0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SCL3300-D01

SCL3300-D01

  • 厂商:

    MURATA-PS(村田)

  • 封装:

    SMD12

  • 描述:

    SCL3300-D01

  • 数据手册
  • 价格&库存
SCL3300-D01 数据手册
1 (47) Data Sheet SCL3300-D01 3-axis inclinometer with angle output and digital SPI interface Features           3-axis (XYZ) inclinometer User selectable measurement modes: 3000 LSB/g with 70 Hz LPF 6000 LSB/g with 40 Hz LPF 12000 LSB/g with 10 Hz LPF Angle output resolution 0.0055°/LSB −40°C…+125°C operating range 3.0V…3.6V supply voltage SPI digital interface Ultra-low 0.001 °/√Hz noise density Excellent offset stability Size 8.6 x 7.6 x 3.3 mm (l × w × h) Proven capacitive 3D-MEMS technology Applications SCL3300-D01 is targeted at applications demanding high stability and accuracy with tough environmental requirements. Typical applications include:        Leveling Tilt sensing Machine control Structural health monitoring Inertial measurement units (IMUs) Robotics Positioning and guidance systems Overview The SCL3300-D01 is a high performance inclinometer sensor component. It is a three-axis inclinometer sensor with angle output based on Murata's proven capacitive 3D-MEMS technology. Signal processing is done in a mixed signal ASIC with flexible SPI digital interface. Sensor element and ASIC are packaged into 12 pin pre-molded plastic housing that guarantees reliable operation over product's lifetime. The SCL3300-D01 is designed, manufactured and tested for high stability, reliability and quality requirements. The component has extremely stable output over wide range of temperature and vibration. The component has several advanced self-diagnostics features, is suitable for SMD mounting and is compatible with RoHS and ELV directives. Murata Electronics Oy www.murata.com SCL3300-D01 Doc.No. 4921 Rev. 2 2 (47) TABLE OF CONTENTS 1 Introduction .................................................................................................................................4 2 Specifications .............................................................................................................................4 2.1 Abbreviations .........................................................................................................................4 2.2 General Specifications ...........................................................................................................4 2.3 Performance Specifications for Inclinometer ..........................................................................5 2.4 Performance Specification for Temperature Sensor ...............................................................7 2.5 Specification for Angle Outputs ..............................................................................................7 2.6 Absolute Maximum Ratings ...................................................................................................8 2.7 AEC-Q100 Testing .................................................................................................................8 2.8 Pin Description.......................................................................................................................9 2.9 Typical performance characteristics .....................................................................................10 2.10 Digital I/O Specification ........................................................................................................13 2.10.1 SPI DC Characteristics ................................................................................................13 2.10.2 SPI AC Characteristics ................................................................................................14 2.11 Measurement Axis and Directions........................................................................................15 2.11.1 2.12 Package Characteristics ......................................................................................................17 2.12.1 2.13 3 5 PCB Footprint ......................................................................................................................18 Factory Calibration ...............................................................................................................19 Component Operation, Reset and Power Up ..........................................................................20 4.1 Component Operation..........................................................................................................20 4.2 Start-up sequence ...............................................................................................................21 4.3 Operation modes .................................................................................................................22 Component Interfacing .............................................................................................................22 5.1.1 General...........................................................................................................................22 5.1.2 Protocol ..........................................................................................................................23 5.1.3 SPI frame .......................................................................................................................24 5.1.4 Operations ......................................................................................................................25 5.1.5 Return Status..................................................................................................................26 5.2 6 Package Outline Drawing ............................................................................................17 General Product Description....................................................................................................19 3.1 4 Measurement Ranges on Inclination Modes ................................................................16 Checksum (CRC).................................................................................................................26 Register Definition ....................................................................................................................27 6.1 Sensor Data Block ...............................................................................................................29 6.1.1 Example of Acceleration Data Conversion ......................................................................30 6.1.2 Example of Temperature Data Conversion .....................................................................31 Murata Electronics Oy www.murata.com SCL3300-D01 Doc.No. 4921 Rev. 2 3 (47) 6.1.3 6.2 STO .....................................................................................................................................33 6.2.1 6.3 Example of Self-Test Analysis ........................................................................................34 STATUS ..............................................................................................................................35 6.3.1 6.4 Example of Angle Data Conversion ................................................................................32 Example of STATUS summary reset ..............................................................................37 Error Flag Block ...................................................................................................................38 6.4.1 ERR_FLAG1 ........................................................................................................................38 6.4.2 ERR_FLAG2 ........................................................................................................................39 6.5 CMD ....................................................................................................................................40 6.6 ANG_CTRL .........................................................................................................................41 6.7 WHOAMI .............................................................................................................................41 6.8 Serial Block ..........................................................................................................................42 6.8.1 6.9 7 Example of Resolving Serial Number..............................................................................43 SELBANK ............................................................................................................................44 Application information ............................................................................................................44 7.1 Application Circuitry and External Component Characteristics .............................................44 7.2 Assembly Instructions ..........................................................................................................46 8 Frequently Asked Questions....................................................................................................46 9 Order Information .....................................................................................................................47 Murata Electronics Oy www.murata.com SCL3300-D01 Doc.No. 4921 Rev. 2 4 (47) 1 Introduction This document contains essential technical information about the SCL3300-D01 sensor including specifications, SPI interface descriptions, user accessible register details, electrical properties and application information. This document should be used as a reference when designing in SCL3300-D01 component. 2 2.1 Specifications Abbreviations ASIC SPI RT FS CSB SCK MOSI MISO MCU STO 2.2 Application Specific Integrated Circuit Serial Peripheral Interface Room Temperature, +23 °C Full Scale Chip Select Serial Clock Master Out Slave In Master In Slave Out Microcontroller Self-test Output General Specifications General specifications for SCL3300-D01 component are presented in Table 1. All analog voltages are related to the potential at AVSS and all digital voltages are related to the potential at DVSS. Table 1 General specifications Parameter Condition Supply voltage: VDD SPI supply voltage: DVIO Current consumption: I_VDD Current consumption: I_VDD in power down mode Murata Electronics Oy www.murata.com Must never be higher than VDD Min Nom Max Units 3.0 3.3 3.6 V 3.0 3.3 3.6 V Temperature range -40 ... +125 °C Standard operation 1.2 Mode 4 2.1 Temperature range -40 ... +125 °C Power down mode (PD) Typical value is at room temperature (+23°C) SCL3300-D01 3 Doc.No. 4921 Rev. 2 mA 10 µA 5 (47) 2.3 Performance Specifications for Inclinometer Table 2 Inclinometer performance specifications. Supply voltage VDD = 3.3 V and room temperature (RT) +23 °C unless otherwise specified. Definition of gravitational acceleration: g = 9.819 m/s2. Parameter Measurement range Condition Min Max Unit Mode 1 Mode 2 Mode 3, Mode 4(A 1.2 2.4 - g Mode 1 Mode 2 Mode 3, Mode 4(A ±90 ±90 (±10) ° All modes, X, Z channels -20 -1.15 20 1.15 mg ° All modes, Y channel -25 -1.45 20 1.15 mg ° -40°C ... +125°C, X, Y channels -10 -0.57 10 0.57 mg ° -40°C ... +125°C, Z channel -15 -0.86 15 0.86 mg ° All modes, X, Z channels -8 -0.46 ±4 ±0.23 8 0.46 mg ° All modes, Y channels -12 -0.69 ±6 ±0.34 12 0.69 mg ° Offset error (B Offset temperature dependency (C Offset lifetime drift (D Sensitivity (acceleration output) Nom Mode 1 Mode 2 Mode 3, Mode 4 6000 3000 12000 Mode 1 Mode 2 Mode 3, Mode 4 105 52 209 LSB/° 182 LSB/° valid only between 0…1° LSB/g (E Sensitivity (inclination output) All modes Sensitivity error (B -40°C ... +125°C Mode 1 -0.7 0.7 % Sensitivity temperature dependency (C -40°C ... +125°C Mode 1 -0.3 0.3 % Linearity error (F -1g ... +1g range -4 4 mg Integrated noise (RMS, accelerometer) (G Mode 3, X, Y, Z channels Mode 4, X, Z channels Mode 4, Y channel 0.13 0.08 0.06 mgRMS Mode 3, X, Y, Z channels Mode 4, X, Z channels Mode 4, Y channel 32 20 15 µg/√Hz Mode 3, X, Y, Z channels Mode 4, X, Z channels Mode 4, Y channel 0.0018 0.0012 0.0009 °/√Hz Noise density (G Cross axis sensitivity (H Amplitude response, -3dB frequency Murata Electronics Oy www.murata.com per axis -1.5 ±0.2 1.5 % Mode 1 40 Hz Mode 2 70 Hz Mode 3, Mode 4 10 Hz SCL3300-D01 Doc.No. 4921 Rev. 2 6 (47) Parameter Power on start-up Condition time(I Min Nom Max Unit Mode 1 25 ms Mode 2 15 ms Mode 3, Mode 4 100 ms 2000 Hz ODR Min/Max values are ±3 sigma variation limits from test population at the minimum. Min/Max values are not guaranteed. A) Inclination mode. Dynamic range is dependent on orientation in gravity. See Chapter 2.11.1 B) Includes calibration error, temperature, supply voltage and drift over lifetime. C) Deviation from value at room temperature (RT). D) Min/Max results based on the maximum ±3 sigma variation limits of the following tests: HTOL bake (+125 °C, 1000h), TC (-50 °C / +150 °C, 1000 cycles), THB (85 °C / 85 %RH). E) Angle calculated using 1g * SIN(θ), where θ is the inclination angle relative to the 0g position. Due to characteristics of sine function sensitivity is inversely proportional to inclination angle. Reported values are valid only between 0° to ±1°. F) Straight line through specified measurement range end points. G) SPI communication may affect the noise level. Used SPI clock should be carefully validated. Recommended SPI clock is 2 MHz - 4 MHz to achieve the best performance; see section 2.10.2 SPI AC Characteristics for details. H) Cross axis sensitivity is the maximum sensitivity in the plane perpendicular to the measuring direction. X-axis output cross axis sensitivity (cross axis for Y and Z-axis outputs are defined correspondingly):   I) Cross axis for Y axis = Sensitivity Y / Sensitivity X Cross axis for Z axis = Sensitivity Z / Sensitivity X Power on start-up time is specified according to recommended start-up sequence; see section 4.2 Start-up sequence for details. Murata Electronics Oy www.murata.com SCL3300-D01 Doc.No. 4921 Rev. 2 7 (47) 2.4 Performance Specification for Temperature Sensor Table 3 Temperature sensor performance specifications. Parameter Condition Min. Temperature signal range Typ -50 Temperature signal sensitivity Direct 16-bit word Temperature signal offset °C output Max. Unit +150 °C 18.9 -10 LSB/°C 10 °C Temperature is converted to °C with following equation: Temperature [°C] = -273 + (TEMP / 18.9), where TEMP is temperature sensor output register content in decimal format. 2.5 Specification for Angle Outputs Angles are formed from acceleration with following equations: ANG_X = atan2(accx / √(accy^2 + accz^2)), ANG_Y = atan2(accy / √(accx^2 + accz^2)), ANG_Z = atan2(accz / √(accx^2 + accy^2)), where accx, accy, and accz are accelerations to each direction and ANG_X, ANG_Y, and ANG_Z are angle output register content in 16-bit binary format. Angles are converted to degrees with following equation: Angle [°] = d'ANG_% / 2^14 * 90, where d'ANG_% is angle output register (ANG_X, ANG_Y, ANG_Z) content in decimal format. See 6.1.3 Example of Angle Data Conversion for more information. Murata Electronics Oy www.murata.com SCL3300-D01 Doc.No. 4921 Rev. 2 8 (47) 2.6 Absolute Maximum Ratings Within the maximum ratings (Table 4), no damage to the component shall occur. Parametric values may deviate from specification, yet no functional failure shall occur. Table 4. Absolute maximum ratings. 2.7 Symbol Description Min. Max. Unit VDD Supply voltage analog circuitry -0.3 Typ 4.3 V DIN/DOUT Maximum voltage at digital input and output pins -0.3 DVIO+0.3 V Topr Operating temperature range -40 +125 °C Tstg Storage temperature range -40 +150 °C ESD_HBM ESD according Human Body Model (HBM) Q100-002 -2000 2000 ESD_CDM ESD according Charged Device Model (CDM) Q100-011 -1000 1000 US Ultrasonic agitation (cleaning, welding, etc.) V V Prohibited AEC-Q100 Testing The SCL3300 product family is tested according to AEC-Q100 Grade 1, revision H. Deviations to the requirements are presented in Table 5. Table 5. Deviations to AEC-Q100 requirements. Stress ABV Package Drop DROP Requirement Deviation Drop part on each of 6 axes once 10 Drops, random orientation, drop from a height of 1.2m onto a concrete height 0.8m1 surface. 1 Shocks may cause mechanical damage to the internal structures of MEMS sensor, causing malfunction of sensor, therefore mechanical shocks should be avoided. The level depends heavily on the pulse width and shape and should be evaluated case by case. As a general guideline, the lighter assembly or part, the higher shock levels will be generated on sensor component. Dropped components shall not be used and shall be scrapped. Murata Electronics Oy www.murata.com SCL3300-D01 Doc.No. 4921 Rev. 2 9 (47) 2.8 Pin Description The pinout for SCL3300-D01 is presented in Figure 1. Figure 1 Pinout for SCL3300-D01. Table 6 SCL3300-D01 pin descriptions. Pin# Name Type Description 1 AVSS GND Analog Reference Ground, connect externally to GND 2 A_EXTC AOUT External capacitor connection for analog core 3 RESERVED - Factory use only, connect externally to GND 4 VDD SUPPLY 5 CSB DIN 6 MISO DOUT 7 MOSI DIN Data In of SPI Interface, 3.3V logic compatible Schmitt-trigger input 8 SCK DIN CLK Signal of SPI Interface, 3.3V logic compatible Schmitt-trigger input 9 DVIO SUPPLY 10 D_EXTC AOUT External capacitor connection for digital core 11 DVSS GND Digital Reference Ground, connect externally to GND. Must never be left floating when component is powered. 12 EMC_GND Murata Electronics Oy www.murata.com Analog Supply Voltage Chip Select of SPI Interface, 3.3V logic compatible Schmitt-trigger input Data Out of SPI Interface SPI Interface Supply Voltage. Must never be higher than VDD EMC GND EMC Ground, connect externally to GND SCL3300-D01 Doc.No. 4921 Rev. 2 10 (47) 2.9 Typical performance characteristics Figure 2 Accelerometer typical offset temperature behavior. Dotted lines show the ±3σ variation of the population. Murata Electronics Oy www.murata.com SCL3300-D01 Doc.No. 4921 Rev. 2 11 (47) Figure 3 Example of accelerometer long term stability during 1000h HTOL. Test condition = +85 °C, Vsupply=3.6 V. Data measurement condition = +25 °C. Dotted lines show the ±3σ variation of the population. Murata Electronics Oy www.murata.com SCL3300-D01 Doc.No. 4921 Rev. 2 12 (47) Figure 4 Accelerometer typical sensitivity temperature error in % Figure 5 Example noise spectrum of X-channel in mode 4 Murata Electronics Oy www.murata.com SCL3300-D01 Figure 6 Example noise spectrum of Y-channel in mode 4 Doc.No. 4921 Rev. 2 13 (47) 2.10 Digital I/O Specification 2.10.1 SPI DC Characteristics Table 7 describes the DC characteristics of SCL3300-D01 sensor SPI I/O pins. Supply voltage is 3.3 V unless otherwise specified. Current flowing into the circuit has a positive value. Table 7 SPI DC Characteristics Symbol Remark Min. Typ Max. Unit 7.5 16.5 36 uA Serial Clock SCK (Pull Down) IPD Pull-down current Vin = 3.0 - 3.6 V VIH Input voltage '1' 0.67*DVIO DVIO V VIL Input voltage '0' 0 0.33*DVIO V 36 uA Chip Select CSB (Pull Up), low active IPU Pull-up current Vin = 0 7.5 16.5 VIH Input voltage '1' 0.67*DVIO DVIO V VIL Input voltage '0' 0 0.33*DVIO V 36 uA Serial Data Input MOSI (Pull Down) IPD Pull-down current Vin = 3.0 - 3.6 V 7.5 16.5 VIH Input voltage '1' 0.67*DVIO DVIO V VIL Input voltage '0' 0 0.33*DVIO V Serial Data Output MISO (Tri State) VOH Output high voltage I > -1 mA VOL Output low voltage I < 1 mA ILEAK Tri-state leakage 0 < VMISO < 3.3 V DVIO-0.5V -1 V 0 Maximum Capacitive load Murata Electronics Oy www.murata.com SCL3300-D01 Doc.No. 4921 Rev. 2 0.5 V 1 uA 50 pF 14 (47) 2.10.2 SPI AC Characteristics The AC characteristics of SCL3300-D01 are defined in Figure 7 and Table 8. Figure 7 Timing diagram of SPI communication. Table 8 SPI AC electrical characteristics. Symbol Description Min. TLS1 Time from CSB (10%) to SCK (90%) Tper/2 ns TLS2 Time from SCK (10%) to CSB (90%) Tper/2 ns TCL SCK low time Tper/2 ns TCH SCK high time Tper/2 fSCK = 1/Tper SCK Frequency * 0.1 Typ Max. Unit ns 2 8 MHz TSET Time from changing MOSI (10%, 90%) to SCK (90%). Data setup time Tper/4 ns THOL Time from SCK (90%) to changing MOSI (10%, 90%). Data hold time Tper/4 ns TVAL1 Time from CSB (10%) to stable MISO (10%, 90%) 10 ns TLZ Time from CSB (90%) to high impedance state of MISO 10 ns TVAL2 Time from SCK (10%) to stable MISO (10%, 90%) TLH Time between SPI cycles, CSB at high level (90%) 10 10 ns us * SPI communication may affect the noise level. Used SPI clock should be carefully validated. Recommended SPI clock is 2 MHz - 4 MHz to achieve the best performance. Murata Electronics Oy www.murata.com SCL3300-D01 Doc.No. 4921 Rev. 2 15 (47) 2.11 Measurement Axis and Directions Figure 8 SCL3300-D01 measurement directions. Table 9 SCL3300-D01 accelerometer measurement directions. x: y: z: +1g 0g 0g angle x: angle y: angle z: 90° 0° 0° x: y: z: 0g +1g 0g angle x: angle y: angle z: 0° 90° 0° x: y: z: 0g 0g +1g angle x: angle y: angle z: 0° 0° 90° x: y: z: -1g 0g 0g angle x: angle y: angle z: 270° 0° 0° x: y: z: 0g -1g 0g angle x: angle y: angle z: 0° 270° 0° x: y: z: 0g 0g -1g angle x: angle y: angle z: 0° 0° 270° Murata Electronics Oy www.murata.com SCL3300-D01 Doc.No. 4921 Rev. 2 16 (47) 2.11.1 Measurement Ranges on Inclination Modes Inclination ranges are limited in Mode 3 and Mode 4 to maximum ±10° inclination. See Figure 9 Measurement ranges on inclination modes (Mode 3 and Mode 4) below. If the whole 360° operation is needed, then one should select either Mode 1 or Mode 2 where the limitations regarding the maximum inclination angle don't exist. The orientation in which the Y-axis is parallel to gravity (i.e. ±1g) is not recommended when using either mode 3 or mode 4. The dynamic range in that direction is limited and it is possible that saturation flag2 may give an alert even if the tilt angle is less than 10°. Performance specifications according to Table 2 are met. SCL3300-D01 inclination measurement is based on measuring the angles between the component and the gravity vector in static environment. Note that no other accelerations should be present in order to measure angles correctly. Figure 9 Measurement ranges on inclination modes (Mode 3 and Mode 4) 2 See Chapter 6.3 for more information Murata Electronics Oy www.murata.com SCL3300-D01 Doc.No. 4921 Rev. 2 17 (47) 2.12 Package Characteristics 2.12.1 Package Outline Drawing Figure 10 Package outline. The tolerances are according to ISO2768-f (see Table 10). Table 10 Limits for linear measures (ISO2768-f). Limits in mm for nominal size in mm Tolerance class f (fine) Murata Electronics Oy www.murata.com 0.5 to 3 Above 3 to 6 Above 6 to 30 ±0.05 ±0.05 ±0.1 SCL3300-D01 Doc.No. 4921 Rev. 2 18 (47) 2.13 PCB Footprint Figure 11 Recommended PWB pad layout for SCL3300-D01. All dimensions are in mm. The tolerances are according to ISO2768-f (see Table 10). Murata Electronics Oy www.murata.com SCL3300-D01 Doc.No. 4921 Rev. 2 19 (47) 3 General Product Description The SCL3300-D01 sensor includes acceleration sensing element and ApplicationSpecific Integrated Circuit (ASIC). Figure 12 contains an upper level block diagram of the component. Figure 12. SCL3300-D01 component block diagram. The sensing elements are manufactured using Murata proprietary High Aspect Ratio (HAR) 3D-MEMS process, which enables making robust, extremely stable and low noise capacitive sensors. The acceleration sensing element consists of four acceleration sensitive masses. Acceleration causes capacitance change that is converted into a voltage change in the signal conditioning ASIC. 3.1 Factory Calibration SCL3300-D01 sensors are factory calibrated. No separate calibration is required in the application. Calibration parameters are stored to non-volatile memory during manufacturing. The parameters are read automatically from the internal non-volatile memory during the start-up. Assembly can cause offset/bias errors to the sensor output. If best possible accuracy is required, system level offset/bias calibration (zeroing) after assembly is recommended. Offset calibration is recommended to be performed not earlier than 12 hours after reflow. It should be noted that accuracy can be improved with longer stabilization time. Murata Electronics Oy www.murata.com SCL3300-D01 Doc.No. 4921 Rev. 2 20 (47) 4 4.1 Component Operation, Reset and Power Up Component Operation Sensor ODR in normal operation mode is 2000 Hz. Registers are updated in every 0.5 ms and if all data is not read the full noise performance of sensor is not met. In order to achieve optimal performance, it is recommended that during normal operation acceleration outputs ACCX, ACCY, ACCZ are read in every cycle using sensor ODR. It is necessary to read STATUS register only if return status (RS) indicates error. Murata Electronics Oy www.murata.com SCL3300-D01 Doc.No. 4921 Rev. 2 21 (47) 4.2 Start-up sequence Table 11 Start-Up Sequence Step Procedure VDD DVIO Note Procedure for normal startup Set 1 RS* Function 3.0 - 3.6 V 3.0 - 3.6 V -- VDD and DVIO don't need to rise at the same time OR 1 1.2 Write Wake up from power down mode command -- Wait 1 ms -- Procedure if device is in power down mode See Table 15 for more information Memory reading Settling of signal path Only needed after power down mode Always continue from here 2 Write SW Reset command -- Software reset the device 3 Wait 1 ms -- Memory reading Settling of signal path See Table 15 Operations and their equivalent SPI frames 1.2g full-scale Mode 1 (default) 4 5 6 7 Set Measurement mode** ‘11’ '01' Enable angle outputs Wait 25 ms -- Settling of signal path, Mode 1 OR Wait 15 ms -- Settling of signal path, Mode 2 OR Wait 100 ms -- Settling of signal path, Modes 3 and 4 ‘11’ Clear status summary Read STATUS Mode 2 2.4g full-scale 70 Hz 1st order low pass filter Mode 3 Inclination mode 10 Hz 1st order low pass filter Mode 4 Inclination mode 10 Hz 1st order low pass filter Low noise mode Select operation mode Write ANG_CTRL 40 Hz 1st order low pass filter See section 6.6 for more information. Reset status summary SPI response to step 5 8 Read STATUS ‘11’ Read status summary Read status summary. Due to SPI offframe protocol response is before STATUS has been cleared. SPI response to step 6. 9 Read STATUS (or any other valid SPI command) Murata Electronics Oy www.murata.com ‘01’ Ensure successful start-up SCL3300-D01 First response where STATUS has been cleared. RS bits should be ‘01’ to indicate proper start-up. Otherwise start-up has not been done correctly. See 6.3 STATUS for more information. Doc.No. 4921 Rev. 2 22 (47) * RS bits in returned SPI response during normal start-up. See 5.1.5 Return Status for more information. ** if not set, mode1 is used. Please refer to Table 15 Operations and their equivalent SPI frames for detailed command frames. 4.3 Operation modes SCL3300-D01 provides four user selectable operation modes. Table 12 Operation mode description Acceleration output Inclination output Acceleration and Inclination output Sensitivity LSB/g Sensitivity LSB/° * Sensitivity LSB/° 1st order low pass filter ± 1.2 g 6000 105 182 40 Hz 2 ± 2.4 g 3000 52 182 70 Hz 3 Inclination mode** 12000 209 182 10 Hz Mode Full-scale 1 Inclination 12000 209 182 10 Hz mode** * Angle calculated using 1g * SIN(θ), where θ is the inclination angle relative to the 0g position. Due to characteristics of sine function sensitivity is inversely proportional to inclination angle. Reported values are valid only between 0° to ±1°. 4 ** Inclination mode. Dynamic range is dependent on orientation in gravity. 5 Component Interfacing 5.1.1 General SPI communication transfers data between the SPI master and registers of the SCL3300-D01 ASIC. The SCL3300-D01 always operates as a slave device in masterslave operation mode. 3-wire SPI connection is not supported. Table 13 SPI interface pins Pin Pin Name CSB Chip Select (active low) MCU  SCL3300 SCK Serial Clock MCU  SCL3300 MOSI Master Out Slave In MCU  SCL3300 MISO Master In Slave Out SCL3300  MCU Murata Electronics Oy www.murata.com Communication SCL3300-D01 Doc.No. 4921 Rev. 2 23 (47) 5.1.2 Protocol The SPI is a 32-bit 4-wire slave configured bus. Off-frame protocol is used so each transfer consists of two phases. A response to the request is sent within next request frame. The response concurrent to the request contains the data requested by the previous command. The first bit in a sequence is an MSB. The SPI transmission is always started with the falling edge of chip select, CSB. The data bits are sampled at the rising edge of the SCK signal. The data is captured on the rising edge (MOSI line) of the SCK and it is propagated on the falling edge (MISO line) of the SCK. This equals to SPI Mode 0 (CPOL = 0 and CPHA = 0). NOTE: For sensor operation, time between consecutive SPI requests (i.e. CSB high) must be at least 10 µs. If less than 10 µs is used, output data will be corrupted. CSB SCK MOSI Request 1 Request 2 Request 3 * Undefined Response 1 Response 2 MISO * The first response after reset is undefined and shall be discarded Figure 13 SPI Protocol Murata Electronics Oy www.murata.com SCL3300-D01 Doc.No. 4921 Rev. 2 24 (47) 5.1.3 SPI frame The SPI Frame is divided into four parts: 1. 2. 3. 4. Operation Code (OP), consisting of Read/Write (RW) and Address (ADDR) Return Status (RS, in MISO) Data (D) Checksum (CRC) See Figure 14 and Table 14Table 14 SPI Frame Specification for more details. For allowed SPI operating commands see Table 15. Figure 14 SPI Frame Table 14 SPI Frame Specification Name OP Bits Description MISO / MOSI [31:26] Operation code RW + ADDR OP [5] = RW OP [4:0] = ADDR Read = 0 / Write = 1 Register address [25:24] Return status MISO '00' - Startup in progress '01' - Normal operation, no flags '10' - N/A '11' - Error D [23:8] Data Returned data / data to write CRC [7:0] Checksum See section 5.2 RS MOSI ‘00’ – Always Return Status (RS) shows error (i.e. '11') when an error flag (or flags) is active in, or if previous MOSI-command had incorrect CRC. Murata Electronics Oy www.murata.com SCL3300-D01 Doc.No. 4921 Rev. 2 25 (47) 5.1.4 Operations Allowed operation commands are shown in Table 15. No other commands are allowed. Table 15 Operations and their equivalent SPI frames Operation Bank SPI Frame SPI Frame Hex Read ACC_X 0 1 0000 0100 0000 0000 0000 0000 1111 0111 040000F7h Read ACC_Y 0 1 0000 1000 0000 0000 0000 0000 1111 1101 080000FDh Read ACC_Z 0 1 0000 1100 0000 0000 0000 0000 1111 1011 0C0000FBh Read STO (self-test output) 0 1 0001 0000 0000 0000 0000 0000 1110 1001 100000E9h Enable ANGLE outputs 0 1011 0000 0000 0000 0001 1111 0110 1111 B0001F6Fh Read ANG_X 0 0010 0100 0000 0000 0000 0000 1100 0111 240000C7h Read ANG_Y 0 0010 1000 0000 0000 0000 0000 1100 1101 280000CDh Read ANG_Z 0 0010 1100 0000 0000 0000 0000 1100 1011 2C0000CBh Read Temperature 0 1 0001 0100 0000 0000 0000 0000 1110 1111 140000EFh Read Status Summary 0 1 0001 1000 0000 0000 0000 0000 1110 0101 180000E5h Read ERR_FLAG1 0 0001 1100 0000 0000 0000 0000 1110 0011 1C0000E3 Read ERR_FLAG2 0 0010 0000 0000 0000 0000 0000 1100 0001 200000C1h Read CMD 0 0011 0100 0000 0000 0000 0000 1101 1111 340000DFh Change to mode 1 0 1011 0100 0000 0000 0000 0000 0001 1111 B400001Fh Change to mode 2 0 1011 0100 0000 0000 0000 0001 0000 0010 B4000102h Change to mode 3 0 1011 0100 0000 0000 0000 0010 0010 0101 B4000225h Change to mode 4 0 1011 0100 0000 0000 0000 0011 0011 1000 B4000338h Set power down mode 0 1011 0100 0000 0000 0000 0100 0110 1011 B400046Bh Wake up from power down mode 0 1011 0100 0000 0000 0000 0000 0001 1111 B400001Fh SW Reset 0 1011 0100 0000 0000 0010 0000 1001 1000 B4002098h Read WHOAMI 0 0100 0000 0000 0000 0000 0000 1001 0001 40000091h Read SERIAL1 1 0110 0100 0000 0000 0000 0000 1010 0111 640000A7h Read SERIAL2 1 0110 1000 0000 0000 0000 0000 1010 1101 680000ADh Read current bank 0 1 0111 1100 0000 0000 0000 0000 1011 0011 7C0000B3h Switch to bank #0 0 1 1111 1100 0000 0000 0000 0000 0111 0011 FC000073h Switch to bank #1 0 1 1111 1100 0000 0000 0000 0001 0110 1110 FC00016Eh Murata Electronics Oy www.murata.com SCL3300-D01 Doc.No. 4921 Rev. 2 26 (47) 5.1.5 Return Status SPI frame Return Status bits (RS bits) indicate the functional status of the sensor. See Table 16 for RS definitions. Table 16 Return Status definitions RS [1] RS [0] Description 0 0 Startup in progress 0 1 Normal operation, no flags 1 0 Reserved 1 1 Error The priority of the return status states is from high to low: 00  11  01 Return Status (RS) shows error (i.e. '11') when an error flag (or flags) is active in Status Summary register, or if previous MOSI-command had incorrect frame CRC. See Table 27 for description of the Status Summary register. 5.2 Checksum (CRC) For SPI transmission error detection a Cyclic Redundancy Check (CRC) is implemented, for details see Table 17. Table 17 SPI CRC definition Parameter Value Name CRC-8 Width 8 bit Poly 1Dh (generator polynom: X8+X4+X3+X2+1) Init FFh (initialization value) XOR out FFh (inversion of CRC result) The CRC value used in system level software has to be initialized with FFh to ensure a CRC failure in case of stuck-at-0 and stuck-at-1 error on the SPI bus. C-programming language example for CRC calculation is presented in Figure 15. It can be used as is in an appropriate programming context. Murata Electronics Oy www.murata.com SCL3300-D01 Doc.No. 4921 Rev. 2 27 (47) // Calculate CRC for 24 MSB's of the 32 bit dword // (8 LSB's are the CRC field and are not included in CRC calculation) uint8_t CalculateCRC(uint32_t Data) { uint8_t BitIndex; uint8_t BitValue; uint8_t CRC; CRC = 0xFF; for (BitIndex = 31; BitIndex > 7; BitIndex--) { BitValue = (uint8_t)((Data >> BitIndex) & 0x01); CRC = CRC8(BitValue, CRC); } CRC = (uint8_t)~CRC; return CRC; } static uint8_t CRC8(uint8_t BitValue, uint8_t CRC) { uint8_t Temp; Temp = (uint8_t)(CRC & 0x80); if (BitValue == 0x01) { Temp ^= 0x80; } CRC
SCL3300-D01 价格&库存

很抱歉,暂时无法提供与“SCL3300-D01”相匹配的价格&库存,您可以联系我们找货

免费人工找货
SCL3300-D01

    库存:0