0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LMC6482IDT

LMC6482IDT

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    SOIC8_150MIL

  • 描述:

    IC CMOS 2 CIRCUIT 8SO

  • 数据手册
  • 价格&库存
LMC6482IDT 数据手册
LMC6482 Datasheet 16 V CMOS dual rail-to-rail input and output, operational amplifiers Features MiniSO8 SO8 • • • • • • • • • • Low input offset voltage: 2 mV max. Rail-to-rail input and output Excellent CMRR : 98 dB @ 16 V Low current consumption: 900 µA max. Gain bandwidth product: 2.7 MHz Low supply voltage: 2.7 - 16 V Unity gain stable Low input bias current: 50 pA max. High ESD tolerance: 4 kV HBM Extended temp. range: -40 °C to +125 °C Application Maturity status link LMC6482 • • • • • • • Data acquisition systems Battery-powered instrumentation Instrumentation amplifier Active filtering DAC buffer High-impedance sensor interface Current sensing (high and low side) Description The LMC6482 offer rail-to-rail input and output functionality allowing this product to be used on full range input and output without limitation. This rail to rail capability combined with excellent accuracy makes this device ideal for systems such as data acquisition, that require wide input signal range. This is particularly useful for a low-voltage supply such as 2.7 V that the LMC6482 is able to operate with. Thus, the LMC6482 has the great advantage of offering a large span of supply voltages, ranging from 2.7 V to 16 V. It can be used in multiple applications with a unique reference. Low input bias current performance makes the LMC6482 perfect when used for signal conditioning in sensor interface applications. In addition, low- side and highside current measurements can be easily made thanks to rail-to-rail functionality. DS12573 - Rev 3 - October 2021 For further information contact your local STMicroelectronics sales office. www.st.com LMC6482 Pin configuration 1 Pin configuration Figure 1. Pin connection (top view) DS12573 - Rev 3 OUT1 VCC+ IN1- OUT2 IN1+ IN2- VCC- IN2+ page 2/24 LMC6482 Absolute maximum ratings and operating conditions 2 Absolute maximum ratings and operating conditions Table 1. Absolute maximum ratings Symbol Parameter VCC Supply voltage (1) Vid Differential input voltage (2) Vin Input voltage Iin Input current Storage temperature Rthja Thermal resistance junction to ambient (4)(5) 18 V ±VCC mV (VCC-) - 0.2 to (VCC+) + 0.2 V 10 mA -65 to 150 °C MiniSO8 190 SO-8 125 Maximum junction temperature HBM: Human body model ESD Unit (3) Tstg Tj Value MM: machine model 150 (6) °C/W °C 4000 (7) 100 CDM: charged device model (8) 1500 Latch-up immunity 200 V mA 1. All voltage values, except the differential voltage are with respect to the network ground terminal. 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. See for the precautions to follow when using LMC6482 with a high differential input voltage. 3. Input current must be limited by a resistor in series with the inputs. 4. Rth are typical values. 5. Short-circuits can cause excessive heating and destructive dissipation. 6. According to JEDEC standard JESD22-A114F. 7. According to JEDEC standard JESD22-A115A. 8. According to ANSI/ESD STM5.3.1. Table 2. Operating conditions Symbol DS12573 - Rev 3 Parameter VCC Supply voltage Vicm Common mode input voltage range Toper Operating free air temperature range Value 2.7 to 16 (VCC-) - 0.1 to (VCC+) + 0.1 -40 to +125 Unit V °C page 3/24 LMC6482 Electrical characteristics 3 Electrical characteristics Table 3. Electrical characteristics VCC+ = +4 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and RL > 10 kΩ connected to VCC/2 (unless otherwise specified). Symbol Vio Parameter Input offset voltage Conditions Min. Typ. Vicm = VCC/2 2 Tmin < Top < Tmax 2.5 ΔVio/ΔT Input offset voltage drift (1) ΔVio Iib Iio Long term input offset voltage drift (2) Input bias current (1) Input offset current (1) RIN Input resistance CIN Input capacitance CMRR Avd Common mode rejection ratio 20 log (ΔVic/ΔVio) Large signal voltage gain T = 25 °C 1 Vout = VCC/2 1 Tmin < Top < Tmax Vout = VCC/2 1 Tmin < Top < Tmax 65 Tmin < Top < Tmax 60 RL = 2 kΩ, Vout= 0.3 to 3.7 V 85 Tmin < Top < Tmax 80 RL = 10 kΩ, Vout = 0.2 to 3.8 V 85 Tmin < Top < Tmax 80 Tmin < Top < Tmax (voltage drop from VCC+) RL = 10 kΩ tο VCC/2 Iout Isource ICC 85 136 140 6 23 5 15 Vout = 0 V 35 Tmin < Top < Tmax 20 No load, Vout = VCC/2 50 15 mV 37 mA 45 570 Tmin < Top < Tmax SRn mV 20 Tmin < Top < Tmax Gm 15 60 25 Phase margin 50 20 Vout = VCC ɸm dB 60 RL = 10 kΩ tο VCC/2 RL = 10 kΩ, CL = 100 pF pA pF Tmin < Top < Tmax Gain bandwidth product GBP DS12573 - Rev 3 Supply current per amplifier 50 12.5 Tmin < Top < Tmax Isink 50 nV montℎ TΩ 28 RL = 2 kΩ tο VCC/2 Low level output voltage µV/°C 1 Tmin < Top < Tmax VOL mV 200 Vicm = -0.1 to 4.1 V, Vout = VCC/2 High level output voltage Unit 5 200 RL=2 kΩ to VCC/2 VOH Max. 800 900 1.9 µA 2.7 MHz RL = 10 kΩ, CL = 100 pF 50 Degrees Gain margin RL = 10 kΩ, CL = 100 pF 15 dB Negative slew rate Av = 1, Vout = 3 VPP, 10 % to 90% 0.85 V/µs 0.6 page 4/24 LMC6482 Electrical characteristics Symbol Parameter SRn Negative slew rate SRp Positive slew rate en Equivalent input noise voltage THD+N Total harmonic distortion + noise Conditions Min. Tmin < Top < Tmax 0.5 Av = 1, Vout = 3 VPP, 10 % to 90% 1.0 Tmin < Top < Tmax 0.9 Typ. Max. Unit 1.4 V/µs f = 1 kHz 22 f = 10 kHz 19 nV Hz 0.001 % f = 1 kHz, Av = 1, RL = 10 kΩ, BW = 22 kHz, Vin = 0.8 VPP 1. Maximum values are guaranteed by design. 2. Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration (see Section 5.6 Long term input offset voltage drift). DS12573 - Rev 3 page 5/24 LMC6482 Electrical characteristics Table 4. Electrical characteristics VCC+ = +10 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and RL > 10 kΩ connected to VCC/2 (unless otherwise specified). Symbol Vio Parameter Input offset voltage Conditions Min. Typ. Vicm = VCC/2 2 Tmin < Top < Tmax 2.5 ΔVio/ΔT Input offset voltage drift (1) ΔVio Iib Iio Longterm input offset voltage drift (2) Input bias current (1) Input offset current (1) RIN Input resistance CIN Input capacitance CMRR Avd Common mode rejectionratio 20 log (ΔVic/ΔVio) Large signal voltage gain T = 25 °C 25 Vout = VCC/2 1 Tmin < Top < Tmax Vout = VCC/2 1 Tmin < Top < Tmax 72 Tmin < Top < Tmax 67 RL = 2 kΩ, Vout= 0.3 to 9.7 V 90 Tmin < Top < Tmax 85 RL = 10 kΩ, Vout = 0.2 to 9.8 V 90 Tmin < Top < Tmax 85 Tmin < Top < Tmax (voltage drop from VCC+) RL = 10 kΩ tο VCC/2 Iout Isource ICC 92 140 10 42 9 15 Vout = 0 V 50 Tmin < Top < Tmax 40 No load, Vout = VCC/2 SRn Negative slew rate SRp Positive slew rate 70 30 mV 39 mA 69 630 Tmin < Top < Tmax Gain margin mV 40 Tmin < Top < Tmax Gm 30 80 30 Phase margin 70 40 Vout = VCC ɸm dB 80 RL = 10 kΩ tο VCC/2 RL = 10 kΩ, CL = 100 pF pA pF Tmin < Top < Tmax Gain bandwidth product GBP DS12573 - Rev 3 Supply current per amplifier 50 12.5 Tmin < Top < Tmax Isink 50 nV montℎ TΩ 45 RL = 2 kΩ tο VCC/2 Low level output voltage µV/°C 1 Tmin < Top < Tmax VOL mV 200 Vicm = -0.1 to 10.1 V, Vout = VCC/2 High level output voltage Unit 5 200 RL=2 kΩ to VCC/2 VOH Max. 850 1000 1.9 µA 2.7 MHz RL = 10 kΩ, CL = 100 pF 53 Degrees RL = 10 kΩ, CL = 100 pF 15 dB Av = 1, Vout = 8 VPP, 10 % to 90% 0.8 Tmin < Top < Tmax 0.7 Av = 1, Vout = 8 VPP, 10 % to 90% 1.0 1 V/µs 1.3 page 6/24 LMC6482 Electrical characteristics Symbol SRp en Parameter Positive slew rate Equivalent input noise voltage THD+N Total harmonic distortion + noise Conditions Tmin < Top < Tmax Min. Typ. Max. Unit V/µs 0.9 f = 1 kHz 22 f = 10 kHz 19 nV Hz 0.0003 % f = 1 kHz, Av = 1, RL = 10 kΩ, BW = 22 kHz, Vin = 5 VPP 1. Maximum values are guaranteed by design. 2. Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration (see Section 5.6 Long term input offset voltage drift). DS12573 - Rev 3 page 7/24 LMC6482 Electrical characteristics Table 5. Electrical characteristics VCC+ = +16 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and RL > 10 kΩ connected to VCC/2 (unless otherwise specified). Symbol Vio ΔVio/ΔT ΔVio Iib Iio Parameter Input offset voltage Longterm input offset voltage drift (2) Input bias current (1) Input offset current (1) Input resistance CIN Input capacitance SVRR Avd Min. Vicm = VCC/2 Tmin < Top < Tmax 2.5 T = 25 °C Vout = VCC/2 1 Tmin < Top < Tmax 1 Tmin < Top < Tmax 75 20 log (ΔVic/ΔVio) Tmin < Top < Tmax 70 Supply voltage rejection ratio Vcc = 4 to 16 V 100 20 log (ΔVcc/ΔVio) Tmin < Top < Tmax 90 RL = 2 kΩ, Vout= 0.3 to 15.7 V 90 Tmin < Top < Tmax 85 RL = 10 kΩ, Vout = 0.2 to 15.8 V 90 Tmin < Top < Tmax 85 Tmin < Top < Tmax (voltage drop from VCC+) RL = 10 kΩ 12.5 pF 98 131 Iout Isource ICC 149 16 70 15 Tmin < Top < Tmax 15 Vout = 0 V 50 Tmin < Top < Tmax 45 No load, Vout = VCC/2 SRn mV 40 mA 68 660 Tmin < Top < Tmax Gm 40 50 30 Phase margin mV 130 150 Vout = VCC ɸm 40 50 RL = 10 kΩ RL = 10 kΩ, CL = 100 pF 130 150 Tmin < Top < Tmax Gain bandwidth product GBP DS12573 - Rev 3 Supply current per amplifier dB 146 Tmin < Top < Tmax Isink pA TΩ 70 RL = 2 kΩ Low level output voltage 50 1 Tmin < Top < Tmax VOL 50 nV montℎ 200 Vicm = -0.1 to 16.1 V, Vout = VCC/2 High level output voltage mV µV/°C 200 Vout = VCC/2 Unit 5 500 Common mode rejection ratio Large signal voltage gain Max. 2 RL = 2 kΩ to V/2 VOH Typ. Input offset voltage drift (1) RIN CMRR Conditions 900 1000 1.9 µA 2.7 MHz RL = 10 kΩ, CL = 100 pF 55 Degrees Gain margin RL = 10 kΩ, CL = 100 pF 15 dB Negative slew rate Av = 1, Vout = 10 VPP, 10 % to 90% 0.95 V/µs 0.7 page 8/24 LMC6482 Electrical characteristics Symbol Parameter SRn Negative slew rate SRp Positive slew rate en THD+N Equivalent input noise voltage Total harmonic distortion + noise Conditions Tmin < Top < Tmax Min. Typ. Max. Unit 0.6 1.4 V/µs f = 1 kHz 22 f = 10 kHz 19 nV Hz 0.0002 % Av = 1, Vout = 10 VPP, 10 % to 90% Tmin < Top < Tmax f = 1 kHz, Av = 1, RL = 10 kΩ, BW = 22 kHz, Vin = 10 VPP 1 0.9 1. Maximum values are guaranteed by design. 2. Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration (see Section 5.6 Long term input offset voltage drift). DS12573 - Rev 3 page 9/24 LMC6482 Electrical characteristic curves 4 Electrical characteristic curves Figure 3. Input offset voltage distribution at VCC = 16 V Figure 2. Supply current vs. supply voltage 800 30 Vicm=Vcc/2 Vcc=16V Vicm=8V T=25°C 25 Population (%) Supply Current (µA) 600 T=-40°C 400 T=25°C T=125°C 20 15 10 200 5 0 0 2 4 6 8 10 Supply Voltage (V) 12 14 0 -2.0 16 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 1.6 2.0 Input offset voltage (mV) Figure 4. Input offset voltage distribution at VCC = 4 V Figure 5. Channel separation 140 30 Vcc=4V Vicm=2V T=25°C 0 Channel separation (dB) 25 Population (%) -1.6 20 15 10 5 0 80 60 40 20 0 -2.0 -1.6 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 1.6 0 10 2.0 Input offset voltage (mV) 100 1k 10k 100k 1M Frequency (Hz) Figure 6. Output current vs. output voltage at VCC = 2.7 V Figure 7. Output current vs. output voltage at VCC = 16 V 100 30 20 Vcc=16V Vicm=8V Gain=1 Vin=2Vpp T=25ºC Sink 75 Vid=-1V Sink Vid=-1V 0 T=125°C T=25°C T=-40°C -10 -20 -30 0.0 DS12573 - Rev 3 Source Vid=1V Vcc=2.7V 0.5 1.0 1.5 Output Voltage (V) 2.0 2.5 Output Current (mA) Output Current (mA) 50 10 25 0 T=125°C T=25°C T=-40°C -25 -50 -75 -100 0 Source Vid=1V Vcc=16V 2 4 6 8 10 Output Voltage (V) 12 14 16 page 10/24 LMC6482 Electrical characteristic curves Figure 8. Output low voltage vs. supply voltage Figure 9. Output high voltage (drop from VCC+) vs. supply voltage 30 T=-40°C Output voltage (from Vcc+) (mV) Output voltage (mV) 30 Vid=-0.1V Rl=10kΩ to Vcc/2 25 T=25°C 20 T=125°C 15 10 5 0 4 6 8 10 12 Supply Voltage (V) 14 T=25°C T=125°C 15 10 5 4 1.5 15.90 1.0 15.85 0.5 Slew rate (V/µs) 15.95 15.80 0.15 16.00 15.95 15.90 15.85 15.80 0.15 0.10 0.05 0.00 14 16 T=25°C T=125°C T=-40°C -0.5 Vicm=Vcc/2 Vload=Vcc/2 Rl=10kΩ Cl=100pF 4 6 8 10 12 Supply Voltage (V) 14 16 Figure 13. Positive slew rate at VCC = 16 V 6 6 Vcc=16V Vicm=Vcc/2 Rl=10kΩ Cl=100pF 2 T=-40°C 0 T=25°C -2 4 Signal Amplitude (V) 4 Signal Amplitude (V) 0.0 -2.0 Figure 12. Negative slew rate at VCC = 16 V T=125°C 2 T=125°C 0 T=25°C -2 T=-40°C Vcc=16V Vicm=Vcc/2 Rl=10kΩ Cl=100pF -4 -4 DS12573 - Rev 3 12 -1.5 0.00 -6 -2 10 -1.0 Vcc=16V Follower configuration Input voltage (V) 8 Figure 11. Slew rate vs. supply voltage 2.0 0.05 6 Supply Voltage (V) 16.00 0.10 T=-40°C 20 0 16 Figure 10. Output voltage vs. input voltage close to the rail at VCC = 16 V Output voltage (V) Vid=0.1V Rl=10kΩ to Vcc/2 25 0 2 4 6 8 10 Time (µs) 12 14 16 18 -6 -2 0 2 4 6 8 10 Time (µs) 12 14 16 18 page 11/24 LMC6482 Electrical characteristic curves Figure 15. Recovery behavior after a negative step on the input 0.10 Vin 0.00 -0.05 -0.10 0 5 Time (µs) 10 6 0 0.00 0.04 0 0.00 -2 -10 0 10 20 Time (µs) -0.04 40 30 Figure 17. Bode diagram at VCC = 2.7 V 60 0 Phase 50 -30 40 -60 Gain 30 -4 -0.08 Vcc=±8V -6 -0.12 Gain=101 Rl=10kΩ Cl=100pF T=25°C Vin -8 -10 -10 0 10 20 Time (µs) 30 -0.16 -0.20 40 20 10 50 -120 -150 Vcc=2.7V Vicm=1.35V Rl=10kΩ Cl=100pF Gain=101 0 -10 T=25°C -180 -210 T=125°C -20 1k 10k 100k -240 10M 1M Frequency (Hz) 0 Phase -90 T=-40°C Figure 19. Power supply rejection ratio (PSRR) vs. frequency Figure 18. Bode diagram at VCC = 16 V 60 Gain (dB) -0.04 Vcc=±1.35V Phase(°) -2 Input voltage (V) Output Voltage (V) 0.08 Vcc=±1.35V 2 Figure 16. Recovery behavior after a positive step on the input 0.04 Vcc=±8V 4 15 2 0.20 Gain=101 Rl=10kΩ 0.16 Cl=100pF T=25°C 0.12 8 Output Voltage (V) 0.05 Signal Amplitude (V) 10 Vcc=16V Vicm=8V Rl=10kΩ Cl=100pF T=25°C Input voltage (V) Figure 14. Response to a small input voltage step 120 -30 100 40 -60 PSRR+ Gain 80 20 10 -150 Vcc=16V Vicm=8V Rl=10kΩ Cl=100pF Gain=101 0 -10 -120 T=25°C -180 -210 T=125°C -20 1k 10k 100k Frequency (Hz) DS12573 - Rev 3 1M -240 10M PSRR (dB) -90 T=-40°C Phase(°) Gain (dB) 30 60 40 20 0 10 Vcc=16V Vicm=8V Gain=1 Rl=10kΩ Cl=100pF Vosc=200mVPP T=25°C 100 PSRR1k 10k Frequency (Hz) 100k 1M page 12/24 LMC6482 Electrical characteristic curves Figure 20. Output overshoot vs. capacitive load Figure 21. Output impedance vs. frequency in closed loop configuration 200 10000 Vicm=Vcc/2 Rl=10kΩ Vin=100mVpp Gain=1 T=25°C Overshoot (%) 150 125 1000 Vcc=16V Output impedance ( W ) 175 100 Vcc=2.7V 75 50 100 10 1 25 0 10 100 Cload (pF) 0.1 1k 1000 1 0.1 Rl=100kΩ 100 Rl=10kΩ Rl=2kΩ 1E-3 1000 Frequency (Hz) 10000 Rl=100kΩ Vcc=16V Vicm=8V Gain=1 f=1kHz BW=22kHz T=25°C 0.1 1 Output Voltage (Vpp) 10 Figure 25. 0.1 to 10 Hz noise 6 120 Vcc=16V Vicm=Vcc/2 T=25°C 100 80 60 40 Vcc=16V 4 Vicm=8V T=25°C Input voltage noise (µV) Equivalent Input Noise Voltage (nV/VHz) Rl=2kΩ 1E-4 0.01 140 2 0 -2 -4 20 DS12573 - Rev 3 10M 0.01 Figure 24. Noise vs. frequency 0 10 1M Rl=10kΩ THD + N (%) THD + N (%) 1E-4 100k Frequency (Hz) 1 Vcc=16V Vicm=8V Gain=1 Vin=10Vpp BW=80kHz T=25°C 0.01 1E-3 10k Figure 23. THD + N vs. output voltage Figure 22. THD + N vs. frequency 0.1 Vcc=16V Vicm=8V Gain=1 Vosc=30mVRMS T=25°C 100 1k Frequency (Hz) 10k -6 0 2 4 Time (s) 6 8 10 page 13/24 LMC6482 Application information 5 Application information 5.1 Operating voltages The LMC6482 device can operate from 2.7 to 16 V. The parameters are fully specified for 4 V, 10 V, and 16 V power supplies. However, the parameters are very stable in the full VCC range. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 to 125 °C. 5.2 Input pin voltage ranges The LMC6482 device have internal ESD diode protection on the inputs. These diodes are connected between the input and each supply rail to protect the input MOSFETs from electrical discharge. If the input pin voltage exceeds the power supply by 0.5 V, the ESD diodes become conductive and excessive current can flow through them. Without limitation this over current can damage the device. In this case, it is important to limit the current to 10 mA, by adding resistance on the input pin, as described in figure below. Figure 26. Input current limitation 16 V R Vin 5.3 - + + - Vout Rail-to-rail input The LMC6482 device have a rail-to-rail input, and the input common mode range is extended from (VCC-) - 0.1 V to (VCC+) + 0.1 V. 5.4 Rail-to-rail output The operational amplifier output levels can go close to the rails: to a maximum of 40 mV above and below the rail when connected to a 10 kΩ resistive load to VCC/2. 5.5 Input offset voltage drift over temperature The maximum input voltage drift variation over temperature is defined as the offset variation related to the offset value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum input voltage drift over temperature enables the system designer to anticipate the effect of temperature variations. The maximum input voltage drift over temperature is computed using Equation 1. ΔVio Vio T − Vio 25°C ΔT = max T − 25°C (1) where T = -40 °C and 125 °C. The LMC6482 datasheet maximum values are guaranteed by measurements on a representative sample size ensuring a Cpk (process capability index) greater than 1.3. DS12573 - Rev 3 page 14/24 LMC6482 Long term input offset voltage drift 5.6 Long term input offset voltage drift To evaluate product reliability, two types of stress acceleration are used: Voltage acceleration, by changing the applied voltage Temperature acceleration, by changing the die temperature (below the maximum junction temperature allowed by the technology) with the ambient temperature. The voltage acceleration has been defined based on JEDEC results, and is defined using Equation 2 AFV = ϵβ.VS − VU where: AFV is the voltage acceleration factor (2) β is the voltage acceleration constant in 1/V, constant technology parameter (β = 1) VS is the stress voltage used for the accelerated test VU is the voltage used for the application The temperature acceleration is driven by the Arrhenius model, and is defined in Equation 3 Where: AFT is the temperature acceleration factor Ea 1 1 AFT = e k . TU − TS (3) Ea is the activation energy of the technology based on the failure rate k is the Boltzmann constant (8.6173 x 10-5 eV.K-1) TU is the temperature of the die when VU is used (K) TS is the temperature of the die under temperature stress (K) The final acceleration factor, AF, is the multiplication of the voltage acceleration factor and the temperature acceleration factor (Equation 4) AF = AFT × AFV (4) Montℎs = AF × 1000 ℎ × 12 montℎs/ 24 ℎ × 365.25 days (5) VCC = max VPP witℎ Vicm = VCC /2 (6) AF is calculated using the temperature and voltage defined in the mission profile of the product. The AF value can then be used in to calculate the number of months of use equivalent to 1000 hours of reliable stress duration. To evaluate the op amp reliability, a follower stress condition is used where VCC is defined as a function of the maximum operating voltage and the absolute maximum rating (as recommended by JEDEC rules). The Vio drift (in µV) of the product after 1000 h of stress is tracked with parameters at different measurement conditions (see equation 6) The long term drift parameter (ΔVio), estimating the reliability performance of the product, is obtained using the ratio of the Vio (input offset voltage value) drift over the square root of the calculated number of months (Equation 7) ΔVio = Vio drift montℎs (7) Where Vio drift is the measured drift value in the specified test conditions after 1000 h stress duration. 5.7 High values of input differential voltage In a closed loop configuration, which represents the typical use of an op amp, the input differential voltage is low (close to Vio). However, some specific conditions can lead to higher input differential values, such as: operation in an output saturation state operation at speeds higher than the device bandwidth, with output voltage dynamics limited by slew rate. use of the amplifier in a comparator configuration, hence in open loop DS12573 - Rev 3 page 15/24 LMC6482 Capacitive load Use of the LMC6482 in comparator configuration, especially combined with high temperature and long duration can create a permanent drift of Vio. 5.8 Capacitive load Driving large capacitive loads can cause stability problems. Increasing the load capacitance produces gain peaking in the frequency response, with overshoot and ringing in the step response. It is usually considered that with a gain peaking higher than 2.3 dB an op amp might become unstable. Generally, the unity gain configuration is the worst case for stability and the ability to drive large capacitive loads. Figure below "Stability criteria with a serial resistor at different supply voltage" shows the serial resistor that must be added to the output, to make a system stable. The Figure 28. Test configuration for Riso shows the test configuration using an isolation resistor, Riso. Figure 27. Stability criteria with a serial resistor at different supply voltage 1000 Vcc=16V Riso ( W ) Stable Vcc=2.7V 100 Unstable Vicm=Vcc/2 Rl=10kΩ Gain=1 T=25°C 10 100p 1n Cload (F) 10n 100n Figure 28. Test configuration for Riso V CC+ Riso VIN + V CC- 5.9 Cload VOUT 10 kΩ PCB layout recommendations Particular attention must be paid to the layout of the PCB, tracks connected to the amplifier, load, and power supply. The power and ground traces are critical as they must provide adequate energy and grounding for all circuits. The best practice is to use short and wide PCB traces to minimize voltage drops and parasitic inductance. In addition, to minimize parasitic impedance over the entire surface, a multi-via technique that connects the bottom and top layer ground planes together in many locations is often used. The copper traces that connect the output pins to the load and supply pins should be as wide as possible to minimize trace resistance. 5.10 Optimized application recommendation It is recommended to place a 22 nF capacitor as close as possible to the supply pin. A good decoupling will help to reduce electromagnetic interference impact. DS12573 - Rev 3 page 16/24 LMC6482 Package information 6 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 6.1 MiniSO8 package information Figure 29. MiniSO8 package outline Table 6. MiniSO8 mechanical data Dim. Millimeters Min. Inches Typ. A Min. Typ. 1.1 A1 0 A2 0.75 b Max. 0.043 0.15 0 0.95 0.03 0.22 0.4 0.009 0.016 c 0.08 0.23 0.003 0.009 D 2.8 3 3.2 0.11 0.118 0.126 E 4.65 4.9 5.15 0.183 0.193 0.203 E1 2.8 3 3.1 0.11 0.118 0.122 e L 0.85 0.65 0.4 0.6 0.006 0.033 0.8 0.016 0.024 0.95 0.037 L2 0.25 0.01 k 0° 0.037 0.026 L1 ccc DS12573 - Rev 3 Max. 8° 0.1 0° 0.031 8° 0.004 page 17/24 LMC6482 SO8 package information 6.2 SO8 package information Figure 30. SO8 package outline Table 7. SO-8 mechanical data Dim. Millimeters Min. Inches Typ. A Min. Typ. 1.75 0.25 Max. 0.069 A1 0.1 A2 1.25 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.01 D 4.8 4.9 5 0.189 0.193 0.197 E 5.8 6 6.2 0.228 0.236 0.244 E1 3.8 3.9 4 0.15 0.154 0.157 e 0.004 0.01 0.049 1.27 0.05 h 0.25 0.5 0.01 0.02 L 0.4 1.27 0.016 0.05 L1 k ccc DS12573 - Rev 3 Max. 1.04 0 0.04 8° 0.1 1° 8° 0.004 page 18/24 LMC6482 Ordering information 7 Ordering information Table 8. Order code Order code LMC6482IDT LMC6482IST DS12573 - Rev 3 Temperature range -40 ° to +125 °C Package SO8 MiniSO8 Packing Tape and reel Marking LMC6482 6482 page 19/24 LMC6482 Revision history Table 9. Document revision history DS12573 - Rev 3 Date Revision Changes 24-Jul-2018 1 Initial release. 12-Sep-2018 2 Updated the temperature range value in Table 8. Order code. 26-Oct-2021 3 Added Marking column in Table 8. Order code. page 20/24 LMC6482 Contents Contents 1 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 2 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 Electrical characteristic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 5 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 6 7 5.1 Operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.2 Input pin voltage ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.3 Rail-to-rail input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.4 Rail-to-rail output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.5 Input offset voltage drift over temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.6 Long term input offset voltage drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.7 High values of input differential voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.8 Capacitive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.9 PCB layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.10 Optimized application recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 6.1 MiniSO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.2 SO8 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 DS12573 - Rev 3 page 21/24 LMC6482 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Electrical characteristics VCC+ = +4 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and RL > 10 kΩ connected to VCC/2 (unless otherwise specified). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Electrical characteristics VCC+ = +10 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and RL > 10 kΩ connected to VCC/2 (unless otherwise specified). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Electrical characteristics VCC+ = +16 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and RL > 10 kΩ connected to VCC/2 (unless otherwise specified). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 MiniSO8 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 SO-8 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Order code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 DS12573 - Rev 3 page 22/24 LMC6482 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. DS12573 - Rev 3 Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . Supply current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . Input offset voltage distribution at VCC = 16 V . . . . . . . . . . . . . Input offset voltage distribution at VCC = 4 V . . . . . . . . . . . . . . Channel separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output current vs. output voltage at VCC = 2.7 V . . . . . . . . . . . Output current vs. output voltage at VCC = 16 V . . . . . . . . . . . Output low voltage vs. supply voltage . . . . . . . . . . . . . . . . . . Output high voltage (drop from VCC+) vs. supply voltage . . . . . Output voltage vs. input voltage close to the rail at VCC = 16 V . Slew rate vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . Negative slew rate at VCC = 16 V . . . . . . . . . . . . . . . . . . . . . Positive slew rate at VCC = 16 V . . . . . . . . . . . . . . . . . . . . . . Response to a small input voltage step . . . . . . . . . . . . . . . . . Recovery behavior after a negative step on the input . . . . . . . . Recovery behavior after a positive step on the input . . . . . . . . Bode diagram at VCC = 2.7 V . . . . . . . . . . . . . . . . . . . . . . . . Bode diagram at VCC = 16 V . . . . . . . . . . . . . . . . . . . . . . . . Power supply rejection ratio (PSRR) vs. frequency . . . . . . . . . Output overshoot vs. capacitive load . . . . . . . . . . . . . . . . . . . Output impedance vs. frequency in closed loop configuration . . THD + N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. output voltage . . . . . . . . . . . . . . . . . . . . . . . . . Noise vs. frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.1 to 10 Hz noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input current limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stability criteria with a serial resistor at different supply voltage . Test configuration for Riso . . . . . . . . . . . . . . . . . . . . . . . . . . MiniSO8 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . SO8 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 10 10 10 10 10 10 11 11 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 13 14 16 16 17 18 page 23/24 LMC6482 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2021 STMicroelectronics – All rights reserved DS12573 - Rev 3 page 24/24
LMC6482IDT 价格&库存

很抱歉,暂时无法提供与“LMC6482IDT”相匹配的价格&库存,您可以联系我们找货

免费人工找货