0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CAT24C08YI-G

CAT24C08YI-G

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    TSSOP8

  • 描述:

    IC EEPROM 8KBIT 400KHZ 8TSSOP

  • 数据手册
  • 价格&库存
CAT24C08YI-G 数据手册
DATA SHEET www.onsemi.com EEPROM Serial 2/4/8/16Kb I2C CAT24C02, CAT24C04, CAT24C08, CAT24C16 UDFN8−EP HU4 SUFFIX CASE 517AZ Description The CAT24C02/04/08/16 are 2−Kb, 4−Kb, 8−Kb and 16−Kb respectively I2C Serial EEPROM devices organized internally as 16/32/64 and 128 pages respectively of 16 bytes each. All devices support both the Standard (100 kHz) as well as Fast (400 kHz) I2C protocol. Data is written by providing a starting address, then loading 1 to 16 contiguous bytes into a Page Write Buffer, and then writing all data to non−volatile memory in one internal write cycle. Data is read by providing a starting address and then shifting out data serially while automatically incrementing the internal address count. External address pins make it possible to address up to eight CAT24C02, four CAT24C04, two CAT24C08 and one CAT24C16 device on the same bus. Features • • • • • • • • • • Supports Standard and Fast I2C Protocol 1.7 V to 5.5 V Supply Voltage Range 16−Byte Page Write Buffer Hardware Write Protection for Entire Memory Schmitt Triggers and Noise Suppression Filters on I2C Bus Inputs (SCL and SDA) Low power CMOS Technology More than 1,000,000 Program/Erase Cycles 100 Year Data Retention Industrial and Extended Temperature Range These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS Compliant TSSOP−8 Y SUFFIX CASE 948AL SOIC−8 W SUFFIX CASE 751BD WLCSP−5** C5A SUFFIX CASE 567DD TSOT−23 TD SUFFIX CASE 419AE WLCSP−4** C4A SUFFIX CASE 567DC WLCSP−4** C4U SUFFIX CASE 567NX ** WLCSP are available for the CAT24C04, CAT24C08 and CAT24C16 only. For serial EEPROM in the US8 package, please consult the N24C02 datasheet ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet. This document contains information on some products that are still under development. onsemi reserves the right to change or discontinue these products without notice. © Semiconductor Components Industries, LLC, 2016 July, 2022 − Rev. 36 1 Publication Order Number: CAT24C01/D CAT24C02, CAT24C04, CAT24C08, CAT24C16 PIN CONFIGURATIONS AND MARKING INFORMATION VCC Table 1. PIN FUNCTION Pin Name† Function A0, A1, A2 SCL A2, A1, A0 CAT24Cxx SDA WP VSS Device Address Input SDA Serial Data Input/Output SCL Serial Clock Input WP Write Protect Input VCC Power Supply VSS Ground NC No Connect †The exposed pad for the UDFN packages can be left floating or connected to Ground. Figure 1. Functional Symbol CAT24C__ 16 / 08 / 04 / 02 NC / NC / NC / A0 1 8 VCC NC / NC / A1 / A1 2 7 WP NC / A2 / A2 / A2 3 6 SCL VSS 4 5 SDA Pin 1 1 2 A VCC VSS Pin 1 1 2 3 VSS VCC B SDA B SCL SOIC (W), TSSOP (Y), UDFN−EP (HU4) (Top View) SDA WP WLCSP−4*** (Top Views) SCL WLCSP−5*** *** WLCSP are available for the CAT24C04, CAT24C08 and CAT24C16 only. TOP MARKING FOR WLCSP (Ball Down) SCL 1 VSS 2 SDA 3 5 WP 4 VCC Pin 1 Pin 1 Pin 1 X YM X YW X YM WLCSP−4 (C4A) WLCSP−4 (C4U) WLCSP−5 TSOT−23 (TD) (Top View) X = Specific Device X = Code 4 or R = 24C04 8 or T = 24C08 6 or V = 24C16 Y = Production Year (Last Digit) M = Production Month (1−9, O, N, D) W = Production Week www.onsemi.com 2 A C CAT24C02, CAT24C04, CAT24C08, CAT24C16 Table 2. ABSOLUTE MAXIMUM RATINGS Parameters Ratings Units Storage Temperature −65 to +150 °C Voltage on any pin with respect to Ground (Note 1) −0.5 to +6.5 V Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. During input transitions, voltage undershoot on any pin should not exceed −1 V for more than 20 ns. Voltage overshoot on pins A0, A1, A2 and WP should not exceed VCC + 1 V for more than 20 ns, while voltage on the I2C bus pins, SCL and SDA, should not exceed the absolute maximum ratings, irrespective of VCC. Table 3. RELIABILITY CHARACTERISTICS (Note 2) Symbol Parameter NEND (Note 3) TDR Endurance Min Units 1,000,000 Program / Erase Cycles 100 Years Data Retention 2. These parameters are tested initially and after a design or process change that affects the parameter according to appropriate AEC−Q100 and JEDEC test methods. 3. Page Mode, VCC = 5 V, 25°C. Table 4. D.C. OPERATING CHARACTERISTICS (VCC = 1.8 V to 5.5 V, TA = −40°C to +125°C and VCC = 1.7 V to 5.5 V, TA = −40°C to +85°C, unless otherwise specified.) Max Units ICCR Read Current Read, fSCL = 400 kHz 1 mA ICCW Write Current Write, fSCL = 400 kHz 2 mA TA = −40°C to +85°C VCC ≤ 3.3 V 1 mA TA = −40°C to +85°C VCC > 3.3 V 3 TA = −40°C to +125°C 5 Symbol ISB Parameter Standby Current IL I/O Pin Leakage VIL Input Low Voltage VIH Input High Voltage VOL Output Low Voltage Test Conditions All I/O Pins at GND or VCC Min Pin at GND or VCC 2 mA −0.5 0.3 x VCC V A0, A1, A2 and WP 0.7 x VCC VCC + 0.5 V SCL and SDA 0.7 x VCC 5.5 VCC > 2.5 V, IOL = 3 mA 0.4 VCC < 2.5 V, IOL = 1 mA 0.2 Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. www.onsemi.com 3 CAT24C02, CAT24C04, CAT24C08, CAT24C16 Table 5. PIN IMPEDANCE CHARACTERISTICS (VCC = 1.8 V to 5.5 V, TA = −40°C to +125°C and VCC = 1.7 V to 5.5 V, TA = −40°C to +85°C, unless otherwise specified.) Symbol CIN (Note 4) Parameter SDA Pin Capacitance Conditions Max Units VIN = 0 V, f = 1.0 MHz, VCC = 5.0 V 8 pF 6 pF VIN < VIH, VCC = 5.5 V 130 mA VIN < VIH, VCC = 3.3 V 120 VIN < VIH, VCC = 1.7 V 80 VIN > VIH 2 VIN < VIH, VCC = 5.5 V 50 VIN < VIH, VCC = 3.3 V 35 VIN < VIH, VCC = 1.7 V 25 VIN > VIH 2 Other Pins IWP (Note 5) IA (Note 5) WP Input Current Address Input Current (A0, A1, A2) Product Rev H: CAT24C02 Product Rev K: CAT24C04, CAT24C08, CAT24C16 mA 4. These parameters are tested initially and after a design or process change that affects the parameter according to appropriate AEC−Q100 and JEDEC test methods. 5. When not driven, the WP, A0, A1 and A2 pins are pulled down to GND internally. For improved noise immunity, the internal pull−down is relatively strong; therefore the external driver must be able to supply the pull−down current when attempting to drive the input HIGH. To conserve power, as the input level exceeds the trip point of the CMOS input buffer (~ 0.5 x VCC), the strong pull−down reverts to a weak current source. Table 6. A.C. CHARACTERISTICS (Note 6) (VCC = 1.8 V to 5.5 V, TA = −40°C to +125°C and VCC = 1.7 V to 5.5 V, TA = −40°C to +85°C, unless otherwise specified.) Standard FSCL tHD:STA Min Parameter Symbol Clock Frequency Max Fast Min 100 START Condition Hold Time Max Units 400 kHz 4 0.6 ms tLOW Low Period of SCL Clock 4.7 1.3 ms tHIGH High Period of SCL Clock 4 0.6 ms 4.7 0.6 ms tSU:STA START Condition Setup Time tHD:DAT Data In Hold Time 0 0 ms tSU:DAT Data In Setup Time 250 100 ns tR SDA and SCL Rise Time 1000 300 ns tF (Note 6) SDA and SCL Fall Time 300 300 ns tSU:STO STOP Condition Setup Time tBUF Bus Free Time Between STOP and START tAA SCL Low to Data Out Valid tDH Data Out Hold Time Ti (Note 6) 4 0.6 ms 4.7 1.3 ms 3.5 100 Noise Pulse Filtered at SCL and SDA Inputs 0.9 100 100 ms ns 100 ns tSU:WP WP Setup Time 0 0 ms tHD:WP WP Hold Time 2.5 2.5 ms tWR tPU (Notes 7, 8) Write Cycle Time 5 5 ms Power−up to Ready Mode 1 1 ms 6. Test conditions according to “AC Test Conditions” table. 7. Tested initially and after a design or process change that affects this parameter. 8. tPU is the delay between the time VCC is stable and the device is ready to accept commands. www.onsemi.com 4 CAT24C02, CAT24C04, CAT24C08, CAT24C16 Table 7. A.C. TEST CONDITIONS Input Drive Levels 0.2 x VCC to 0.8 x VCC Input Rise and Fall Time v 50 ns Input Reference Levels 0.3 x VCC, 0.7 x VCC Output Reference Level 0.5 x VCC Output Test Load Current Source IOL = 3 mA (VCC w 2.5 V); IOL = 1 mA (VCC < 2.5 V); CL = 100 pF Power−On Reset (POR) Each CAT24Cxx* incorporates Power−On Reset (POR) circuitry which protects the internal logic against powering up in the wrong state. A CAT24Cxx device will power up into Standby mode after VCC exceeds the POR trigger level and will power down into Reset mode when VCC drops below the POR trigger level. This bi−directional POR feature protects the device against ‘brown−out’ failure following a temporary loss of power. *For common features, the CAT24C02/04/08/16 will be referred to as CAT24Cxx. During data transfer, the SDA line must remain stable while the SCL line is high. An SDA transition while SCL is high will be interpreted as a START or STOP condition (Figure 2). The START condition precedes all commands. It consists of a HIGH to LOW transition on SDA while SCL is HIGH. The START acts as a ‘wake−up’ call to all receivers. Absent a START, a Slave will not respond to commands. The STOP condition completes all commands. It consists of a LOW to HIGH transition on SDA while SCL is HIGH. NOTE: The I/O pins of CAT24Cxx do not obstruct the SCL and SDA lines if the VCC supply is switched off. During power−up, the SCL and SDA pins (connected with pull−up resistors to VCC) will follow the VCC monotonically from VSS (0 V) to nominal VCC value, regardless of pull−up resistor value. The delta between the VCC and the instantaneous voltage levels during power ramping will be determined by the relation between bus time constant (determined by pull−up resistance and bus capacitance) and actual VCC ramp rate. Pin Description SCL: The Serial Clock input pin accepts the Serial Clock generated by the Master. SDA: The Serial Data I/O pin receives input data and transmits data stored in EEPROM. In transmit mode, this pin is open drain. Data is acquired on the positive edge, and is delivered on the negative edge of SCL. A0, A1 and A2: The Address inputs set the device address when cascading multiple devices. When not driven, these pins are pulled LOW internally. WP: The Write Protect input pin inhibits all write operations, when pulled HIGH. When not driven, this pin is pulled LOW internally. Device Addressing The Master initiates data transfer by creating a START condition on the bus. The Master then broadcasts an 8−bit serial Slave address. For normal Read/Write operations, the first 4 bits of the Slave address are fixed at 1010 (Ah). The next 3 bits are used as programmable address bits when cascading multiple devices and/or as internal address bits. The last bit of the slave address, R/W, specifies whether a Read (1) or Write (0) operation is to be performed. The 3 address space extension bits are assigned as illustrated in Figure 3. A2, A1 and A0 must match the state of the external address pins, and a10, a9 and a8 are internal address bits. Functional Description The CAT24Cxx supports the Inter−Integrated Circuit (I2C) Bus data transmission protocol, which defines a device that sends data to the bus as a transmitter and a device receiving data as a receiver. Data flow is controlled by a Master device, which generates the serial clock and all START and STOP conditions. The CAT24Cxx acts as a Slave device. Master and Slave alternate as either transmitter or receiver. Acknowledge After processing the Slave address, the Slave responds with an acknowledge (ACK) by pulling down the SDA line during the 9th clock cycle (Figure 4). The Slave will also acknowledge the address byte and every data byte presented in Write mode. In Read mode the Slave shifts out a data byte, and then releases the SDA line during the 9th clock cycle. As long as the Master acknowledges the data, the Slave will continue transmitting. The Master terminates the session by not acknowledging the last data byte (NoACK) and by issuing a STOP condition. Bus timing is illustrated in Figure 5. I2C Bus Protocol The I2C bus consists of two ‘wires’, SCL and SDA. The two wires are connected to the VCC supply via pull−up resistors. Master and Slave devices connect to the 2−wire bus via their respective SCL and SDA pins. The transmitting device pulls down the SDA line to ‘transmit’ a ‘0’ and releases it to ‘transmit’ a ‘1’. Data transfer may be initiated only when the bus is not busy (see AC Characteristics). www.onsemi.com 5 CAT24C02, CAT24C04, CAT24C08, CAT24C16 SCL SDA START CONDITION STOP CONDITION Figure 2. Start/Stop Timing 1 0 1 0 A2 A1 A0 R/W CAT24C02 1 0 1 0 A2 A1 a8 R/W CAT24C04 1 0 1 0 A2 a9 a8 R/W CAT24C08 1 0 1 0 a10 a9 a8 R/W CAT24C16 Figure 3. Slave Address Bits BUS RELEASE DELAY (TRANSMITTER) SCL FROM MASTER 1 BUS RELEASE DELAY (RECEIVER) 8 9 DATA OUTPUT FROM TRANSMITTER DATA OUTPUT FROM RECEIVER ACK SETUP (w tSU:DAT) ACK DELAY (v tAA) START Figure 4. Acknowledge Timing tF tHIGH tR tLOW tLOW SCL tSU:STA tHD:DAT tHD:SDA tSU:DAT tSU:STO SDA IN tAA tDH SDA OUT Figure 5. Bus Timing www.onsemi.com 6 tBUF CAT24C02, CAT24C04, CAT24C08, CAT24C16 WRITE OPERATIONS Byte Write sixteen bytes are received and the STOP condition has been sent by the Master, the internal Write cycle begins. At this point all received data is written to the CAT24Cxx in a single write cycle. In Byte Write mode, the Master sends the START condition and the Slave address with the R/W bit set to zero to the Slave. After the Slave generates an acknowledge, the Master sends the byte address that is to be written into the address pointer of the CAT24Cxx. After receiving another acknowledge from the Slave, the Master transmits the data byte to be written into the addressed memory location. The CAT24Cxx device will acknowledge the data byte and the Master generates the STOP condition, at which time the device begins its internal Write cycle to nonvolatile memory (Figure 6). While this internal cycle is in progress (tWR), the SDA output will be tri−stated and the CAT24Cxx will not respond to any request from the Master device (Figure 7). Acknowledge Polling The acknowledge (ACK) polling routine can be used to take advantage of the typical write cycle time. Once the stop condition is issued to indicate the end of the host’s write operation, the CAT24Cxx initiates the internal write cycle. The ACK polling can be initiated immediately. This involves issuing the start condition followed by the slave address for a write operation. If the CAT24Cxx is still busy with the write operation, NoACK will be returned. If the CAT24Cxx has completed the internal write operation, an ACK will be returned and the host can then proceed with the next read or write operation. Page Write The CAT24Cxx writes up to 16 bytes of data in a single write cycle, using the Page Write operation (Figure 8). The Page Write operation is initiated in the same manner as the Byte Write operation, however instead of terminating after the data byte is transmitted, the Master is allowed to send up to fifteen additional bytes. After each byte has been transmitted the CAT24Cxx will respond with an acknowledge and internally increments the four low order address bits. The high order bits that define the page address remain unchanged. If the Master transmits more than sixteen bytes prior to sending the STOP condition, the address counter ‘wraps around’ to the beginning of page and previously transmitted data will be overwritten. Once all BUS ACTIVITY: MASTER S T A R T Hardware Write Protection With the WP pin held HIGH, the entire memory is protected against Write operations. If the WP pin is left floating or is grounded, it has no impact on the operation of the CAT24Cxx. The state of the WP pin is strobed on the last falling edge of SCL immediately preceding the first data byte (Figure 9). If the WP pin is HIGH during the strobe interval, the CAT24Cxx will not acknowledge the data byte and the Write request will be rejected. Delivery State The CAT24Cxx is shipped erased, i.e., all bytes are FFh. SLAVE ADDRESS ADDRESS BYTE DATA BYTE a7 − a 0 d7 − d 0 S T O P P S SLAVE A C K A C K Figure 6. Byte Write Sequence www.onsemi.com 7 A C K CAT24C02, CAT24C04, CAT24C08, CAT24C16 SCL 8th Bit SDA ACK Byte n tWR STOP CONDITION START CONDITION ADDRESS Figure 7. Write Cycle Timing BUS ACTIVITY: MASTER S T A R T DATA BYTE n ADDRESS BYTE SLAVE ADDRESS DATA BYTE n+1 S T O P DATA BYTE n+P S P A C K SLAVE n=1 P v 15 A C K A C K A C K Figure 8. Page Write Sequence ADDRESS BYTE DATA BYTE 1 8 9 a7 a0 1 8 d7 d0 SCL SDA tSU:WP WP tHD:WP Figure 9. WP Timing www.onsemi.com 8 A C K CAT24C02, CAT24C04, CAT24C08, CAT24C16 READ OPERATIONS Immediate Read address of the location it wishes to read. After the CAT24Cxx acknowledges the byte address, the Master device resends the START condition and the slave address, this time with the R/W bit set to one. The CAT24Cxx then responds with its acknowledge and sends the requested data byte. The Master device does not acknowledge the data (NoACK) but will generate a STOP condition (Figure 11). Upon receiving a Slave address with the R/W bit set to ‘1’, the CAT24Cxx will interpret this as a request for data residing at the current byte address in memory. The CAT24Cxx will acknowledge the Slave address, will immediately shift out the data residing at the current address, and will then wait for the Master to respond. If the Master does not acknowledge the data (NoACK) and then follows up with a STOP condition (Figure 10), the CAT24Cxx returns to Standby mode. Sequential Read If during a Read session, the Master acknowledges the 1st data byte, then the CAT24Cxx will continue transmitting data residing at subsequent locations until the Master responds with a NoACK, followed by a STOP (Figure 12). In contrast to Page Write, during Sequential Read the address count will automatically increment to and then wrap−around at end of memory (rather than end of page). Selective Read Selective Read operations allow the Master device to select at random any memory location for a read operation. The Master device first performs a ‘dummy’ write operation by sending the START condition, slave address and byte BUS ACTIVITY: MASTER N O S T A R T S AT CO KP SLAVE ADDRESS P S A C K SLAVE SCL D ATA BYTE 8 9 8th Bit SDA DATA OUT NO ACK STOP Figure 10. Immediate Read Sequence and Timing BUS ACTIVITY: MASTER S T A R T S T A R T ADDRESS BYTE SLAVE ADDRESS S N O S AT CO KP SLAVE ADDRESS P S A C K SLAVE A C K A C K D ATA BYTE Figure 11. Selective Read Sequence N O BUS ACTIVITY: MASTER A C K SLAVE ADDRESS A C K S AT CO KP A C K P SLAVE A C K D ATA BYTE n D ATA BYTE n+1 D ATA BYTE n+2 Figure 12. Sequential Read Sequence www.onsemi.com 9 D ATA BYTE n+x CAT24C02, CAT24C04, CAT24C08, CAT24C16 Ordering Information CAT24C02 Ordering Information (Notes 10, 11) Device Order Number Specific Device Marking Package Type Temperature Range (Note 9) Lead Finish Shipping C1 TSOT−23−5 Industrial NiPdAu Tape & Reel, 3,000 Units / Reel Specific Device Marking Package Type Temperature Range (Note 9) Lead Finish Shipping CAT24C02TDI−GT3A CAT24C04 Ordering Information Device Order Number CAT24C04WI−GT3 24C04K SOIC−8 Industrial NiPdAu Tape & Reel, 3,000 Units / Reel CAT24C04YI−GT3 C04K TSSOP−8 Industrial NiPdAu Tape & Reel, 3,000 Units / Reel CAT24C04C4UTR R WLCSP−4 Industrial N/A (Notes 12 and 13) CAT24C04C4ATR 4 WLCSP−4 Industrial N/A Tape & Reel, 5,000 Units / Reel CAT24C04C5ATR 4 WLCSP−5 Industrial N/A Tape & Reel, 5,000 Units / Reel CAT24C04TDI−GT3 C2 TSOT−23−5 Industrial NiPdAu Tape & Reel, 3,000 Units / Reel C2U UDFN8−EP Industrial NiPdAu Tape & Reel, 3,000 Units / Reel Specific Device Marking Package Type Temperature Range (Note 9) Lead Finish Shipping CAT24C04HU4I−GT3 CAT24C08 Ordering Information Device Order Number CAT24C08WI−GT3 24C08K SOIC−8 Industrial NiPdAu Tape & Reel, 3,000 Units / Reel CAT24C08YI−GT3 C08K TSSOP−8 Industrial NiPdAu Tape & Reel, 3,000 Units / Reel CAT24C08C4UTR T WLCSP−4 Industrial N/A (Notes 12 and 13) CAT24C08C4ATR 8 WLCSP−4 Industrial N/A Tape & Reel, 5,000 Units / Reel CAT24C08C4CTR** 8 WLCSP−4 Industrial N/A Tape & Reel, 5,000 Units / Reel CAT24C08C5ATR 8 WLCSP−5 Industrial N/A Tape & Reel, 5,000 Units / Reel C3 TSOT−23−5 Industrial NiPdAu Tape & Reel, 3,000 Units / Reel C3U UDFN8−EP Industrial NiPdAu Tape & Reel, 3,000 Units / Reel Specific Device Marking Package Type Temperature Range (Note 9) Lead Finish Shipping CAT24C16WI−GT3 24C16K SOIC−8 Industrial NiPdAu Tape & Reel, 3,000 Units / Reel CAT24C16YI−GT3 C16K TSSOP−8 Industrial NiPdAu Tape & Reel, 3,000 Units / Reel CAT24C16C4UTR 6 WLCSP−4 Industrial N/A (Notes 12 and 13) CAT24C16C4ATR 6 WLCSP−4 Industrial N/A Tape & Reel, 5,000 Units / Reel CAT24C16C5ATR 6 WLCSP−5 Industrial N/A Tape & Reel, 5,000 Units / Reel CAT24C08TDI−GT3 CAT24C08HU4I−GT3 CAT24C16 Ordering Information Device Order Number CAT24C16TDI−GT3 C4 TSOT−23−5 Industrial NiPdAu Tape & Reel, 3,000 Units / Reel CAT24C16HU4I−GT3 C4U UDFN8−EP Industrial NiPdAu Tape & Reel, 3,000 Units / Reel CAT24C16HU4E−GT3 (Note 17) C4E UDFN8−EP Extended NiPdAu Tape & Reel, 3,000 Units / Reel 9. Industrial temperature range is −40°C to +85°C and Extended temperature range is −40°C to +125°C. 10. Part numbers ending with “A” for the CAT24C02 are for Gresham (Product Rev H) only die. 11. The CAT24C02 “non−A” Device Order Numbers use Gresham die (Rev H) for date codes, starting August 1st, 2012. Therefore the Specific Device Marking for these OPNs reflect Rev H die. 12. Contact local sales office for availability. 13. CAUTION: The EEPROM devices delivered in WLCSP must never be exposed to ultraviolet light. When exposed to ultraviolet light the EEPROM cells lose their stored data. 14. All packages are RoHS−compliant (Lead−free, Halogen−free). 15. For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. 16. For detailed information and a breakdown of device nomenclature and numbering systems, please see the onsemi Device Nomenclature document, TND310/D, available at www.onsemi.com 17. In Development ** CAT24C08C4CTR is a backside coated version. Contact factory for other densities. www.onsemi.com 10 CAT24C02, CAT24C04, CAT24C08, CAT24C16 PACKAGE DIMENSIONS SOIC 8, 150 mils CASE 751BD ISSUE O E1 E SYMBOL MIN A 1.35 1.75 A1 0.10 0.25 b 0.33 0.51 c 0.19 0.25 D 4.80 5.00 E 5.80 6.20 E1 3.80 MAX 4.00 1.27 BSC e PIN # 1 IDENTIFICATION NOM h 0.25 0.50 L 0.40 1.27 θ 0º 8º TOP VIEW D h A1 θ A c e b L SIDE VIEW END VIEW Notes: (1) All dimensions are in millimeters. Angles in degrees. (2) Complies with JEDEC MS-012. www.onsemi.com 11 CAT24C02, CAT24C04, CAT24C08, CAT24C16 PACKAGE DIMENSIONS TSSOP8, 4.4x3 CASE 948AL ISSUE A q q www.onsemi.com 12 CAT24C02, CAT24C04, CAT24C08, CAT24C16 PACKAGE DIMENSIONS TSOT−23, 5 LEAD CASE 419AE ISSUE O SYMBOL D MIN NOM A1 0.01 0.05 0.10 A2 0.80 0.87 0.90 b 0.30 c 0.12 A e E1 1.00 0.45 0.15 D 2.90 BSC E 2.80 BSC E1 1.60 BSC E MAX e 0.20 0.95 TYP L 0.30 0.40 L1 0.60 REF L2 0.25 BSC 0º θ 0.50 8º TOP VIEW A2 A b q L A1 c L1 SIDE VIEW END VIEW Notes: (1) All dimensions are in millimeters. Angles in degrees. (2) Complies with JEDEC MO-193. www.onsemi.com 13 L2 CAT24C02, CAT24C04, CAT24C08, CAT24C16 PACKAGE DIMENSIONS UDFN8, 2x3 EXTENDED PAD CASE 517AZ ISSUE A B A D L NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25MM FROM THE TERMINAL TIP. 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. L L1 PIN ONE REFERENCE 0.10 C DETAIL A ÇÇ ÇÇ ÇÇ ALTERNATE CONSTRUCTIONS E ÉÉÉ ÇÇÇ ÇÇÇ EXPOSED Cu 0.10 C TOP VIEW DETAIL B A 0.08 C NOTE 4 A1 SIDE VIEW DETAIL A 1 D2 4 C ÉÉÉ ÉÉÉ ÇÇÇ A3 A1 DETAIL B A3 0.10 C MOLD CMPD DIM A A1 A3 b D D2 E E2 e L L1 ALTERNATE CONSTRUCTIONS SEATING PLANE RECOMMENDED SOLDERING FOOTPRINT* 1.56 L 8X 0.68 E2 8 5 e BOTTOM VIEW 8X MILLIMETERS MIN MAX 0.45 0.55 0.00 0.05 0.13 REF 0.20 0.30 2.00 BSC 1.35 1.45 3.00 BSC 1.25 1.35 0.50 BSC 0.25 0.35 −−− 0.15 1.45 3.40 b 0.10 M C A B 0.05 M C 1 8X 0.50 PITCH NOTE 3 0.30 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. www.onsemi.com 14 CAT24C02, CAT24C04, CAT24C08, CAT24C16 PACKAGE DIMENSIONS WLCSP4, 0.84x0.86 CASE 567NX ISSUE A A B E ÈÈ ÈÈ PIN A1 REFERENCE D A3 TOP VIEW DETAIL A A 0.05 C 0.05 C A1 NOTE 4 C SIDE VIEW b 0.05 C A B e 4X 0.03 C A2 OPTIONAL BACKSIDE COAT DETAIL A SEATING PLANE NOTE 3 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DATUM C, THE SEATING PLANE, IS DEFINED BY THE SPHERICAL CROWNS OF THE CONTACT BALLS. 4. COPLANARITY APPLIES TO SPHERICAL CROWNS OF THE CONTACT BALLS. 5. DIMENSION b IS MEASURED AT THE MAXIMUM CONTACT BALL DIAMETER PARALLEL TO DATUM C. DIM A A1 A2 A3 b D E e MILLIMETERS MIN NOM MAX −−− −−− 0.30 0.08 0.10 0.12 0.15 REF 0.025 REF 0.16 0.18 0.20 0.82 0.84 0.86 0.88 0.84 0.86 0.40 BSC RECOMMENDED SOLDERING FOOTPRINT* e A1 B NOTE 5 PACKAGE OUTLINE A 1 2 BOTTOM VIEW 0.40 PITCH 4X 0.40 PITCH 0.18 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. www.onsemi.com 15 CAT24C02, CAT24C04, CAT24C08, CAT24C16 PACKAGE DIMENSIONS WLCSP4, 0.84x0.86 CASE 567DC ISSUE F A B E ÈÈ PIN A1 REFERENCE D TOP VIEW A3 A2 OPTIONAL BACKSIDE COAT DETAIL A A 0.05 C 0.05 C A1 NOTE 4 C SIDE VIEW b 0.05 C A B e 4X 0.03 C DETAIL A SEATING PLANE NOTE 3 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DATUM C, THE SEATING PLANE, IS DEFINED BY THE SPHERICAL CROWNS OF THE CONTACT BALLS. 4. COPLANARITY APPLIES TO SPHERICAL CROWNS OF THE CONTACT BALLS. 5. DIMENSION b IS MEASURED AT THE MAXIMUM CONTACT BALL DIAMETER PARALLEL TO DATUM C. DIM A A1 A2 A3 b D E e MILLIMETERS MIN NOM MAX −−− −−− 0.38 0.08 0.10 0.12 0.23 REF 0.025 REF 0.16 0.18 0.20 0.82 0.84 0.86 0.84 0.86 0.88 0.40 BSC RECOMMENDED SOLDERING FOOTPRINT* A1 e PACKAGE OUTLINE B NOTE 5 A 1 0.40 PITCH 2 BOTTOM VIEW 4X 0.40 PITCH 0.18 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. www.onsemi.com 16 CAT24C02, CAT24C04, CAT24C08, CAT24C16 PACKAGE DIMENSIONS WLCSP5, 0.86x0.84 CASE 567DD ISSUE D È È NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DATUM C, THE SEATING PLANE, IS DEFINED BY THE SPHERICAL CROWNS OF THE CONTACT BALLS. 4. COPLANARITY APPLIES TO SPHERICAL CROWNS OF THE CONTACT BALLS. 5. DIMENSION b IS MEASURED AT THE MAXIMUM CONTACT BALL DIAMETER PARALLEL TO DATUM C. A B E PIN A1 REFERENCE D TOP VIEW DIM A A1 A2 b D E e e1 A A2 0.05 C 0.05 C 5X C SIDE VIEW A1 NOTE 3 SEATING PLANE MILLIMETERS MIN NOM MAX −−− −−− 0.39 0.10 0.12 0.14 0.23 REF 0.14 0.16 0.18 0.84 0.86 0.88 0.82 0.84 0.86 0.30 BSC 0.52 BSC RECOMMENDED SOLDERING FOOTPRINT* 5X e b 0.05 C A B 0.03 C C B A NOTE 4 PIN A1 REFERENCE A1 e1 0.52 PITCH 123 BOTTOM VIEW PACKAGE OUTLINE 5X 0.30 PITCH 0.16 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 www.onsemi.com 17 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
CAT24C08YI-G 价格&库存

很抱歉,暂时无法提供与“CAT24C08YI-G”相匹配的价格&库存,您可以联系我们找货

免费人工找货