICS V(BR)DSS Drain−to−Source Clamped Breakdown Voltage (VGS = 0 V, ID = 2 mA) Zero Gate Voltage Drain Current (VDS = 52 V, VGS = 0 V) IDSS Gate Input Current (VGS = 5.0 V, VDS = 0 V) IGSS mA mA ON CHARACTERISTICS Gate Threshold Voltage (VDS = VGS, ID = 150 mA) Threshold Temperature Coefficient VGS(th) Static Drain−to−Source On−Resistance (Note 3) (VGS = 10 V, ID = 2.0 A, TJ @ 25°C) RDS(on) Static Drain−to−Source On−Resistance (Note 3) (VGS = 5.0 V, ID = 2.0 A, TJ @ 25°C) (VGS = 5.0 V, ID = 2.0 A, TJ @ 150°C) RDS(on) Source−Drain Forward On Voltage (IS = 7.0 A, VGS = 0 V) VSD V −mV/°C mW mW V SWITCHING CHARACTERISTICS (Note 6) Turn−on Delay Time RL = 6.6 W, Vin = 0 to 10 V, VDD = 13.8 V, ID = 2.0 A, 10% Vin to 10% ID td(on) − 127 − ns Turn−on Rise Time RL = 6.6 W, Vin = 0 to 10 V, VDD = 13.8 V, ID = 2.0 A, 10% ID to 90% ID trise − 486 − ns Turn−off Delay Time RL = 6.6 W, Vin = 0 to 10 V, VDD = 13.8 V, ID = 2.0 A, 90% Vin to 90% ID td(off) − 1600 − ns Turn−off Fall Time RL = 6.6 W, Vin = 0 to 10 V, VDD = 13.8 V, ID = 2.0 A, 90% ID to 10% ID tfall − 692 − ns Slew Rate ON RL = 6.6 W, Vin = 0 to 10 V, VDD = 13.8 V, ID = 2.0 A, 70% to 50% VDD dVDS/dTon − 79 − V/ms Slew Rate OFF RL = 6.6 W, Vin = 0 to 10 V, VDD = 13.8 V, ID = 2.0 A, 50% to 70% VDD dVDS/dToff − 27 − V/ms VDS = 10 V, VGS = 5.0 V, TJ = 25°C (Note 5) VDS = 10 V, VGS = 5.0 V, TJ = 150°C (Notes 5, 6) VDS = 10 V, VGS = 10 V, TJ = 25°C (Notes 5) ILIM 5.0 3.5 6.5 7.0 4.5 8.5 9.5 6.0 10.5 A VGS = 5.0 V (Note 6) TLIM(off) 150 180 200 °C SELF PROTECTION CHARACTERISTICS (Note 4) Current Limit Temperature Limit (Turn−off) Thermal Hysteresis VGS = 5.0 V DTLIM(on) − 10 − °C VGS = 10 V (Note 6) TLIM(off) 150 180 200 °C Thermal Hysteresis VGS = 10 V DTLIM(on) − 20 − °C Input Current during Thermal Fault VDS = 0 V, VGS = 5.0 V, TJ = TJ > T(fault) (Note 6) VDS = 0 V, VGS = 10 V, TJ = TJ > T(fault) (Note 6) Ig(fault) − − 5.9 12.3 − mA 6000 500 − − − − Temperature Limit (Turn−off) ESD ELECTRICAL CHARACTERISTICS ESD Electro−Static Discharge Capability Human Body Model (HBM) Machine Model (MM) V Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: Pulse Width ≤ 300 ms, Duty Cycle ≤ 2%. 4. Fault conditions are viewed as beyond the normal operating range of the part. 5. Current limit measured at 380 ms after gate pulse. 6. Not subject to production test. www.onsemi.com 3 NCV8406A, NCV8406B TYPICAL PERFORMANCE CURVES 1000 TJstart = 25°C Emax (mJ) ILmax (A) 10 TJstart = 25°C 100 TJstart = 150°C TJstart = 150°C 1 10 10 100 L (mH) Figure 2. Single Pulse Maximum Switch−off Current vs. Load Inductance Figure 3. Single−Pulse Maximum Switching Energy vs. Load Inductance Emax (mJ) ILmax (A) 1000 TJstart = 25°C 1 TJstart = 150°C 1 TJstart = 25°C 100 TJstart = 150°C 10 10 1 10 TIME IN CLAMP (ms) TIME IN CLAMP (ms) Figure 4. Single Pulse Maximum Inductive Switch−off Current vs. Time in Clamp Figure 5. Single−Pulse Maximum Inductive Switching Energy vs. Time in Clamp 6V 12 7V 8V 9V 12 10 V −40°C VDS = 10 V 10 25°C 9 100°C ID (A) 5V 8 ID (A) 100 L (mH) 10 0.1 10 4V Ta = 25°C 6 6 150°C 3.3 V 4 3V 2 0 3 VGS = 2.5 V 0 5 10 0 15 0 1 2 3 4 VDS (V) VGS (V) Figure 6. On−state Output Characteristics Figure 7. Transfer Characteristics www.onsemi.com 4 5 NCV8406A, NCV8406B TYPICAL PERFORMANCE CURVES 500 600 ID = 2 A ID = 0.5 A 550 450 150°C 400 350 100°C 300 250 200 150 100 3 4 5 300 100 8 9 50 10 25°C, VGS = 5 V 200 −40°C 7 100°C, VGS = 10 V 250 150 6 100°C, VGS = 5 V 350 25°C 25°C, VGS = 10 V −40°C, VGS = 5 V −40°C, VGS = 10 V 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 VGS (V) ID (A) Figure 8. RDS(on) vs. Gate−Source Voltage Figure 9. RDS(on) vs. Drain Current 3 15 2.5 ID = 2 A VGS = 10 V 2.0 VGS = 5 V 1.5 ILIM (A) NORMALIZED RDS(on) 150°C, VGS = 10 V 400 RDS(on) (mW) RDS(on) (mW) 500 150°C, VGS = 5 V 450 13 −40°C 11 25°C 9 100°C 7 1.0 150°C 5 0.5 −40 −20 0 20 40 60 80 100 120 3 140 VDS = 10 V 4 5 6 7 8 9 T (°C) VGS (V) Figure 10. Normalized RDS(on) vs. Temperature Figure 11. Current Limit vs. Gate−Source Voltage 15 10 1000 VGS = 10 V VDS = 10 V 100 13 11 VGS = 5 V IDSS (mA) ILIM (A) 10 9 150°C 1 100°C 0.1 0.01 25°C 7 VGS = 0 V 0.001 5 −40 −20 0 20 40 60 80 100 0.0001 120 140 −40°C 10 20 30 40 50 60 TJ (°C) VDS (V) Figure 12. Current Limit vs. Junction Temperature Figure 13. Drain−to−Source Leakage Current www.onsemi.com 5 70 NCV8406A, NCV8406B TYPICAL PERFORMANCE CURVES 1100 ID = 150 mA VDS = VGS 1.1 VSD (mV) 0.9 25°C 800 0.8 700 0.7 600 0.6 −40 −20 500 100°C 150°C 0 20 40 80 60 100 120 140 VGS = 0 V 1 2 3 4 5 6 8 9 IS (A) Figure 14. Normalized Threshold Voltage vs. Temperature Figure 15. Source−Drain Diode Forward Characteristics 3400 VDD = 13.8 V ID = 2 A RG = 0 W 1200 td(off) 2600 2200 tf 600 tr TIME (ns) 800 td(off), VGS = 5 V 1800 tf, VGS = 5 V tr, VGS = 10 V 1000 600 td(on) 200 5 6 7 8 9 td(on), VGS = 5 V 200 −200 10 tr, VGS = 5 V tf, VGS = 10 V 1400 400 4 10 td(off), VGS = 10 V 3000 1000 3 7 T (°C) 1400 0 −40°C 900 1600 TIME (ns) 1000 1.0 td(on), VGS = 10 V 0 500 1000 1500 2000 VGS (V) RG (W) Figure 16. Resistive Load Switching Time vs. Gate−Source Voltage Figure 17. Resistive Load Switching Time vs. Gate Resistance DRAIN−SOURCE VOLTAGE SLOPE (V/ms) NORMALIZED VGS(th) (V) 1.2 35 30 25 dVDS/dt(off), VGS = 5 V 20 dVDS/dt(off), VGS = 10 V 15 10 5 0 500 1000 1500 2000 RG (W) Figure 18. Drain−Source Voltage Slope during Turn On and Turn Off vs. Gate Resistance www.onsemi.com 6 NCV8406A, NCV8406B TYPICAL PERFORMANCE CURVES 110 110 100 100 90 PCB Cu thickness, 1.0 oz RqJA (°C/W) RqJA (°C/W) 90 80 70 PCB Cu thickness, 2.0 oz 60 80 70 PCB Cu thickness, 1.0 oz 60 50 50 40 40 100 200 300 400 500 600 PCB Cu thickness, 2.0 oz 100 200 300 400 500 COPPER HEAT SPREADER AREA (mm2) COPPER HEAT SPREADER AREA (mm2) Figure 19. RqJA vs. Copper Area − SOT−223 Figure 20. RqJA vs. Copper Area − DPAK 600 1000 R(t) (°C/W) 100 50% Duty Cycle 20% 10% 10 5% 2% 1 0.1 1% Single Pulse 0.01 0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000 10 100 1000 PULSE TIME (sec) Figure 21. Transient Thermal Resistance − SOT−223 Version 100 50% Duty Cycle R(t) (°C/W) 10 20% 10% 5% 2% 1 1% 0.1 Single Pulse 0.01 0.000001 0.00001 0.0001 0.001 0.01 0.1 1 PULSE TIME (sec) Figure 22. Transient Thermal Resistance − DPAK Version www.onsemi.com 7 NCV8406A, NCV8406B TEST CIRCUITS AND WAVEFORMS RL VIN + D RG VDD G DUT − S IDS Figure 23. Resistive Load Switching Test Circuit 90% VIN 10% td(ON) tr td(OFF) tf 90% 10% IDS Figure 24. Resistive Load Switching Waveforms www.onsemi.com 8 NCV8406A, NCV8406B TEST CIRCUITS AND WAVEFORMS L VDS VIN D RG + VDD G DUT − S tp IDS Figure 25. Inductive Load Switching Test Circuit 5V VIN 0V Tav Tp V(BR)DSS Ipk VDD VDS VDS(on) IDS 0 Figure 26. Inductive Load Switching Waveforms www.onsemi.com 9 NCV8406A, NCV8406B ORDERING INFORMATION Package Shipping† NCV8406ASTT1G SOT−223 (Pb−Free) 1000 / Tape & Reel NCV8406ASTT3G SOT−223 (Pb−Free) 4000 / Tape & Reel NCV8406ADTRKG DPAK (Pb−Free) 2500 / Tape & Reel NCV8406BDTRKG DPAK (Pb−Free) 2500 / Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. www.onsemi.com 10 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SOT−223 (TO−261) CASE 318E−04 ISSUE R DATE 02 OCT 2018 SCALE 1:1 q q DOCUMENT NUMBER: DESCRIPTION: 98ASB42680B SOT−223 (TO−261) Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 2 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2018 www.onsemi.com SOT−223 (TO−261) CASE 318E−04 ISSUE R STYLE 1: PIN 1. 2. 3. 4. BASE COLLECTOR EMITTER COLLECTOR STYLE 2: PIN 1. 2. 3. 4. ANODE CATHODE NC CATHODE STYLE 6: PIN 1. 2. 3. 4. RETURN INPUT OUTPUT INPUT STYLE 7: PIN 1. 2. 3. 4. ANODE 1 CATHODE ANODE 2 CATHODE STYLE 11: PIN 1. MT 1 2. MT 2 3. GATE 4. MT 2 STYLE 3: PIN 1. 2. 3. 4. GATE DRAIN SOURCE DRAIN STYLE 8: STYLE 12: PIN 1. INPUT 2. OUTPUT 3. NC 4. OUTPUT CANCELLED DATE 02 OCT 2018 STYLE 4: PIN 1. 2. 3. 4. SOURCE DRAIN GATE DRAIN STYLE 5: PIN 1. 2. 3. 4. STYLE 9: PIN 1. 2. 3. 4. INPUT GROUND LOGIC GROUND STYLE 10: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE DRAIN GATE SOURCE GATE STYLE 13: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR GENERIC MARKING DIAGRAM* AYW XXXXXG G 1 A = Assembly Location Y = Year W = Work Week XXXXX = Specific Device Code G = Pb−Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “G”, may or may not be present. Some products may not follow the Generic Marking. DOCUMENT NUMBER: DESCRIPTION: 98ASB42680B SOT−223 (TO−261) Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 2 OF 2 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2018 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS DPAK (SINGLE GAUGE) CASE 369C ISSUE F 4 1 2 DATE 21 JUL 2015 3 SCALE 1:1 A E C A b3 B c2 4 L3 Z D 1 2 H DETAIL A 3 L4 NOTE 7 c SIDE VIEW b2 e b 0.005 (0.13) TOP VIEW BOTTOM VIEW C M Z H L2 GAUGE PLANE C L SEATING PLANE BOTTOM VIEW A1 L1 DETAIL A Z ALTERNATE CONSTRUCTIONS ROTATED 905 CW STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR STYLE 6: PIN 1. MT1 2. MT2 3. GATE 4. MT2 STYLE 3: PIN 1. ANODE 2. CATHODE 3. ANODE 4. CATHODE STYLE 8: PIN 1. N/C 2. CATHODE 3. ANODE 4. CATHODE STYLE 4: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE STYLE 5: PIN 1. GATE 2. ANODE 3. CATHODE 4. ANODE STYLE 9: STYLE 10: PIN 1. ANODE PIN 1. CATHODE 2. CATHODE 2. ANODE 3. RESISTOR ADJUST 3. CATHODE 4. CATHODE 4. ANODE SOLDERING FOOTPRINT* 6.20 0.244 DIM A A1 b b2 b3 c c2 D E e H L L1 L2 L3 L4 Z INCHES MIN MAX 0.086 0.094 0.000 0.005 0.025 0.035 0.028 0.045 0.180 0.215 0.018 0.024 0.018 0.024 0.235 0.245 0.250 0.265 0.090 BSC 0.370 0.410 0.055 0.070 0.114 REF 0.020 BSC 0.035 0.050 −−− 0.040 0.155 −−− MILLIMETERS MIN MAX 2.18 2.38 0.00 0.13 0.63 0.89 0.72 1.14 4.57 5.46 0.46 0.61 0.46 0.61 5.97 6.22 6.35 6.73 2.29 BSC 9.40 10.41 1.40 1.78 2.90 REF 0.51 BSC 0.89 1.27 −−− 1.01 3.93 −−− GENERIC MARKING DIAGRAM* STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN STYLE 7: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES. 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE. 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY. 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H. 7. OPTIONAL MOLD FEATURE. 2.58 0.102 1.60 0.063 IC Discrete = Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package *This information is generic. Please refer to device data sheet for actual part marking. 6.17 0.243 SCALE 3:1 AYWW XXX XXXXXG XXXXXX A L Y WW G 3.00 0.118 5.80 0.228 XXXXXXG ALYWW mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. DOCUMENT NUMBER: STATUS: NEW STANDARD: 98AON10527D ON SEMICONDUCTOR STANDARD REF TO JEDEC TO−252 http://onsemi.com DPAK SINGLE GAUGE SURFACE 1 MOUNT © Semiconductor Components Industries, LLC, 2002 October, DESCRIPTION: 2002 − Rev. 0 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. Case Outline Number: PAGE 1 OFXXX 2 DOCUMENT NUMBER: 98AON10527D PAGE 2 OF 2 ISSUE REVISION DATE O RELEASED FOR PRODUCTION. REQ. BY L. GAN 24 SEP 2001 A ADDED STYLE 8. REQ. BY S. ALLEN. 06 AUG 2008 B ADDED STYLE 9. REQ. BY D. WARNER. 16 JAN 2009 C ADDED STYLE 10. REQ. BY S. ALLEN. 09 JUN 2009 D RELABELED DRAWING TO JEDEC STANDARDS. ADDED SIDE VIEW DETAIL A. CORRECTED MARKING INFORMATION. REQ. BY D. TRUHITTE. 29 JUN 2010 E ADDED ALTERNATE CONSTRUCTION BOTTOM VIEW. MODIFIED DIMENSIONS b2 AND L1. CORRECTED MARKING DIAGRAM FOR DISCRETE. REQ. BY I. CAMBALIZA. 06 FEB 2014 F ADDED SECOND ALTERNATE CONSTRUCTION BOTTOM VIEW. REQ. BY K. MUSTAFA. 21 JUL 2015 ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. © Semiconductor Components Industries, LLC, 2015 July, 2015 − Rev. F Case Outline Number: 369C ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: orderlit@onsemi.com ◊ N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative
NCV8406ASTT1G 价格&库存

很抱歉,暂时无法提供与“NCV8406ASTT1G”相匹配的价格&库存,您可以联系我们找货

免费人工找货