0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
NLV14543BDR2G

NLV14543BDR2G

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    SOIC16_150MIL

  • 描述:

    IC LATCH/DECODER/DRIVER 16-SOIC

  • 数据手册
  • 价格&库存
NLV14543BDR2G 数据手册
MC14543B BCD-to-Seven Segment Latch/Decoder/Driver for Liquid Crystals The MC14543B BCD−to−seven segment latch/decoder/driver is designed for use with liquid crystal readouts, and is constructed with complementary MOS (CMOS) enhancement mode devices. The circuit provides the functions of a 4−bit storage latch and an 8421 BCD−to−seven segment decoder and driver. The device has the capability to invert the logic levels of the output combination. The phase (Ph), blanking (BI), and latch disable (LD) inputs are used to reverse the truth table phase, blank the display, and store a BCD code, respectively. For liquid crystal (LC) readouts, a square wave is applied to the Ph input of the circuit and the electrically common backplane of the display. The outputs of the circuit are connected directly to the segments of the LC readout. For other types of readouts, such as light−emitting diode (LED), incandescent, gas discharge, and fluorescent readouts, connection diagrams are given on this data sheet. Applications include instrument (e.g., counter, DVM etc.) display driver, computer/calculator display driver, cockpit display driver, and various clock, watch, and timer uses. Features • • • • • • • • • • Latch Storage of Code Blanking Input Readout Blanking on All Illegal Input Combinations Direct LED (Common Anode or Cathode) Driving Capability Supply Voltage Range = 3.0 V to 18 V Capable of Driving 2 Low−power TTL Loads, 1 Low−power Schottky TTL Load or 2 HTL Loads Over the Rated Temperature Range Pin−for−Pin Replacement for CD4056A (with Pin 7 Tied to VSS). Chip Complexity: 207 FETs or 52 Equivalent Gates NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable. This Device is Pb−Free and is RoHS Compliant http://onsemi.com 1 SOIC−16 D SUFFIX CASE 751B PIN ASSIGNMENT LD 1 16 VDD C 2 15 f B 3 14 g D 4 13 e A 5 12 d PH 6 11 c BI 7 10 b VSS 8 9 a MARKING DIAGRAM 16 14543BG AWLYWW 1 A WL, L YY, Y WW, W G = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet. © Semiconductor Components Industries, LLC, 2014 July, 2014 − Rev. 10 1 Publication Order Number: MC14543B/D MC14543B MAXIMUM RATINGS (Voltages Referenced to VSS) Symbol Value Unit DC Supply Voltage Range VDD −0.5 to +18.0 V Input Voltage Range, All Inputs Vin −0.5 to VDD +0.5 V DC Input Current per Pin Iin ± 10 mA Power Dissipation per Package (Note 1) PD 500 mW Operating Temperature Range TA −55 to +125 °C Storage Temperature Range Tstg −65 to +150 °C Maximum Continuous Output Drive Current (Source or Sink) IOHmax IOLmax 10 (per Output) mA Maximum Continuous Output Power (Source or Sink) (Note 2) POHmax POLmax 70 (per Output) mW Parameter Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Temperature Derating: “D/DW” Package: –7.0 mW/_C From 65_C To 125_C 2. POHmax = IOH (VOH − VDD) and POLmax = IOL (VOL − VSS) This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high−impedance circuit. For proper operation, Vin and Vout should be constrained to the range VSS ≤ (Vin or Vout) ≤ VDD. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open. TRUTH TABLE Inputs LD Outputs BI Ph* D C B A a b c d e f g Display X 1 0 X X X X 0 0 0 0 0 0 0 Blank 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 0 1 1 0 1 2 3 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 0 1 1 0 0 0 1 0 1 1 1 0 1 1 1 0 4 5 6 7 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 8 9 Blank Blank 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Blank Blank Blank Blank 0 0 0 X X X X † † † ** † Inverse of Output Combinations Above ** Display as above X = Don’t care † = Above Combinations * = For liquid crystal readouts, apply a square wave to Ph For common cathode LED readouts, select Ph = 0 For common anode LED readouts, select Ph = 1 ** = Depends upon the BCD code previously applied when LD = 1 http://onsemi.com 2 MC14543B ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS) − 55_C 25_C VDD 125_C Symbol Vdc Min Max Min Typ (Note 3) Max Min Max Unit “0” Level VOL 5.0 10 15 − − − 0.05 0.05 0.05 − − − 0 0 0 0.05 0.05 0.05 − − − 0.05 0.05 0.05 Vdc “1” Level VOH 5.0 10 15 4.95 9.95 14.95 − − − 4.95 9.95 14.95 5.0 10 15 − − − 4.95 9.95 14.95 − − − Vdc Input Voltage “0” Level (VO = 4.5 or 0.5 Vdc) (VO = 9.0 or 1.0 Vdc) (VO = 13.5 or 1.5 Vdc) VIL 5.0 10 15 − − − 1.5 3.0 4.0 − − − 2.25 4.50 6.75 1.5 3.0 4.0 − − − 1.5 3.0 4.0 “1” Level (VO = 0.5 or 4.5 Vdc) (VO = 1.0 or 9.0 Vdc) (VO = 1.5 or 13.5 Vdc) VIH 5.0 10 15 3.5 7.0 11 − − − 3.5 7.0 11 2.75 5.50 8.25 − − − 3.5 7.0 11 − − − Output Drive Current (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 0.5 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc) IOH 5.0 5.0 10 10 15 –3.0 –0.64 − –1.6 –4.2 − − − − − –2.4 –0.51 − –1.3 –3.4 –4.2 –0.88 –10.1 –2.25 –8.8 − − − − − –1.7 –0.36 − –0.9 –2.4 − − − − IOL 5.0 10 10 15 0.64 1.6 − 4.2 − − − − 0.51 1.3 − 3.4 0.88 2.25 10.1 8.8 − − − − 0.36 0.9 − 2.4 − − − mAdc Input Current Iin 15 − ±0.1 − ±0.00001 ±0.1 − ±1.0 mAdc Input Capacitance Cin − − − − 5.0 7.5 − − pF Quiescent Current (Per Package) Vin = 0 or VDD, Iout = 0 mA IDD 5.0 10 15 − − − 5.0 10 20 − − − 0.005 0.010 0.015 5.0 10 20 − − − 150 300 600 mAdc Total Supply Current (Note 4, 5) (Dynamic plus Quiescent, Per Package) (CL = 50 pF on all outputs, all buffers switching) IT 5.0 10 15 Characteristic Output Voltage Vin = VDD or 0 Vin = 0 or VDD (VOL = 0.4 Vdc) (VOL = 0.5 Vdc) (VOL = 9.5 Vdc) (VOL = 1.5 Vdc) Source Sink Vdc Vdc mAdc IT = (1.6 mA/kHz) f + IDD IT = (3.1 mA/kHz) f + IDD IT = (4.7 mA/kHz) f + IDD mAdc Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Noise immunity specified for worst−case input combination. Noise Margin for both “1” and “0” level = 1.0 V min @ VDD = 5.0 V = 2.0 V min @ VDD = 10 V = 2.5 V min @ VDD = 15 V 4. To calculate total supply current at loads other than 50 pF: IT(CL) = IT(50 pF) + 3.5 x 10−3 (CL − 50) VDDf where: IT is in mA (per package), CL in pF, VDD in V, and f in kHz is input frequency. 5. The formulas given are for the typical characteristics only at 25_C. http://onsemi.com 3 MC14543B SWITCHING CHARACTERISTICS (Note 6) (CL = 50 pF, TA = 25_C) Characteristic Symbol Output Rise Time tTLH = (3.0 ns/pF) CL + 30 ns tTLH = (1.5 ns/pF) CL + 15 ns tTLH = (1.1 ns/pF) CL + 10 ns tTLH Output Fall Time tTHL = (1.5 ns/pF) CL + 25 ns tTHL = (0.75 ns/pF) CL + 12.5 ns tTHL = (0.55 ns/pF) CL + 12.5 ns tTHL Turn−Off Delay Time tPLH = (1.7 ns/pF) CL + 520 ns tPLH = (0.66 ns/pF) CL + 217 ns tPLH = (0.5 ns/pF) CL + 160 ns tPLH Turn−On Delay Time tPHL = (1.7 ns/pF) CL + 420 ns tPHL = (0.66 ns/pF) CL + 172 ns tPHL = (0.5 ns/pF) CL + 130 ns tPHL VDD Min Typ Max 5.0 10 15 − − − 100 50 40 200 100 80 5.0 10 15 − − − 100 50 40 200 100 80 5.0 10 15 − − − 605 250 185 1210 500 370 5.0 10 15 − − − 505 205 155 1650 660 495 Unit ns ns ns ns Setup Time tsu 5.0 10 15 350 450 500 − − − ns Hold Time th 5.0 10 15 40 30 20 − − − ns tWH 5.0 10 15 250 100 80 − − − ns Latch Disable Pulse Width (Strobing Data) 125 50 40 6. The formulas given are for the typical characteristics only. LOGIC DIAGRAM BI7 VDD = PIN 16 VSS = PIN 8 9a A5 10b 11c B3 12d 13e C2 15f 14g D4 LD1 PHASE6 http://onsemi.com 4 MC14543B 24 VDD = 15 Vdc VDD = 5.0 Vdc POHmax = 70 mWdc IOL , SINK CURRENT (mAdc) IOH, SOURCE CURRENT (mAdc) 0 -6.0 VDD = 10 Vdc -12 -18 18 VDD = 10 Vdc 12 6.0 VDD = 15 Vdc -24 -16 POLmax = 70 mWdc VDD = 5.0 Vdc VSS = 0 Vdc VSS = 0 Vdc 0 -12 -8.0 -4.0 (VOH - VDD), SOURCE DEVICE VOLTAGE (Vdc) 0 0 Figure 1. Typical Output Source Characteristics 4.0 8.0 12 (VOL - VSS), SINK DEVICE VOLTAGE (Vdc) 16 Figure 2. Typical Output Sink Characteristics (a) Inputs D, Ph, and BI low, and Inputs A, B, and LD high. 20 ns 20 ns 90% 10% C VDD 50% tPLH tPHL 90% 50% g 10% tTLH tTHL VSS VOH VOL (b) Inputs D, Ph, and BI low, and Inputs A and B high. 20 ns 90% 10% LD VDD 50% VSS tsu Inputs BI and Ph low, and Inputs D and LD high. f in respect to a system clock. C th 50% 50% VSS All outputs connected to respective CL loads. 20 ns A, B, AND C 10% ANY OUTPUT 20 ns 90% 50% 1 2f 50% DUTY CYCLE VDD VOH g VDD VOL VSS (c) Data DCBA strobed into latches VDD VOH LD VOL 50% tWH Figure 3. Dynamic Power Dissipation Signal Waveforms Figure 4. Dynamic Signal Waveforms http://onsemi.com 5 VSS MC14543B CONNECTIONS TO VARIOUS DISPLAY READOUTS LIQUID CRYSTAL (LC) READOUT MC14543B OUTPUT Ph INCANDESCENT READOUT APPROPRIATE VOLTAGE ONE OF SEVEN SEGMENTS COMMON BACKPLANE MC14543B OUTPUT Ph SQUARE WAVE (VSS TO VDD) VSS LIGHT EMITTING DIODE (LED) READOUT COMMON CATHODE LED GAS DISCHARGE READOUT COMMON ANODE LED MC14543B OUTPUT Ph APPROPRIATE VOLTAGE VDD MC14543B OUTPUT Ph MC14543B OUTPUT Ph VSS VDD NOTE: Bipolar transistors may be added for gain (for VDD v 10 V or Iout ≥ 10 mA). VSS CONNECTIONS TO SEGMENTS a f g b e c d VDD = PIN 16 VSS = PIN 8 DISPLAY 0 1 2 3 4 5 6 7 http://onsemi.com 6 8 9 MC14543B ORDERING INFORMATION Package Shipping† MC14543BDG SOIC−16 (Pb−Free) 48 Units / Rail MC14543BDR2G SOIC−16 (Pb−Free) 2500 / Tape & Reel NLV14543BDR2G* SOIC−16 (Pb−Free) 2500 / Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable. http://onsemi.com 7 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SOIC−16 CASE 751B−05 ISSUE K DATE 29 DEC 2006 SCALE 1:1 −A− 16 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 9 −B− 1 P 8 PL 0.25 (0.010) 8 M B S G R K F X 45 _ C −T− SEATING PLANE J M D DIM A B C D F G J K M P R MILLIMETERS MIN MAX 9.80 10.00 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0_ 7_ 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.386 0.393 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0_ 7_ 0.229 0.244 0.010 0.019 16 PL 0.25 (0.010) M T B S A S STYLE 1: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. COLLECTOR BASE EMITTER NO CONNECTION EMITTER BASE COLLECTOR COLLECTOR BASE EMITTER NO CONNECTION EMITTER BASE COLLECTOR EMITTER COLLECTOR STYLE 2: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. CATHODE ANODE NO CONNECTION CATHODE CATHODE NO CONNECTION ANODE CATHODE CATHODE ANODE NO CONNECTION CATHODE CATHODE NO CONNECTION ANODE CATHODE STYLE 3: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. COLLECTOR, DYE #1 BASE, #1 EMITTER, #1 COLLECTOR, #1 COLLECTOR, #2 BASE, #2 EMITTER, #2 COLLECTOR, #2 COLLECTOR, #3 BASE, #3 EMITTER, #3 COLLECTOR, #3 COLLECTOR, #4 BASE, #4 EMITTER, #4 COLLECTOR, #4 STYLE 4: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. STYLE 5: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. DRAIN, DYE #1 DRAIN, #1 DRAIN, #2 DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #4 DRAIN, #4 GATE, #4 SOURCE, #4 GATE, #3 SOURCE, #3 GATE, #2 SOURCE, #2 GATE, #1 SOURCE, #1 STYLE 6: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE ANODE ANODE ANODE ANODE ANODE ANODE ANODE ANODE STYLE 7: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. SOURCE N‐CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE P‐CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURCE P‐CH SOURCE P‐CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE N‐CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURCE N‐CH COLLECTOR, DYE #1 COLLECTOR, #1 COLLECTOR, #2 COLLECTOR, #2 COLLECTOR, #3 COLLECTOR, #3 COLLECTOR, #4 COLLECTOR, #4 BASE, #4 EMITTER, #4 BASE, #3 EMITTER, #3 BASE, #2 EMITTER, #2 BASE, #1 EMITTER, #1 SOLDERING FOOTPRINT 8X 6.40 16X 1 1.12 16 16X 0.58 1.27 PITCH 8 9 DIMENSIONS: MILLIMETERS DOCUMENT NUMBER: DESCRIPTION: 98ASB42566B SOIC−16 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
NLV14543BDR2G 价格&库存

很抱歉,暂时无法提供与“NLV14543BDR2G”相匹配的价格&库存,您可以联系我们找货

免费人工找货