0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ST7FLITEUS2M6TR

ST7FLITEUS2M6TR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    SOICN8_150MIL

  • 描述:

    IC MCU 8BIT 1KB FLASH 8SOIC

  • 数据手册
  • 价格&库存
ST7FLITEUS2M6TR 数据手册
ST7LITEUS2 ST7LITEUS5 8-bit MCU with single voltage Flash memory, ADC, timers Features ■ Memories – 1 Kbytes single-voltage Flash Program memory with readout protection, ICP and IAP) 10 K write/erase cycles guaranteed data retention: 20 years at 55 °C – 128 bytes RAM ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O ■ Plastic DIP8 Clock, Reset and Supply management – 3-level low-voltage supervisor (LVD) and auxiliary voltage detector (AVD) for safe power-on/off – Clock sources: internal trimmable 8 MHz RC oscillator, internal low power, low frequency RC oscillator or external clock – Five power saving modes: Halt, Autowakeup from Halt, Active-halt, Wait, Slow ■ Interrupt management – 11 interrupt vectors plus TRAP and RESET – 5 external interrupt lines (on 5 vectors) ■ I/O ports – 5 multifunctional bidirectional I/O lines – 1 additional Output line – 6 alternate function lines – 5 high sink outputs Table 1. SO8 150” DFN8 Plastic DIP16 ■ 2 Timers – One 8-bit Lite timer (LT) with prescaler including: watchdog, one realtime base and one 8-bit input capture. – One 12-bit auto-reload timer (AT) with output compare function and PWM ■ A/D Converter – 10-bit resolution for 0 to VDD – 5 input channels ■ Instruction Set – 8-bit data manipulation – 63 basic instructions with illegal opcode detection – 17 main addressing modes – 8x8 unsigned multiply instruction ■ Development Tools – Full hardware/software development package – Debug module Device summary Features ST7LITEUS2 ST7LITEUS5 Program memory 1 Kbytes RAM (stack) 128 (64) bytes Peripherals LT Timer w/ Wdg, AT Timer w/ 1 PWM ADC Operating Supply - 10-bit 2.4 to 3.3 V @fCPU=4 MHz, 3.3 to 5.5 V @fCPU=8 MHz CPU Frequency Operating Temperature Packages up to 8 MHz RC -40 to +85 °C / -40 to 125 °C SO8 150”, Pastic DIP8, DFN8, Pastic DIP16(1) 1. For development or tool prototyping purposes only. Not orderable in production quantities. February 2009 Rev 5 1/136 www.st.com 1 Contents ST7LITEUS2, ST7LITEUS5 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 Register and memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4 Flash program memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3 Programming modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3.1 In-circuit programming (ICP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3.2 In application programming (IAP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 4.4 I C interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.5 Memory protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.5.1 Readout protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.5.2 Flash Write/Erase protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.6 Related documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.7 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.7.1 5 6 2/136 Flash Control/Status register (FCSR) . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Central processing unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.3 CPU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.3.1 Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.3.2 Index registers (X and Y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.3.3 Program counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.3.4 Condition Code register (CC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.3.5 Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Supply, reset and clock management . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.1 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.2 Internal RC oscillator adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ST7LITEUS2, ST7LITEUS5 6.3 6.4 Contents Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.3.1 Main Clock Control/Status register (MCCSR) . . . . . . . . . . . . . . . . . . . . 30 6.3.2 RC Control register (RCCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.3.3 System Integrity (SI) Control/status register (SICSR) . . . . . . . . . . . . . . 31 6.3.4 AVD Threshold Selection register (AVDTHCR) . . . . . . . . . . . . . . . . . . . 32 6.3.5 Clock Controller Control/Status register (CKCNTCSR) . . . . . . . . . . . . . 32 Reset sequence manager (RSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.4.2 Asynchronous external RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.4.3 External Power-on reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.4.4 Internal low voltage detector (LVD) reset . . . . . . . . . . . . . . . . . . . . . . . . 36 6.4.5 Internal watchdog reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O 6.5 7 6.5.1 Multiplexed I/O Reset Control register 1 (MUXCR1) . . . . . . . . . . . . . . . 37 6.5.2 Multiplexed I/O Reset Control register 0 (MUXCR0) . . . . . . . . . . . . . . . 37 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 7.1 Non maskable software interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 7.2 External interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 7.3 Peripheral interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 7.4 8 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 7.3.1 External Interrupt Control register 1 (EICR1) . . . . . . . . . . . . . . . . . . . . . 41 7.3.2 External Interrupt Control register 2 (EICR2) . . . . . . . . . . . . . . . . . . . . . 42 System integrity management (SI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7.4.1 Low voltage detector (LVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7.4.2 Auxiliary voltage detector (AVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 7.4.3 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 7.4.4 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Power saving modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 8.2 Slow mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 8.3 Wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 8.4 Active-halt and Halt modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 8.5 8.4.1 Active-halt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 8.4.2 Halt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Auto-wakeup from Halt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3/136 Contents ST7LITEUS2, ST7LITEUS5 8.5.1 9 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 I/O ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 9.2 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 9.2.1 Input modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 9.2.2 Output modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 9.2.3 Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 9.3 Unused I/O pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 9.4 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 9.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 9.6 I/O port implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O 10 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 10.1 10.2 10.3 4/136 Lite timer (LT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 10.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 10.1.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 10.1.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 10.1.4 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 10.1.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 10.1.6 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 12-bit auto-reload timer (AT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 10.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 10.2.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 10.2.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 10.2.4 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 10.2.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 10.2.6 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 10-bit A/D converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 10.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 10.3.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 10.3.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 10.3.4 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 10.3.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 10.3.6 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 ST7LITEUS2, ST7LITEUS5 11 Contents Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 11.1 ST7 addressing modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 11.1.1 Inherent mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 11.1.2 Immediate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 11.1.3 Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 11.1.4 Indexed mode (no offset, short, long) . . . . . . . . . . . . . . . . . . . . . . . . . . 86 11.1.5 Indirect modes (short, long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 11.1.6 Indirect indexed modes (short, long) . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 11.1.7 Relative modes (direct, indirect) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O 11.2 Instruction groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 11.2.1 12 Illegal opcode reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 12.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 12.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 12.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 12.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 12.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 12.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 12.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 12.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 12.4 12.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 12.3.2 Operating conditions with low voltage detector (LVD) . . . . . . . . . . . . . . 95 12.3.3 Auxiliary voltage detector (AVD) thresholds . . . . . . . . . . . . . . . . . . . . . . 96 12.3.4 Internal RC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 12.4.1 Supply current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 12.4.2 Internal RC oscillator supply current characteristics . . . . . . . . . . . . . . 100 12.4.3 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 12.5 Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 12.6 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 12.7 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 12.8 12.7.1 Functional EMS (electromagnetic susceptibility) . . . . . . . . . . . . . . . . . 105 12.7.2 Electromagnetic Interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 12.7.3 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 106 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5/136 Contents ST7LITEUS2, ST7LITEUS5 12.9 12.8.1 General characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 12.8.2 Output driving current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 109 Control pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 12.10 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 13 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 13.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 13.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O 14 Device configuration and ordering information . . . . . . . . . . . . . . . . . 123 14.1 Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 14.1.1 OPTION BYTE 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 14.1.2 OPTION BYTE 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 14.2 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 14.3 Development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 14.4 14.3.1 Starter kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 14.3.2 Development and debugging tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 14.3.3 Programming tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 14.3.4 Order codes for development and programming tools . . . . . . . . . . . . . 128 ST7 application notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 15 Known limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 16 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6/136 ST7LITEUS2, ST7LITEUS5 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Device pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 FLASH register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Predefined RC oscillator calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Internal RC prescaler selection bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Clock register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Multiplexed IO register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Interrupt sensitivity bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Description of low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Description of interrupt events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 System integrity register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Enabling/disabling Active-halt and Halt modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Configuring the dividing factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 AWU register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 DR register value and output pin status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 I/O port mode options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 I/O port configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Effect of low power modes on I/O ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Description of interrupt events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Port configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 I/O port register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Description of low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Interrupt events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Lite timer register map and reset values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Description of low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Interrupt events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Counter clock selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Effect of low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Channel selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Configuring the ADC clock speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 ADC register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Description of addressing modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 ST7 addressing mode overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Instructions supporting inherent addressing mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Instructions supporting inherent immediate addressing mode . . . . . . . . . . . . . . . . . . . . . . 86 Instructions supporting direct, indexed, indirect and indirect indexed addressing modes . 87 Instructions supporting relative modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 ST7 instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Illegal opcode detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Operating characteristics with LVD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Operating characteristics with AVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O 7/136 List of tables Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. ST7LITEUS2, ST7LITEUS5 Voltage drop between AVD flag set and LVD reset generation . . . . . . . . . . . . . . . . . . . . . 96 Internal RC oscillator characteristics (5.0 V calibration) . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Internal RC oscillator characteristics (3.3 V calibration) . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Supply current characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Internal RC oscillator supply current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 On-chip peripheral characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 General timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Auto-wakeup RC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 RAM and Hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Flash Program memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 General characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Output driving current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Asynchronous RESET pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 ADC accuracy with VDD = 3.3 to 5.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 ADC accuracy with VDD = 2.7 to 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 ADC accuracy with VDD = 2.4V to 2.7V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 8-lead very thin fine pitch dual flat no-lead package mechanical data . . . . . . . . . . . . . . . 118 8-pin plastic small outline package, 150-mil width, package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 8-pin plastic dual in-line package, 300-mil width package mechanical data. . . . . . . . . . . 120 16-pin plastic dual in-line package, 300-mil width, package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Startup clock selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 LVD threshold configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Definition of sector 0 size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Supported order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Development tool order codes for the ST7LITEUSx family . . . . . . . . . . . . . . . . . . . . . . . 129 ST7 application notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 79. Table 80. Table 81. Table 82. 8/136 ST7LITEUS2, ST7LITEUS5 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. General block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 8-pin SO and Plastic DIP package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 8-pin DFN package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 16-pin package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Typical I2C interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 CPU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Stack manipulation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Clock switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Clock management block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Reset sequence phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Reset block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Reset sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Interrupt processing flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Low voltage detector vs reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Reset and supply management block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Using the AVD to monitor VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Power saving mode transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Slow mode clock transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Wait mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Active-halt timing overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Active-halt mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Halt timing overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Halt mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 AWUFH mode block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 AWUF Halt timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 AWUFH mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 I/O port general block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Interrupt I/O port state transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Lite timer block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Watchdog timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Input capture timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 PWM function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 PWM signal example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 ADC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 fCPU maximum operating frequency versus VDD supply voltage . . . . . . . . . . . . . . . . . . . . 95 Typical accuracy with RCCR=RCCR0 vs VDD= 2.4-6.0 V and temperature . . . . . . . . . . . 98 Typical accuracy with RCCR=RCCR1 vs VDD= 2.4-6.0V and temperature. . . . . . . . . . . . 98 Typical IDD in run mode vs. internal clock frequency and VDD . . . . . . . . . . . . . . . . . . . 101 Typical IDD in WFI mode vs. internal clock frequency and VDD . . . . . . . . . . . . . . . . . . . 101 Typical IDD in Slow, Slow-wait and Active-halt mode vs VDD & int RC = 8 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 IDD vs temp @VDD 5 V & int RC = 8 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 IDD vs temp @VDD 5 V & int RC = 4 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 IDD vs temp @VDD 5 V & int RC = 2 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O Figure 45. Figure 46. Figure 47. 9/136 List of figures Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. Figure 66. Figure 67. Figure 68. Figure 69. ST7LITEUS2, ST7LITEUS5 Two typical applications with unused I/O pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Typical IPU vs. VDD with VIN=VSSl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Typical VOL at VDD = 2.4 V (standard pins) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Typical VOL at VDD = 3 V (standard pins) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Typical VOL at VDD = 5 V (standard pins) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Typical VOL at VDD = 2.4 V (HS pins) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Typical VOL at VDD = 3 V (HS pins) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Typical VOL at VDD = 5 V (HS pins) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Typical VDD-VOH at VDD = 2.4 V (HS pins) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Typical VDD-VOH at VDD = 3 V (HS pins). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Typical VDD-VOH at VDD = 5 V (HS pins). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Typical VOL vs. VDD (HS pins) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Typical VDD-VOH vs. VDD (HS pins). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 RESET pin protection when LVD is enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 RESET pin protection when LVD is disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Typical application with ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 8-lead very thin fine pitch dual flat no-lead package outline . . . . . . . . . . . . . . . . . . . . . . . 118 8-pin plastic small outline package, 150-mil width package outline . . . . . . . . . . . . . . . . . 119 8-pin plastic dual in-line package, 300-mil width package outline . . . . . . . . . . . . . . . . . . 120 16-pin plastic dual in-line package, 300-mil width, package outline . . . . . . . . . . . . . . . . . 121 Option list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O 10/136 ST7LITEUS2, ST7LITEUS5 1 Introduction Introduction The ST7LITEUS2 and ST7LITEUS5 are members of the ST7 microcontroller family. All ST7 devices are based on a common industry-standard 8-bit core, featuring an enhanced instruction set. The ST7LITEUS2 and ST7LITEUS5 feature FLASH memory with byte-by-byte In-Circuit Programming (ICP) and In-Application Programming (IAP) capability. Under software control, the ST7LITEUS2 and ST7LITEUS5 can be placed in Wait, Slow, or Halt mode, reducing power consumption when the application is in idle or standby state. The enhanced instruction set and addressing modes of the ST7 offer both power and flexibility to software developers, enabling the design of highly efficient and compact application code. In addition to standard 8-bit data management, all ST7 microcontrollers feature true bit manipulation, 8x8 unsigned multiplication and indirect addressing modes. ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O For easy reference, all parametric data are located in Section 12 on page 92. The devices feature an on-chip debug module (DM) to support in-circuit debugging (ICD). For a description of the DM registers, refer to the ST7 I2C protocol reference manual. Figure 1. General block diagram AWU RC OSC Internal Clock 8-MHz RC OSC External Clock VDD VSS with WATCHDOG POWER SUPPLY PORT A CONTROL 8-BIT CORE ALU 1 KByte FLASH MEMORY ADDRESS AND DATA BUS PA3 / RESET LITE TIMER LVD 12-BIT AUTORELOAD TIMER PA5:0 (6 bits) 10-BIT ADC RAM (128 Bytes) 11/136 Pin description 2 ST7LITEUS2, ST7LITEUS5 Pin description Figure 2. 8-pin SO and Plastic DIP package pinout VDD 1 PA5 (HS) / AIN4 / CLKIN 2 ei4 ei0 7 PA0 (HS) / AIN0 / ATPWM / ICCDATA PA4 (HS) / AIN3/MCO 3 ei3 ei1 6 PA1 (HS) / AIN1 / ICCCLK PA3 / RESET 4 ei2 5 PA2 (HS) / LTIC / AIN2 8 VSS ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O 1. HS: High sink capability. 2. eix : associated external interrupt vector Figure 3. 12/136 8-pin DFN package pinout VDD 1 PA5 (HS) / AIN4 / CLKIN 2 ei4 PA4 (HS) / AIN3/MCO 3 ei3 PA3 / RESET 4 1. HS: High sink capability. 2. eix : associated external interrupt vector 8 VSS ei0 7 PA0 (HS) / AIN0 / ATPWM / ICCDATA ei1 6 PA1 (HS) / AIN1 / ICCCLK ei2 5 PA2 (HS) / LTIC / AIN2 ST7LITEUS2, ST7LITEUS5 Figure 4. Pin description 16-pin package pinout Reserved 1) 1 1 NC VDD 2 1 VSS RESET 3 ei0 1 PA0 (HS) / AIN0 / ATPWM ICCCLK 4 ei1 1 PA1 (HS) / AIN1 PA5 (HS) / AIN4 / CLKIN 5 ei4 12 NC ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O PA4 (HS) / AIN3/MCO 6 PA3 7 ei210 NC 8 9 ei3 11 ICCDATA PA2 (HS) / LTIC / AIN2 NC 1. Reserved pins must be tied to ground. 2. The differences versus the 8-pin packages are listed below: The I2C signals (ICCCLK and ICCDATA) are mapped on dedicated pins. The RESET signal is mapped on a dedicated pin. It is not multiplexed with PA3. PA3 pin is always configured as output. Any change on multiplexed IO reset control registers (MUXCR1 and MUXCR2) will have no effect on PA3 functionality. Refer to Section 6.5: Register description on page 37. 13/136 Pin description ST7LITEUS2, ST7LITEUS5 Legend/abbreviations for Table 2 Type: I = input, O = output, S = supply In/Output level: CT= CMOS 0.3 VDD /0.7 VDD with input trigger Output level: HS = High sink (on N-buffer only) Port and control configuration ● Input: float = floating, wpu = weak pull-up, int = interrupt, ana = analog ● Output: OD = open drain, PP = push-pull The RESET configuration of each pin is shown in bold which is valid as long as the device is in reset state. ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O Device pin description Port/control PP OD Output ana int Input float Output Pin name Input Pin no. Type Level wpu Table 2. Main function (after reset) Alternate function 1 VDD S Main power supply 2 PA5/AIN4/CLKIN I/ CT HS O X ei4 X X X Port A5 Analog input 4 or External Clock Input 3 PA4/AIN3/MCO I/ CT HS O X ei3 X X X Port A4 Analog input 3 or main clock output 4 PA3/RESET (1) O X X Port A3 RESET(1) 5 PA2/AIN2/LTIC I/ CT HS O X X Port A2 Analog input 2 or Lite Timer Input Capture X X ei2 X 6 PA1/AIN1/ ICCCLK I/ CT HS O X ei1 X X X Port A1 Analog input 1 or In Circuit Communication Clock Caution: During normal operation this pin must be pulled-up, internally or externally (external pull-up of 10k mandatory in noisy environment). This is to avoid entering I2C mode unexpectedly during a reset. In the application, even if the pin is configured as output, any reset will put it back in pull-up 7 PA0/AIN0/ATPW M/ICCDATA I/ CT HS O X ei0 X X X Port A0 Analog input 0 or Auto-Reload Timer PWM or In Circuit Communication Data 8 VSS S Ground 1. After a reset, the multiplexed PA3/RESET pin will act as RESET. To configure this pin as output (Port A3), write 55h to MUXCR0 and AAh to MUXCR1. For further details, please refer to Section 6.5 on page 37. 14/136 ST7LITEUS2, ST7LITEUS5 3 Register and memory map Register and memory map As shown in Figure 5, the MCU is capable of addressing 64K bytes of memories and I/O registers. The available memory locations consist of 128 bytes of register locations, 128 bytes of RAM and 1 Kbyte of user program memory. The RAM space includes up to 64 bytes for the stack from 00C0h to 00FFh. The highest address bytes contain the user reset and interrupt vectors. The Flash memory contains two sectors (see Figure 5) mapped in the upper part of the ST7 addressing space so the reset and interrupt vectors are located in Sector 0 (FE00h-FFFFh). ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O The size of Flash Sector 0 and other device options are configurable by option byte. Warning: Figure 5. Memory locations marked as “Reserved” must never be accessed. Accessing a reserved area can have unpredictable effects on the device. Memory map 0000h HW registers(1) 007Fh 0080h 0080h Short addressing RAM (zero page) 00C0h RAM (128 Bytes) b 64-byte stack 00FFh 00FFh 0100h DEE0h DEE1h DEE2h Reserved FBFFh FC00h 1Kbytes FLASH PROGRAM MEMORY FC00h FDFFh FE00h Flash Memory (1 Kbytes) FFFFh DEE3h RCCRH0 RCCRL0 RCCRH1 RCCRL1 0.5 Kbytes SECTOR 1 0.5 Kbytes SECTOR 0 FFDFh FFE0h Interrupt & Reset vectors(3) FFFFh 1. See Table 3. 2. See Section 6.2 on page 28 for the description of RCCRHx registers. 3. See Table 9. 15/136 Register and memory map Table 3. Address 0000h 0001h 0002h Hardware register map (1) Block Port A Register label PADR PADDR PAOR 0003h000Ah 000Bh 000Ch 000Dh 000Eh 000Fh 0010h 0011h 0012h 0013h ST7LITEUS2, ST7LITEUS5 Register name Port A Data register Port A Data Direction register Port A Option register Reset status 00h(2) 08h 02h(3) Remarks R/W R/W R/W Reserved area (8 bytes) LITE TIMER LTCSR LTICR ATCSR CNTRH AUTO- CNTRL RELOAD ATRH TIMER ATRL PWMCR PWM0CSR Lite Timer Control/Status register Lite Timer Input Capture register 0xh 00h R/W Read only Timer Control/Status register Counter register High Counter register Low Auto-Reload register High Auto-Reload register Low PWM Output Control register PWM 0 Control/Status register 00h 00h 00h 00h 00h 00h 00h R/W Read only Read only R/W R/W R/W R/W 00h 00h R/W R/W 00h R/W ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O 0014h to 0016h 0017h 0018h Reserved area (3 bytes) AUTODCR0H RELOAD DCR0L TIMER 0019h to 002Eh 0002Fh PWM 0 Duty Cycle register High PWM 0 Duty Cycle register Low Reserved area (22 bytes) FLASH FCSR 0030h to 0033h Flash Control/Status register Reserved area (4 bytes) 0034h 0035h 0036h ADC ADCCSR ADCDRH ADCDRL A/D Control Status register A/D Data register High A/D Data register Low 00h xxh 00h R/W Read only R/W 0037h ITC EICR1 External Interrupt Control register 1 00h R/W 0038h MCC MCCSR Main Clock Control/Status register 00h R/W FFh 0000 0x00b R/W R/W 0039h 003Ah Clock and RCCR Reset SICSR 003Bh to 003Ch RC oscillator Control register System Integrity Control/Status register Reserved area (2 bytes) 003Dh ITC EICR2 External Interrupt Control register 2 00h R/W 003Eh AVD AVDTHCR AVD Threshold Selection register 03h R/W Clock Controller Control/Status register 09h R/W 00h 00h R/W R/W 003Fh Clock CKCNTCSR controller 0040h to 0046h 0047h 0048h 16/136 Reserved area (7 bytes) MuxIOreset MUXCR0 MUXCR1 Mux IO-Reset Control register 0 Mux IO-Reset Control register 1 ST7LITEUS2, ST7LITEUS5 Table 3. Register and memory map Hardware register map (continued)(1) Register label Address Block 0049h 004Ah AWU AWUPR AWUCSR AWU Prescaler register AWU Control/Status register FFh 00h R/W R/W DM(4) DMCR DMSR DMBK1H DMBK1L DMBK2H DMBK2L DM Control register DM Status register DM Breakpoint register 1 High DM Breakpoint register 1 Low DM Breakpoint register 2 High DM Breakpoint register 2 Low 00h 00h 00h 00h 00h 00h R/W R/W R/W R/W R/W R/W 004Bh 004Ch 004Dh 004Eh 004Fh 0050h Register name Reset status Remarks ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O 0051h to 007Fh Reserved area (47 bytes) 1. Legend: x=undefined, R/W=read/write 2. The contents of the I/O port DR registers are readable only in output configuration. In input configuration, the values of the I/O pins are returned instead of the DR register contents. 3. The bits associated with unavailable pins must always keep their reset value. 4. For a description of the DM registers, see the ST7 I2C Protocol Reference Manual. 17/136 Flash program memory 4 Flash program memory 4.1 Introduction ST7LITEUS2, ST7LITEUS5 The ST7 single voltage extended Flash (XFlash) is a non-volatile memory that can be electrically erased and programmed either on a byte-by-byte basis or up to 32 bytes in parallel. The XFlash devices can be programmed off-board (plugged in a programming tool) or onboard using in-circuit programming or in-application programming. The array matrix organization allows each sector to be erased and reprogrammed without affecting other sectors. ) s ( t 4.2 Main features c u d o ) r s ( P t c e t u e d l o o r s P b e O t 4.3 Programming modes e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O ● ICP (in-circuit programming) ● IAP (in-application programming) ● ICT (in-circuit testing) for downloading and executing user application test patterns in RAM ● Sector 0 size configurable by option byte ● Readout and write protection The ST7 can be programmed in three different ways: ● Insertion in a programming tool In this mode, FLASH sectors 0 and 1 and option byte row can be programmed or erased. ● In-circuit programming In this mode, FLASH sectors 0 and 1 and option byte row can be programmed or erased without removing the device from the application board. ● In-application programming In this mode, sector 1 can be programmed or erased without removing the device from the application board and while the application is running. 4.3.1 In-circuit programming (ICP) ICP uses a protocol called I2C (in-circuit communication) which allows an ST7 plugged on a printed circuit board (PCB) to communicate with an external programming device connected via cable. ICP is performed in three steps: ● 18/136 Switch the ST7 to I2C mode. This is done by driving a specific signal sequence on the ICCCLK/DATA pins while the RESET pin is pulled low. When the ST7 enters I2C mode, it fetches a specific RESET vector which points to the ST7 system memory containing ST7LITEUS2, ST7LITEUS5 Flash program memory the I2C protocol routine. This routine enables the ST7 to receive bytes from the I2C interface. ● Download ICP driver code in RAM from the ICCDATA pin ● Execute ICP driver code in RAM to program the FLASH memory Depending on the ICP driver code downloaded in RAM, FLASH memory programming can be fully customized (number of bytes to program, program locations, or selection of the serial communication interface for downloading). 4.3.2 In application programming (IAP) This mode uses an IAP driver program previously programmed in Sector 0 by the user (in ICP mode). ) s ( t c u d o ) r s ( P t c e 4.4 I C interface t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O This mode is fully controlled by user software. This allows it to be adapted to the user application, (user-defined strategy for entering programming mode, choice of communications protocol used to fetch the data to be stored etc). IAP mode can be used to program any memory areas except Sector 0, which is write/erase protected to allow recovery in case errors occur during the programming operation. 2 ICP needs a minimum of 4 and up to 6 pins to be connected to the programming tool. These pins are: ● RESET: device reset ● VSS: device power supply ground ● ICCCLK: I2C output serial clock pin ● ICCDATA: I2C input serial data pin ● CLKIN: main clock input for external source ● VDD: application board power supply Refer to Figure 6 for a description of the I2C interface. If the ICCCLK or ICCDATA pins are only used as outputs in the application, no signal isolation is necessary. As soon as the programming tool is plugged to the board, even if an I2C session is not in progress, the ICCCLK and ICCDATA pins are not available for the application. If they are used as inputs by the application, isolation such as a serial resistor has to be implemented in case another device forces the signal. Refer to the programming tool documentation for recommended resistor values. During the ICP session, the programming tool must control the RESET pin. This can lead to conflicts between the programming tool and the application reset circuit if it drives more than 5 mA at high level (push pull output or pull-up resistor1 kΩ or a reset management IC with open drain output and pull-up resistor>1 kΩ, no additional components are needed. In all cases the user must ensure that no external reset is generated by the application during the I2C session. The use of Pin 7 of the I2C connector depends on the programming tool architecture. This pin must be connected when using most ST programming tools (it is used to monitor the application power supply). Please refer to the programming tool manual. 19/136 Flash program memory ST7LITEUS2, ST7LITEUS5 Pin 9 has to be connected to the CLKIN pin of the ST7 when I2C mode is selected with option bytes disabled (35-pulse I2C entry mode). When option bytes are enabled (38-pulse I2C entry mode), the internal RC clock (internal RC or AWU RC) is forced. If internal RC is selected in the option byte, the internal RC is provided. If AWU RC or external clock is selected, the AWU RC oscillator is provided. A serial resistor must be connected to I2C connector pin 6 in order to prevent contention on PA3/RESET pin. Contention may occur if a tool forces a state on RESET pin while PA3 pin forces the opposite state in output mode. The resistor value is defined to limit the current below 2 mA at 5 V. If PA3 is used as output push-pull, then the application must be switched off to allow the tool to take control of the RESET pin (PA3). To allow the programming tool to drive the RESET pin below VIL, special care must also be taken when a pull-up is placed on PA3 for application reasons. ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b protection O4.5 Memory e t e l o s b O Caution: During normal operation, ICCCLK pin must be pulled- up, internally or externally (external pull-up of 10 kΩ mandatory in noisy environment). This is to avoid entering I2C mode unexpectedly during a reset. In the application, even if the pin is configured as output, any reset will put it back in input pull-up. Figure 6. Typical I2C interface PROGRAMMING TOOL I2C CONNECTOR I2C Cable I2 C CONNECTOR HE10 CONNECTOR TYPE (See Note 3) OPTIONAL (See Note 4) 9 7 5 3 1 10 8 6 4 2 APPLICATION BOARD APPLICATION RESET SOURCE 3.3kΩ (See Note 5) See Note 2 APPLICATION POWER SUPPLY See Note 1 and Caution APPLICATION I/O ICCDATA RESET ST7 ICCCLK CLKIN VDD See Note 1 There are two different types of memory protection: readout protection and Write/Erase Protection which can be applied individually. 4.5.1 Readout protection Readout protection, when selected provides a protection against program memory content extraction and against write access to Flash memory. Even if no protection can be considered as totally unbreakable, the feature provides a very high level of protection for a general purpose microcontroller. Program memory is protected. 20/136 ST7LITEUS2, ST7LITEUS5 Flash program memory In flash devices, this protection is removed by reprogramming the option. In this case, program memory is automatically erased, and the device can be reprogrammed. Readout protection selection depends on the device type: 4.5.2 ● In Flash devices it is enabled and removed through the FMP_R bit in the option byte. ● In ROM devices it is enabled by mask option specified in the option list. Flash Write/Erase protection Write/erase protection, when set, makes it impossible to both overwrite and erase program memory. Its purpose is to provide advanced security to applications and prevent any change being made to the memory content. ) s ( t c u d o ) r s ( P t c e t u 4.6 Related documentation e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O Warning: Once set, Write/erase protection can never be removed. A write-protected flash device is no longer reprogrammable. Write/erase protection is enabled through the FMP_W bit in the option byte. For details on Flash programming and I2C protocol, refer to the ST7 Flash programming reference manual and to the ST7 I2C protocol reference manual. 21/136 Flash program memory ST7LITEUS2, ST7LITEUS5 4.7 Register description 4.7.1 Flash Control/Status register (FCSR) This register controls the XFlash erasing and programming using ICP, IAP or other programming methods. 1st RASS Key: 0101 0110 (56h) 2nd RASS Key: 1010 1110 (AEh) When an EPB or another programming tool is used (in socket or ICP mode), the RASS keys are sent automatically. Reset value: 000 0000 (00h) ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O 7 0 0 0 0 0 0 OPT LAT PGM Read/write Table 4. Address (Hex.) 002Fh 22/136 FLASH register map and reset values Register Label FCSR Reset value 7 6 5 4 3 2 1 0 0 0 0 0 0 OPT 0 LAT 0 PGM 0 ST7LITEUS2, ST7LITEUS5 5 Central processing unit 5.1 Introduction Central processing unit This CPU has a full 8-bit architecture and contains six internal registers allowing efficient 8bit data manipulation. 5.2 Main features ● 63 basic instructions ) s ( t c u d o ) r s ( P t c e t u e d l o o 5.3 CPU registers r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O ● Fast 8-bit by 8-bit multiply ● 17 main addressing modes ● Two 8-bit index registers ● 16-bit stack pointer ● Low power modes ● Maskable hardware interrupts ● Non-maskable software interrupt The six CPU registers shown in Figure 7 are not present in the memory mapping and are accessed by specific instructions. 5.3.1 Accumulator (A) The Accumulator is an 8-bit general purpose register used to hold operands and the results of the arithmetic and logic calculations and to manipulate data. 5.3.2 Index registers (X and Y) In indexed addressing modes, these 8-bit registers are used to create either effective addresses or temporary storage areas for data manipulation. (The cross-assembler generates a precede instruction (PRE) to indicate that the following instruction refers to the Y register.) The Y register is not affected by the interrupt automatic procedures (not pushed to and popped from the stack). 5.3.3 Program counter (PC) The program counter is a 16-bit register containing the address of the next instruction to be executed by the CPU. It is made of two 8-bit registers PCL (program counter low which is the LSB) and PCH (program counter high which is the MSB). 23/136 Central processing unit Figure 7. ST7LITEUS2, ST7LITEUS5 CPU registers 7 0 ACCUMULATOR RESET VALUE = XXh 7 0 X INDEX REGISTER RESET VALUE = XXh 7 0 Y INDEX REGISTER RESET VALUE = XXh PCH 15 8 7 PCL 0 PROGRAM COUNTER RESET VALUE = RESET VECTOR @ FFFEh-FFFFh ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O 7 0 1 1 1 H I N Z C CONDITION CODE REGISTER RESET VALUE = 1 1 1 X 1 X X X 15 8 7 0 STACK POINTER RESET VALUE = STACK HIGHER ADDRESS 1. X = Undefined value 5.3.4 Condition Code register (CC) The 8-bit Condition Code register contains the interrupt mask and four flags representative of the result of the instruction just executed. This register can also be handled by the PUSH and POP instructions. These bits can be individually tested and/or controlled by specific instructions. Reset value: 111x1xxx 7 1 0 1 1 H I Read/Write 24/136 N Z C ST7LITEUS2, ST7LITEUS5 Central processing unit Bit 7:5 Set to ‘1’ Bit 4 H Half carry This bit is set by hardware when a carry occurs between bits 3 and 4 of the ALU during an ADD or ADC instruction. It is reset by hardware during the same instructions. 0: No half carry has occurred. 1: A half carry has occurred. This bit is tested using the JRH or JRNH instruction. The H bit is useful in BCD arithmetic subroutines. Bit 3 I Interrupt mask This bit is set by hardware when entering in interrupt or by software to disable all interrupts except the TRAP software interrupt. This bit is cleared by software. 0: Interrupts are enabled. 1: Interrupts are disabled. This bit is controlled by the RIM, SIM and IRET instructions and is tested by the JRM and JRNM instructions. Note: Interrupts requested while I is set are latched and can be processed when I is cleared. By default an interrupt routine is not interruptible because the I bit is set by hardware at the start of the routine and reset by the IRET instruction at the end of the routine. If the I bit is cleared by software in the interrupt routine, pending interrupts are serviced regardless of the priority level of the current interrupt routine. ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O Bit 2 N Negative This bit is set and cleared by hardware. It is representative of the result sign of the last arithmetic, logical or data manipulation. It is a copy of the 7th bit of the result. 0: The result of the last operation is positive or null. 1: The result of the last operation is negative (that is, the most significant bit is a logic 1). This bit is accessed by the JRMI and JRPL instructions. Bit 1 Z Zero This bit is set and cleared by hardware. This bit indicates that the result of the last arithmetic, logical or data manipulation is zero. 0: The result of the last operation is different from zero. 1: The result of the last operation is zero. This bit is accessed by the JREQ and JRNE test instructions. Bit 0 = C Carry/borrow This bit is set and cleared by hardware and software. It indicates an overflow or an underflow has occurred during the last arithmetic operation. 0: No overflow or underflow has occurred. 1: An overflow or underflow has occurred. This bit is driven by the SCF and RCF instructions and tested by the JRC and JRNC instructions. It is also affected by the “bit test and branch”, shift and rotate instructions. 25/136 Central processing unit 5.3.5 ST7LITEUS2, ST7LITEUS5 Stack Pointer (SP) Reset value: 00 FFh 15 0 8 0 0 0 0 0 0 0 Read/write 7 1 0 1 SP5 SP4 SP3 SP2 SP1 SP0 Read/write ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O The Stack Pointer is a 16-bit register which is always pointing to the next free location in the stack. It is then decremented after data has been pushed onto the stack and incremented before data is popped from the stack (see Figure 8). Since the stack is 64 bytes deep, the 10 most significant bits are forced by hardware. Following an MCU Reset, or after a Reset Stack Pointer instruction (RSP), the Stack Pointer contains its reset value (the SP5 to SP0 bits are set) which is the stack higher address. The least significant byte of the Stack Pointer (called S) can be directly accessed by a LD instruction. Note: When the lower limit is exceeded, the Stack Pointer wraps around to the stack upper limit, without indicating the stack overflow. The previously stored information is then overwritten and therefore lost. The stack also wraps in case of an underflow. The stack is used to save the return address during a subroutine call and the CPU context during an interrupt. The user may also directly manipulate the stack by means of the PUSH and POP instructions. In the case of an interrupt, the PCL is stored at the first location pointed to by the SP. Then the other registers are stored in the next locations as shown in Figure 8. ● When an interrupt is received, the SP is decremented and the context is pushed on the stack. ● On return from interrupt, the SP is incremented and the context is popped from the stack. A subroutine call is located at two locations and an interrupt five locations in the stack area. 26/136 ST7LITEUS2, ST7LITEUS5 Figure 8. Central processing unit Stack manipulation example CALL subroutine PUSH Y Interrupt event POP Y RET or RSP IRET @ 00C0h SP SP CC A Y CC A SP CC A X X X PCH PCH PCH PCL PCL PCL PCH PCH PCH PCH PCH PCL PCL PCL PCL PCL SP SP ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O @ 00FFh SP 1. Stack higher address = 00FFh. 2. Stack lower address = 00C0h. 27/136 Supply, reset and clock management 6 ST7LITEUS2, ST7LITEUS5 Supply, reset and clock management The device includes a range of utility features for securing the application in critical situations (for example in case of a power brown-out), and reducing the number of external components. 6.1 Main features ● Clock management – 8 MHz internal RC oscillator (enabled by option byte) ) s ( t c u d o ) r s ( P t c e t u e d l 6.2 Internal RC oscillator adjustmento o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O – External clock Input (enabled by option byte) ● Reset sequence manager (RSM) ● System integrity management (SI) – Main supply low voltage detection (LVD) with reset generation (enabled by option byte) – Auxiliary voltage detector (AVD) with interrupt capability for monitoring the main supply The ST7 contains an internal RC oscillator with a specific accuracy for a given device, temperature and voltage. It can be selected as the start up clock through the CKSEL[1:0] option bits (see Section 14.1 on page 123). It must be calibrated to obtain the frequency required in the application. This is done by software writing a 10-bit calibration value in the RCCR (RC Control register) and in the bits [6:5] in the SICSR (SI Control Status register). Whenever the microcontroller is reset, the RCCR returns to its default value (FFh), i.e. each time the device is reset, the calibration value must be loaded in the RCCR. Predefined calibration values are stored in Flash memory for 3.3 and 5 V VDD supply voltages at 25°C, as shown in the following table. Table 5. Predefined RC oscillator calibration values RCCR RCCRH0 RCCRL0 RCCRH1 RCCRL1 Conditions ST7LITEUS2/ST7LITEUS5 address VDD=5 V TA=25 °C fRC=8 MHz DEE0h(1) (CR[9:2] bits) VDD=3.3 V TA=25 °C fRC=8 MHz DEE2h 1) (CR[9:2] bits) DEE1h 1) (CR[1:0] bits) DEE3h 1) (CR[1:0] bits) 1. DEE0h, DEE1h, DEE2h and DEE3h are located in a reserved area butare special bytes containing also the RC calibration values which are read-accessible only in user mode. If all the Flash space (including the RC calibration value locations) has been erased (after the readout protection removal), then the RC calibration values can still be obtained through these two addresses. 28/136 ST7LITEUS2, ST7LITEUS5 Supply, reset and clock management 1 In I2C mode, the internal RC oscillator is forced as a clock source, regardless of the selection in the option byte. Refer to note 5 in Section 4.4 on page 19 for further details. 2 See Section 12: Electrical characteristics for more information on the frequency and accuracy of the RC oscillator. 3 To improve clock stability and frequency accuracy, it is recommended to place a decoupling capacitor, typically 100nF, between the VDD and VSS pins as close as possible to the ST7 device. Caution: If the voltage or temperature conditions change in the application, the frequency may need to be recalibrated. Note: Refer to application note AN2326 for information on how to calibrate the RC frequency using an external reference signal. ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O The ST7LITEUS2 and ST7LITEUS5 also contain an Auto-wakeup RC oscillator. This RC oscillator should be enabled to enter Auto-wakeup from Halt mode. The Auto-wakeup RC oscillator can also be configured as the startup clock through the CKSEL[1:0] option bits (see Section 14.1 on page 123). This is recommended for applications where very low power consumption is required. Switching from one startup clock to another can be done in run mode as follows (see Figure 9): Case 1 Switching from internal RC to AWU: 1. Set the RC/AWU bit in the CKCNTCSR register to enable the AWU RC oscillator 2. The RC_FLAG is cleared and the clock output is at 1. 3. Wait 3 AWU RC cycles till the AWU_FLAG is set 4. The switch to the AWU clock is made at the positive edge of the AWU clock signal 5. Once the switch is made, the internal RC is stopped Case 2 Switching from AWU RC to internal RC: Note: 1. Reset the RC/AWU bit to enable the internal RC oscillator 2. Using a 4-bit counter, wait until 8 internal RC cycles have elapsed. The counter is running on internal RC clock. 3. Wait till the AWU_FLAG is cleared (1AWU RC cycle) and the RC_FLAG is set (2 RC cycles) 4. The switch to the internal RC clock is made at the positive edge of the internal RC clock signal 5. Once the switch is made, the AWU RC is stopped 1 When the internal RC is not selected, it is stopped so as to save power consumption. 2 When the internal RC is selected, the AWU RC is turned on by hardware when entering Auto-wakeup from Halt mode. 3 When the external clock is selected, the AWU RC oscillator is always on. 29/136 Supply, reset and clock management Figure 9. ST7LITEUS2, ST7LITEUS5 Clock switching Internal RC Set RC/AWU Poll AWU_FLAG until set AWU RC 6.3 Reset RC/AWU Poll RC_FLAG until set AWU RC Internal RC Register description ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O 6.3.1 Main Clock Control/Status register (MCCSR) Reset value: 0000 0000 (00h) 7 0 0 0 0 0 0 0 MCO SMS Read / Write Bits 7:2 Reserved, must be kept cleared. Bit 1 MCO Main Clock Out enable bit This bit is read/write by software and cleared by hardware after a reset. This bit allows to enable the MCO output clock. 0: MCO clock disabled, I/O port free for general purpose I/O. 1: MCO clock enabled. Bit 0 SMS Slow Mode select This bit is read/write by software and cleared by hardware after a reset. This bit selects the input clock fOSC or fOSC/32. 0: Normal mode (fCPU = fOSC ) 1: Slow mode (fCPU = fOSC/32) 30/136 ST7LITEUS2, ST7LITEUS5 6.3.2 Supply, reset and clock management RC Control register (RCCR) Reset value: 1111 1111 (FFh) 7 CR9 0 CR8 CR7 CR6 CR5 CR4 CR3 CR2 Read / Write Bits 7:0 CR[9:2] RC Oscillator Frequency Adjustment Bits These bits, as well as CR[1:0] bits in the SICSR register must be written immediately after reset to adjust the RC oscillator frequency and to obtain the required accuracy. The application can store the correct value for each voltage range in Flash memory and write it to this register at startup. 00h = maximum available frequency FFh = lowest available frequency Note: To tune the oscillator, write a series of different values in the register until the correct frequency is reached. The fastest method is to use a dichotomy starting with 80h. ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O 6.3.3 System Integrity (SI) Control/status register (SICSR) Reset value: 0000 0x00 (0xh) 7 0 0 CR1 CR0 0 0 LVDRF AVDF AVDIE Read / Write Bit 7 Reserved, must be kept cleared. Bits 6:5 CR[1:0] RC Oscillator Frequency Adjustment bits These bits, as well as CR[9:2] bits in the RCCR register must be written immediately after reset to adjust the RC oscillator frequency and to obtain the required accuracy. Refer to Section 6.2 on page 28. Bits 4:3 Reserved, must be kept cleared. Bits 2:0 System Integrity bits. Refer to Section 7.4 on page 43. 31/136 Supply, reset and clock management 6.3.4 ST7LITEUS2, ST7LITEUS5 AVD Threshold Selection register (AVDTHCR) Reset value: 0000 0011 (03h) 7 0 CK2 CK1 CK0 0 0 0 AVD1 AVD0 Read / Write Bits 7:5 CK[2:0] Internal RC Prescaler Selection These bits are set by software and cleared by hardware after a reset. These bits select the prescaler of the internal RC oscillator. See Figure 10 on page 34 and Table 6. ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O Bits 4:2 Reserved, must be kept cleared. Bits 1:0 AVD Threshold Selection bits. Refer to Section 7.4: System integrity management (SI). Internal RC prescaler selection bits(1) Table 6. CK2 CK1 CK0 fOSC 0 0 0 fRC 0 0 1 fRC/2 0 1 0 fRC/4 0 1 1 fRC/8 1 0 0 fRC/16 1. If the internal RC is used with a supply operating range below 3.3 V, a division ratio of at least 2 must be enabled in the RC prescaler. 6.3.5 Clock Controller Control/Status register (CKCNTCSR) Read/Write Reset value: 0000 1001 (09h) 7 0 0 0 0 0 AWU_FLAG RC_ FLAG Read / Write Bits 7:4 Reserved, must be kept cleared. Bit 3 AWU_FLAG AWU Selection This bit is set and cleared by hardware 0: No switch from AWU to RC requested 1: AWU clock activated and temporization completed 32/136 0 RC/AWU ST7LITEUS2, ST7LITEUS5 Supply, reset and clock management Bit 2 RC_FLAG RC Selection This bit is set and cleared by hardware 0: No switch from RC to AWU requested 1: RC clock activated and temporization completed Bit 1 = Reserved, must be kept cleared. Bit 0 = RC/AWU RC/AWU Selection 0: RC enabled 1: AWU enabled (default value) Table 7. Address (Hex.) Clock register map and reset values Register label 7 6 5 4 3 2 0038h MCCSR Reset value 0 0 0 0 0 0 0039h RCCR reset value CR9 1 CR8 1 CR7 1 CR6 1 CR5 1 CR4 1 003Ah SICSR reset value 0 CR1 CR0 0 003Eh AVDTHCR reset value CK2 0 CK1 0 CK0 0 003Fh CKCNTCSR reset value 0 0 0 s b O t c u ) (s d o r P e t e l o s b O ) s ( ct 0 0 LVDRF x 0 t c u MCO 0 d o r P e t e l o 0 (s) 1 CR3 1 d o r uc AVDF 0 SMS 0 ) s t( CR2 1 AVDIE 0 0 0 AVD1 1 AVD2 1 AWU_FLAG 1 RC_FLAG 0 0 RC/AWU 1 P e let o s b O - u d o r P e t e l o s b O 33/136 Supply, reset and clock management ST7LITEUS2, ST7LITEUS5 Figure 10. Clock management block diagram CR9 CR8 CR7 CR6 CR5 CR1 CR4 CR3 CR2 RCCR SICSR CR0 Tunable internal RC Oscillator RC/AWU CKCNTCSR Clock Controller 8MHz(fRC) 8 MHz RC OSC 4 MHz 2 MHz fOSC AWU CK Ext Clock ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O Prescaler 1 MHz 500 kHz AWU RC CLKIN fCLKIN 33kHz CKSEL[1:0] Option bits /2 DIVIDER 13-BIT LITE TIMER COUNTER fOSC fOSC /32 DIVIDER fOSC/32 0 1 fLTIMER (1ms timebase @ 8 MHz fOSC) fCPU TO CPU AND PERIPHERALS MCO SMS MCCSR MCO 34/136 ST7LITEUS2, ST7LITEUS5 Supply, reset and clock management 6.4 Reset sequence manager (RSM) 6.4.1 Introduction The reset sequence manager includes three reset sources as shown in Figure 12: Note: ● External RESET source pulse ● Internal LVD reset (low voltage detection) ● Internal WATCHDOG reset A reset can also be triggered following the detection of an illegal opcode or prebyte code. Refer to Figure 12. These sources act on the RESET pin and it is always kept low during the delay phase. ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O The RESET service routine vector is fixed at addresses FFFEh-FFFFh in the ST7 memory map. The basic reset sequence consists of 3 phases as shown in Figure 11: Caution: ● Active phase depending on the reset source ● 64 CPU clock cycle delay ● RESET vector fetch When the ST7 is unprogrammed or fully erased, the Flash is blank and the RESET vector is not programmed. For this reason, it is recommended to keep the RESET pin in low state until programming mode is entered, in order to avoid unwanted behavior. The 64 CPU clock cycle delay allows the oscillator to stabilise and ensures that recovery has taken place from the Reset state. The RESET vector fetch phase duration is 2 clock cycles. Figure 11. Reset sequence phases RESET Active phase INTERNAL RESET 64 CLOCK CYCLES FETCH VECTOR 35/136 Supply, reset and clock management ST7LITEUS2, ST7LITEUS5 Figure 12. Reset block diagram VDD RON RESET INTERNAL RESET FILTER WATCHDOG RESET PULSE GENERATOR ILLEGAL OPCODE RESET 1) LVD RESET ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O 1. Section 11.2.1: Illegal opcode reset for more details on illegal opcode reset conditions 6.4.2 Asynchronous external RESET pin The RESET pin is both an input and an open-drain output with integrated RON weak pull-up resistor. This pull-up has no fixed value but varies in accordance with the input voltage. It can be pulled low by external circuitry to reset the device. See Electrical Characteristic section for more details. A RESET signal originating from an external source must have a duration of at least th(RSTL)in in order to be recognized (see Figure 13). This detection is asynchronous and therefore the MCU can enter reset state even in Halt mode. The RESET pin is an asynchronous signal which plays a major role in EMS performance. In a noisy environment, it is recommended to follow the guidelines mentioned in the electrical characteristics section. 6.4.3 External Power-on reset If the LVD is disabled by option byte, to start up the microcontroller correctly, the user must ensure by means of an external reset circuit that the reset signal is held low until VDD is over the minimum level specified for the selected fCLKIN frequency. A proper reset signal for a slow rising VDD supply can generally be provided by an external RC network connected to the RESET pin. 6.4.4 Internal low voltage detector (LVD) reset Two different reset sequences caused by the internal LVD circuitry can be distinguished: ● Power-on reset ● Voltage Drop reset The device RESET pin acts as an output that is pulled low when VDD
ST7FLITEUS2M6TR 价格&库存

很抱歉,暂时无法提供与“ST7FLITEUS2M6TR”相匹配的价格&库存,您可以联系我们找货

免费人工找货