0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TDA7801SMTR

TDA7801SMTR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    Flexiwatt27

  • 描述:

    IC AMP QUAD BRIDGE FLEXIWATT27

  • 数据手册
  • 价格&库存
TDA7801SMTR 数据手册
TDA7801 Digital input quad power amplifier with built-in diagnostics features Datasheet - production data  Two I2C bus addresses and 8-ch TDM mode (only in PowerSO package)  Optional non I2C bus mode  Offset detector (play or mute mode) '!0'03 PowerSO36 (slug-up)  Clipping detector (selectable level) and diagnostics pin '!0'03 Flexiwatt27 (horizontal)  CMOS compatible enable pin (3.3/5 V)  Full fault protection  Four independent short circuit protections '!0'03  Linear thermal protection (four thermal warnings) '!0'03 Flexiwatt27 (vertical) Flexiwatt27 (SMD)  ESD protection Features Description  Integrated 110 dB D/A conversion The TDA7801 is a new BCD technology quad bridge amplifier for car audio applications.  I2S digital input (3.3/1.8 V) with TDM option  Selectable input sampling frequency: 44.1 kHz, 48 kHz, 96 kHz, 192 kHz Thanks to the BCD6 technology it is possible to integrate a high performance D/A converter together with powerful MOSFET outputs.  MOSFET power outputs  High output power capability 4x28 W/ 4 @ 14.4 V, 1 kHz, 10 % THD  Max. output power 4x72 W/2   Full I2C bus driving (3.3/5 V): – Independent front/rear soft play/ mute – Selectable gain (four levels) for very low noise line-out function – I2C bus digital diagnostics (including DC and AC load detection) The possibility of having the D/A conversion on board allows the performance to reach an outstanding 115 dB S/N ratio with more than 105 dB of dynamic range. This device is equipped with a full diagnostics array that communicates the status of each speaker through the I2C bus. The possibility to control the configuration and behavior of the device by means of the I2C bus makes TDA7801 a very flexible machine. Table 1. Device summary Order code Package Packing TDA7801PD PowerSO36 (slug-up) Tube TDA7801PDTR PowerSO36 (slug-up) Tape and reel TDA7801 Flexiwatt27 (vertical) Tube TDA7801H Flexiwatt27 (horizontal) Tube TDA7801SM Flexiwatt27 (SMD) Tube September 2013 This is information on a product in full production. DocID022674 Rev 4 1/48 www.st.com 1 Contents TDA7801 Contents 1 Block diagram and pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1 2 Application diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 3 4 5 6 2/48 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 Electrical characteristics typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Operation mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1 Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2 Tristate mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.3 Amplifier mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 "PLL-filter /enable" pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.1 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.2 Driving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.1 Voltage supplies timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.2 Turn-on diagnostic description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.3 Permanent diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.4 AC diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6.5 Output DC offset detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6.6 Multiple faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.7 Faults availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.8 I2C programming/reading sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.9 Legacy mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.10 Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 DocID022674 Rev 4 TDA7801 Contents 6.11 6.12 7 8 9 Under-voltage threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.11.1 Supply voltage auto-mute threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.11.2 Digital mute disabling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.11.3 Power-on reset threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Fast mute features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 I2S bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.1 Interface timings requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7.2 Group delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 I2C bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 8.1 Writing procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 8.2 Reading procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 8.3 Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 8.4 Start and stop conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 8.5 Byte format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 8.6 Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 I2C registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 9.1 IB0-Addr:"00000" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 9.2 IB1-Addr:"00001" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 9.3 IB2-Addr:"00010" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 9.4 IB3-Addr:"00011" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 9.5 IB4-Addr:"00100" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 9.6 DB0-Addr:"10000" - Channel 1 (left front) . . . . . . . . . . . . . . . . . . . . . . . . 39 9.7 DB1-Addr:"10001" - Channel 2 (left rear) . . . . . . . . . . . . . . . . . . . . . . . . . 40 9.8 DB2-Addr:"10010"" - Channel 3 (right front) . . . . . . . . . . . . . . . . . . . . . . 41 9.9 DB3-Addr:"10011" - Channel 4 (right rear) . . . . . . . . . . . . . . . . . . . . . . . . 42 9.10 DB4-Addr:"10100" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 10 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 DocID022674 Rev 4 3/48 List of tables TDA7801 List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. 4/48 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Flexiwatt27 (vertical/SMD/horizontal) pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 PowerSO36 pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Start-up diagnostic pulse typical timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Multiple faults priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 System clock frequencies for common audio sampling frequencies . . . . . . . . . . . . . . . . . 32 Example timing for tck = 1/fSCK, where fSCK is stated in the Table 9 . . . . . . . . . . . . . . . . . 33 IB0-Addr:"00000" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 IB1-Addr:"00001" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 IB3-Addr:"00010" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 IB3-Addr:"00011" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 IB4-Addr:"00100" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 DB0-Addr:"10000" - Channel 1 (left front). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 DB1-Addr:"10001" - Channel 2 (left rear) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 DB2-Addr:"10010"" - Channel 3 (right front) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 DB3-Addr:"10011" - Channel 4 (right rear) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 DB4-Addr:"10100". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 DocID022674 Rev 4 TDA7801 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Block diagram (Flexiwatt27) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 I2C bus mode application diagram (TDA7801/H/SM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 I2C bus mode application diagram (TDA7801PD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Legacy mode application diagram (TDA7801/H/SM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Legacy mode application diagram (TDA7801PD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Pin connection diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Quiescent current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Output power vs. supply voltage (4 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Output power vs. supply voltage (2 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Distortion vs. output power (4 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Distortion vs. output power (2 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Distortion vs. frequency (4 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Distortion vs. frequency (2 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Vo vs. Vin (Gv1-2-3-4 settings). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Vo vs. Vin (Gv1-2-3-4 settings + 6 dB dig. gain). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Distortion vs. output voltage (LD-Gv2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Distortion vs. output voltage (LD-Gv3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Distortion vs. output voltage (LD-Gv4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Output attenuation vs. Vs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Crosstalk vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Supply voltage rejection vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Total power dissipation & efficiency vs. Po (4 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Power dissipation vs. average Po (audio program simulation, 4 ) . . . . . . . . . . . . . . . . . . 20 Power dissipation vs. average Po (audio program simulation, 2 ) . . . . . . . . . . . . . . . . . . 20 ITU R-ARM frequency response, weighting filter for transient pop. . . . . . . . . . . . . . . . . . . 20 Standby driving circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Turn-on diagnostic cycle. Positive and negative output behaviour . . . . . . . . . . . . . . . . . . . 23 Turn-on diag. cycle with transition in amp. mode. Positive and negative output behaviour 24 Short to GND and short to Vs, threshold description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Short across the speaker and open load threshold description, in amplifier mode. . . . . . . 25 Short across the speaker and open load threshold description, in line driver mode. . . . . . 25 Thermal muting diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Low voltage mute attenuation, supply voltage variation (Vs); result digital attenuation (At) 29 TDM setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 I2S format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Audio data input format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Audio interface timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 I2C bus protocol description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 PowerSO36 (slug-up) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . 43 Flexiwatt27 (vertical) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . 44 Flexiwatt27 (horizontal) mechanical data and package dimensions. . . . . . . . . . . . . . . . . . 45 Flexiwatt27 (SMD) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . . 46 DocID022674 Rev 4 5/48 Block diagram and pins description TDA7801 1 Block diagram and pins description 1.1 Block diagram Figure 1. Block diagram (Flexiwatt27) )#  0,,FIL%.!",%  $IAGN 3#+ 3$? 3$?   )3 INTERFACE 3CRAMBLER ARRAY #URRENT GENERATORS 3SCRAMBLER ARRAY #URRENT GENERATORS 3CRAMBLER #URRENT GENERATORS 3CRAMBLER  $6 $GND 6/48  /54,& 4RANSRESISTANCE 0OWER&ILTER  /54,& &ULLY"ALANCED  /54,2 4RANSRESISTANCE 0OWER&ILTER  /54,2 &ULLY"ALANCED  /542& &ULLY"ALANCED 4RANSRESISTANCE 0OWER&ILTER ARRAY  &ULLY"ALANCED 4RANSRESISTANCE 0OWER&ILTER ARRAY 34 "9  .OISE SHAPER   #URRENT GENERATORS  )NTERPOL 6##  )# 0,, 73 #$$)!'    !6 !GND DocID022674 Rev 4  4!"    07?'.$  /542&  /5422  /5422  '!0'03 TDA7801 2 Application diagrams Application diagrams Figure 2. I2C bus mode application diagram (TDA7801/H/SM) 6S # —& # —& 6CC $. 6CC     0,,%. 2K7 2 7 /542&/54  # P& # N&    )#"53 )3).054 $!4!  #,+  73   4$! 4$!( 7'$60   3#+    3$?      /54,&/54  3$?  /5422/54    /54,2/54 4!" 2 # —& $'.$ !'.$ # —& 6 K7 #$$)!' '!0'03 Figure 3. I2C bus mode application diagram (TDA7801PD) 6S # —& # —& 6CC  6CC  6CC  6CC  $.      0,,%. 2K7 2 7 # N&  /542&/54  # P&   /5422/54  )#"53 )3).054 $!4! #,+   73  3#+  3$?  3$?   4$!0$     /54,&/54  !$$SELECT !$$ SELECT         /54,2/54 4!" 2 $'.$ !'.$ # —& # —& 6 K7 #$$)!' DocID022674 Rev 4 '!0'03 7/48 Application diagrams TDA7801 Figure 4. Legacy mode application diagram (TDA7801/H/SM) 6S # —& # —& 6CC $. 6CC    0,,%. 2K7 2 7 /542&/54  # P& # N&    /5422/54  2 -54%   4$! 4$!( 4$!3- K7 # —&    73  3#+  3$?  3$?    %.!",% )3).054 /54,&/54 /54,2/54         4!" 2 $'.$ !'.$ # —& # —& 6 K7 #$$)!' '!0'03 Figure 5. Legacy mode application diagram (TDA7801PD) 6S # —& # —& 6CC  6CC  6CC  6CC  $.      0,,%. 2K7  2 7 # N& 2   %.!",%  73  /542&/54 /5422/54   # —&  # P& -54% K7   4$!0$   )3).054  3#+  3$?   3$?           /54,&/54 /54,2/54 4!" 2 $'.$ !'.$ # —& # —& #$$)!' 8/48 DocID022674 Rev 4 6 K7 '!0'03 TDA7801 2.1 Application diagrams Pin description Figure 6. Pin connection diagrams )##LOCK  &LEXIWATT VERTICAL   )##LOCK  ) #$ATA  )#$ATA  07?'.$  07?'.$  /54 22  /54 22  #$$)!'  #$$)!'  /54 22  /54 22  6##  6##  /54 2&  /54 2&  07?'.$  07?'.$  /54 2&  /54 2&  !6  !6  $6  $6  !GND  !GND  $GND  $GND  3$?  3$?  3$?  3$?  3#+  3#+  /54 ,&  /54 ,& &LEXIWATT 3-$HORIZONTAL  07?'.$  07?'.$  /54 ,&  /54 ,&  6##  6##  /54 ,2  /54 ,2  73  73  /54 ,2  /54 ,2  07?'.$  07?'.$ 0LL FILTER%.!",%  0LL FILTER%.!",% 4!"  4!"   /54   4!" .#   #$$)!' .#   /54 07?'.$   6## /54   07?'.$ !6   6## $6   /54 !GND   ) #$ATA $GND  3$?  3$? 0OWER3/ SLUG UP    ) ##LOCK   ) #!DDRESS   0LLLOOPFILTER%NABLE 3#+   /54 .#   6## /54   .# 07?'.$   07?'.$ .#   6## .#   /54 /54   73 '!0'03 DocID022674 Rev 4 9/48 Application diagrams TDA7801 Table 2. Flexiwatt27 (vertical/SMD/horizontal) pin description N° Pin 1 TAB 2 10/48 Function TAB connection (GND) Pll-filter / ENABLE Pll loop filter / ENABLE 3 PW_GND 4 OUT 2- / LR- 5 WS 6 OUT 2+ / LR+ 7 Vcc 8 OUT 1- / LF- 9 PW_GND 10 OUT 1+ / LF+ 11 SCK 12 SD2_4 Serial data channels 2 and 4 (I2S bus, logic input) 13 SD1_3 Serial data channels 1 and 3 (I2S bus, logic input) 14 Dgnd Digital ground 15 Agnd Analog ground 16 D3V Digital 3.3 V supply filter 17 A3V Analog 3.3 V supply filter 18 OUT3+ / RF+ 19 PW_GND 20 OUT3- / RF- 21 Vcc 22 OUT4+ / RR+ Channel 4 (right rear) positive output 23 CD/DIAG Clip detector and diagnostic output: – Overcurrent protection intervention – Thermal warning – POR – (Open drain output) 24 OUT4- / RR- Channel 4 (right rear) negative output 25 PW_GND 2 Power ground channel 2 Channel 2 (Left Rear) negative output Word select (I2S bus, logic input) Channel 2 (Left Rear) positive output Channel 1 and 2 positive supply Channel 1 (Left Front) negative output Power ground channel 1 Channel 1 (Left Front) positive output Serial clock (I2S bus, logic input) Channel 3 (right front) positive output Power ground channel 3 Channel 3 (right front) negative output Channels 3 and 4 positive supply Power ground channel 4 26 I C Data I2C data/legacy mode mute 27 I2C Clock I2C clock/enable legacy mode DocID022674 Rev 4 TDA7801 Application diagrams Table 3. PowerSO36 pin description N° Pin 1 TAB Function TAB connection (GND) 2 CD/DIAG Clip detector and diagnostic output: Overcurrent protection intervention Thermal warning Offset detection POR (Open drain output) 3 OUT4- Channel 4 (right rear) negative output 4 VCC 5 PW_GND Channels 3-4 positive supply Power ground channel 4 6 VCC 7 OUT4+ Channels 3-4 positive supply 8 I2C Data I2C Data / legacy mode mute 9 I2C Clock I2C Clock / enable legacy mode 10 I2C Address I2C Address 11 Pll loop filter/Enable Pll loop filter / Enable 12 OUT2+ 13 VCC 14 NC 15 PW_GND Channel 4 (right rear) positive output Channel 2 (left rear) positive output Channel 1-2 positive supply Not connected Power ground channel 2 16 VCC 17 OUT2- Channel 1-2 positive supply 18 WS 19 OUT1- 20 NC Not connected 21 NC Not connected 22 PW_GND 23 OUT1+ 24 NC 25 SCK 26 SD2_4 Serial data channels 2 and 4 (I2S bus, logic input) 27 SD1_3 Serial data channels 1 and 3 (I2S bus, logic input) 28 Dgnd Digital ground 29 Agnd Analog ground 30 D3V Digital 3.3 V supply filter 31 A3V Analog 3.3 V supply filter Channel 2 (left rear) negative output Word Select (I2S bus, logic input) Channel 1 (left front) negative output Power ground channel 1 Channel 1 (left front) positive output Not connected Serial clock (I2S bus, logic input) 32 OUT3+ 33 PW_GND Channel 3 (right front) positive output 34 NC Not connected 35 NC Not connected 36 OUT3- Power ground channel 3 Channel 3 (right front) negative output DocID022674 Rev 4 11/48 Electrical specifications TDA7801 3 Electrical specifications 3.1 Absolute maximum ratings Table 4. Absolute maximum ratings Symbol Parameter Value Unit Vop Operating supply voltage 18 V VS DC supply voltage 28 V Vpeak1 Peak supply voltage (for t = 50 ms) 50 V Vpeak2 Peak supply voltage (for t = 500 ms) 34 V Vi2cdata I2C bus data pin voltage / legacy mode mute 20 V Vi2ck I2C bus clock pin voltage / enable legacy mode 50 V Vi2s I2S 3.6 V bus pins voltage IO Output peak current (not repetitive t = 100 µs) 8 A IO Output peak current (repetitive f > 10 Hz) 6 A Power dissipation Tcase = 70 °C 85 W Maximum input sample rate 200 kHz -40 to 105 °C -55 to 150 °C 10 nF Ptot Fs max Tamb Tstg, Tj Cmax Operative temperature range(1) Storage and junction temperature Maximum capacitor vs. ground connected to the output 1. A suitable heatsink/dissipation system should be used to keep Tj inside the specific limits. 3.2 Thermal data Table 5. Thermal data Symbol Rth j-case 12/48 Parameter Thermal resistance junction-to-case Max DocID022674 Rev 4 PowerSO36 Flexiwatt 27 Unit 1 1 °C/W TDA7801 3.3 Electrical specifications Electrical characteristics Refer to the test circuit, VS = 14.4 V; RL = 4 ; f = 1 kHz; Tamb = 25 °C; unless otherwise specified. Table 6. Electrical characteristics Symbol Parameter Test condition Min. Typ. Max. Unit 8 - 18 V VS Supply voltage range - Id Total quiescent drain current in amplifier mode enable on amplifier mode muted 150 260 350 mA It Total quiescent drain current in tristate mode enable on tristate mode 30 45 60 mA RL = 4 ; max power 41 45 - W THD = 10 % 25 28 - W THD = 1 % 20 22 - W RL = 2 ; max power 70 78 - W RL = 2 ; THD 10% 43 49 - W RL = 2 ; THD 1% 34 38 - W PO = 1 W to 10 W, f=1 kHz, GV1 - 0.03 0.05 % PO = 1 W to 10 W, f=10 kHz, GV1 - 0.2 0.5 % RL =100  input=-10 dBFS, f=1 kHz, GV1,2,3,4 - 0.01 0.02 % 60 80 - dB 14.9 - 16.9 dB (Vp) 9.45 - 11.45 dB (Vp) 6.9 - 8.9 dB (Vp) 1.45 - 3.45 dB (Vp) 12.7 - - Vrms 6.65 - 8.35 Vrms 4.9 - 6.2 Vrms 2.65 - 3.35 Vrms -0.5 - 0.5 dB 105 100 100 98 110 105 105 103 - dB PO THD Output power Total harmonic distortion CT Cross talk GV1 Voltage gain 1 GV2 Voltage gain 2 GV3 Voltage gain 3 GV4 Voltage gain 4 FSV1 Full scale voltage GV1 FSV2 Full scale voltage GV2 FSV3 Full scale voltage GV3 FSV4 Full scale voltage GV4 f = 1 kHz to 10 kHz Output voltage @ -10 dBFS Output voltage @ 0 dBFS VS=18 V; RL = 100  Output voltage @ 0 dBFS DG Delta voltage gain 20 Hz – 20 kHz Po =1 W DR Dynamic range GV = GV1 GV = GV2 GV = GV3 GV = GV4 Bw=20 Hz to 20 kHz, un weighted DocID022674 Rev 4 13/48 Electrical specifications TDA7801 Table 6. Electrical characteristics (continued) Symbol Parameter Test condition EIN Output noise voltage GV = GV1 GV = GV2 GV = GV3 GV = GV4 Bw =20 Hz to 20 kHz, un weighted SNR Signal to noise ratio GV = GV1 GV = GV2 GV = GV3 GV = GV4 Bw=20 Hz to 20 kHz, un weighted GB Gain balance Min. - Typ. Max. 25 25 19 19 35 35 26 26 111 105 105 100 115 109 109 104 -1 Unit µV - dB - +1 dB 50 70 - dB - - 10 µA Supply voltage rejection f = 1 kHz; Vr = 1 Vpk; ISB Stand-by current Vpin ENABLE = 0v AM Mute attenuation - 80 - VOS Offset voltage Mute & Play -50 - 50 mV Above this voltage the device is in play 7.8 - - V Below this voltage the device is in mute - - 6.8 V - - 4.5 5 V - 18 24 V SVR VAM VPOWONRESET Supply automute range Supply voltage of power-on reset VOVERVOLTAGE Over voltage shut-down dB CDLK Clip det high Leakage current CD off - 0 5 µA CDSAT Clip det sat. voltage CD on; ICD = 1 mA - 150 300 mV CD1THD Clip det THD level 1 % - - 1 2 % CD2THD Clip det THD level 5 % - 3 5 7 % CD3THD Clip det THD level 10 % - 7 10 13 % - 1.45 - - 5.8 - - 11.6 - - 23.2 - - 34.8 - - 69.6 - - 140 - - 278 - - -102 - Tmute NGL 14/48 Mute and unmute commutation time Noise gating input level Programmable by register IB1(6:4) Fs =44.1 kHz I2C bus Under this level the device is in mute DocID022674 Rev 4 ms dB TDA7801 Electrical specifications Table 6. Electrical characteristics (continued) Symbol Parameter Test condition Min. Typ. Max. Unit 92 - ms 44.2 42 31.2 21 88 84 63 42 NGT Noise gating time Fs = 44100 Hz - EIN2 Output noise voltage GV=GV1 GV=GV2 GV=GV3 GV=GV4 Bw=20 Hz to 20 kHz, un weighted, noise gating off, No input signal - µV Turn on diagnostics speaker mode Pgnd Short to GND det. (below this limit, the output is considered in short circuit to GND) - - 1 V Pvs Short to Vs det. (above this limit, the output is considered in short circuit to VS) Vs – 1 - - V Pnop Normal operation thresholds. (Within these limits, the output is considered without faults). 2 - Vs – 2 V Lsc Shorted load det. - - - 0.5  Lop Normal load det. - 1.65 - 25  Lnop Open load det. - 75 - -  Max diagnostic time Input sampling frequency Fs = 44100 Hz - - 190 ms Td Turn on diagnostics booster mode Pgnd Short to GND det. (below this limit, the output is considered in short circuit to GND) - - 1 V Pvs Short to Vs det. (above this limit, the output is considered in short circuit to Vs) Vs – 1 - - V Pnop Normal operation thresholds. (Within these limits, the output is considered without faults). 2 - Vs – 2 V Lsc Shorted load det. - - - 15  Lop Normal load det. - 0.065 - 1 k Lnop Open load det. - 3.5 - - k AC diagnostic current threshold IB4 – D6= ‘0’ 250 375 500 mA IB4 – D6= ‘1’ 125 187 250 mA AC-diagnostic IACTRESH DocID022674 Rev 4 15/48 Electrical specifications TDA7801 Table 6. Electrical characteristics (continued) Symbol Parameter Test condition Min. Typ. Max. Unit - - 1 V Vs – 1 - - V 2 - Vs – 2 V Speaker mode - - 0.5  Booster mode - - 15  Speaker mode 1.65 - -  Booster mode 0.065 - - k 1.5 - 2.5 V Permanent diagnostics Pgnd Pvs Pnop Short to GND det. (below this limit, the output is considered in short circuit to GND) Short to Vs det. (above this limit, the Output is considered in short circuit to Vs) - Normal operation thresholds. (Within these limits, the output is considered without faults) LSC Shorted load det. Lop Normal load det. VO Offset detection Absolute value Tph Thermal protection junction temperature Gain attenuation of 60 dB - 175 - °C Gain attenuation of 0.5 dB - 165 - °C - - Tpl-10 - °C - - Tpl-27 - °C - - Tpl-45 - °C - - Tpl-62 - °C Gain Attenuation of 80 dB - - 1.2 V Gain Attenuation of 0.1 dB 2.6 - - V Vs-2 - Vs V Tpl Tw1 Tw2 Tw3 Thermal warning junction temperature Tw4 Legacy mode VLM_MUTE VLM_ON ILKG_MUTE Legacy mode mute threshold Legacy mode threshold Device in legacy mode Mute pin leakage - -5 - +5 µA I2C Bus interface fSCL Clock frequency - - - 400 kHz VIL Input low voltage - - - 1.5 V VIH Input high voltage - 2.3 - - V Pll-filter /ENABLE pin VILENB Input low voltage - - - 1.5 V VIHENB Input high voltage - 2.3 - - V IILENB(1) Logic ‘0’ output current VIN = 0.45 V - - 2 mA Logic ‘1’ input current VIN = 2.3 V (IB0 D4=0) - - 2 µA IIHENB 16/48 DocID022674 Rev 4 TDA7801 Electrical specifications Table 6. Electrical characteristics (continued) Symbol Parameter Test condition Min. Typ. Max. Unit I2S pin VIL-I2S Input low voltage - - - 0.8 V VIH-I2S Input high voltage - 1.3 - - V IIH Input high current except WS VI = 3.3 V pin - - 5 µA IIL Input low current VI = 0 V - - 5 µA Input high current for WS VI = 3.3 V - 70 150 µA IIH_WS 1. This has to be considered the maximum current value for a short time and not the standby current. 3.4 Electrical characteristics typical curves Figure 7. Quiescent current vs. supply voltage Figure 8. Output power vs. supply voltage (4 )  ,G P$                 9L  5/ c           9V 9  5/ 7 I N+] 3R : 7+'  7+'         9V 9     '!0'03 Figure 10. Distortion vs. output power (4 )  5/  7 I N+] 3RPD[ '!0'03 Figure 9. Output power vs. supply voltage (2 )               3R : 7+'   9V 9 5/ 7 3RPD[  7+'  I N+]  7+'  I N+]        9V 9       '!0'03 DocID022674 Rev 4  3R :   '!0'03 17/48 Electrical specifications TDA7801 Figure 11. Distortion vs. output power (2 ) 7+'   Figure 12. Distortion vs. frequency (4 ) 7+'   9V 9 5/ 7 3R : 9V 9 5/ 7   I N+]     I N+]     3R :     I +] '!0'03 Figure 13. Distortion vs. frequency (2 )  '!0'03 Figure 14. Vo vs. Vin (Gv1-2-3-4 settings) 9R 9UPV 7+'     9V 9 5/ 7 3R :   *Y 9V 9 I N+] 5/ 7 *Y 5/ 7 *Y *Y        I +]   9R 9UPV    9LQ G%)V 9V 9I N+] G%GLJJDLQ 5/ 7 *Y 5/ 7 *Y  *Y    '!0'03 7+'  /'PRGH*Y 9V 9 5/ 7    Figure 16. Distortion vs. output voltage (LD-Gv2)   18/48  *Y     '!0'03 Figure 15. Vo vs. Vin (Gv1-2-3-4 settings + 6 dB dig. gain)     9LQ G%)V      '!0'03 DocID022674 Rev 4 I N+] I N+]  9R 9UPV  '!0'03 TDA7801 Electrical specifications Figure 17. Distortion vs. output voltage (LD-Gv3) Figure 18. Distortion vs. output voltage (LD-Gv4) 7+'    /'PRGH*Y 9V 9 5/ 7  I N+]  I N+]      9R 9UPV   '!0'03 Figure 20. Crosstalk vs. frequency &52667$/. G%    5/ 7 3R :UHI   9R 9UPV '!0'03 9R G%  I N+]   Figure 19. Output attenuation vs. Vs  /'PRGH*Y 9V 9 5/ 7  I N+]  7+'  5/ 7 3R : 5J 7                   9V 9     695 G%      '!0'03 H  3WRW : 9V 9 5/ [7 I N+]6,1(     I +] Figure 22. Total power dissipation & efficiency vs. Po  (4 )  9ULSSOH 9UPV    '!0'03 Figure 21. Supply voltage rejection vs. frequency   H     3WRW                      I  +]     '!0'03 DocID022674 Rev 4               3R : '!0'03 19/48 Electrical specifications TDA7801 Figure 23. Power dissipation vs. average Po (audio program simulation, 4 )  3WRW :  3WRW :  9V9 5/ [7 6WHUHR3LQN1RLVH  Figure 24. Power dissipation vs. average Po (audio program simulation, 2 ) 9V9 5/ [7 6WHUHR3LQN1RLVH       &/,367$57  &/,367$57            DYJ3R :     '!0'03 Figure 25. ITU R-ARM frequency response, weighting filter for transient pop  /UTPUTATTENUATIOND"           20/48   (Z   '!0'03 DocID022674 Rev 4      DYJ3R :    '!0'03 TDA7801 4 Operation mode Operation mode The device has three main operation modes: 4.1  Standby mode  Tristate mode  Amplifier mode Standby mode When the ENABLE pin is low the device is in standby-mode. The current consumption is ISB. 4.2 Tristate mode When the ENABLE pin is high and the bit D7 of register DB0 is low the device is in tristatemode. In that state the amplifier outputs are "high impedance", the I2C bus is ready to receive command. 4.3 Amplifier mode When the ENABLE pin is high and the bit D7 of register DB0 is high the device is in amplifier-mode ready to play. To move the device in that state it is enough to write '1' on bit D7 of register IB1 from tristate-mode. Note that the device starts with all channels muted by default (see I2C registers description, Section 9). DocID022674 Rev 4 21/48 "PLL-filter /enable" pin description TDA7801 5 "PLL-filter /enable" pin description 5.1 Functionality The pin 2 has the functions to:  ENABLE  PLL filter When the pin 2 is set to logic level low the TDA7801 is in standby-mode and the current consumption is ISB. The device is waked-up and put in tristate-mode setting the same pin to logic level high. In tristate-mode the TDA7801 is ready to receive I2C bus instructions. The device is set in amplifier-mode writing '1' on bit D7 of byte IB1. In amplifier-mode the PIN2 works as PLL filter pin. The TDA7801 will place this pin to have a precise voltage value. During the transition from amplifier-mode to standby-mode, the device will try to force the Pin2 level sourcing a current IILENB. 5.2 Driving In Figure 26 an applicative schematic to drive the Pin 2 is reported. In the schematic, it is supposed that the TDA7801 is interfaced with a µP. Figure 26. Standby driving circuit . BUFFER 0,, 2K7 2F7 —0 #FN& #P& %NABLE 4$! '!0'03 The Rf and Cf components are respectively resistance and capacitance of the PLL filter. The resistance R1 and diode 1N4848 allows the Pin 2 to force to logic level low and the TDA7801 to force its voltage level in amplifier-mode. During the transition amplifiermode/standby-mode the TDA7801 tries to forces the voltage on the PLL/Enable by sourcing a current flow. Since the PLL/ENABLE pin is forced at a voltage lower than VILENB in the above described conditions, the buffer input resistance should be chosen small enough to take this effect into account. It’s important to keep the PLL-Filter ground as close as possible to digital ground in the application board in order to minimize the PLL reference movement. 22/48 DocID022674 Rev 4 TDA7801 Functional description 6 Functional description 6.1 Voltage supplies timing TDA7801 internal voltage supplies rise time and fall time are determined by the two capacitors at pin 16 and 17, respectively digital supply pin (D3V3) and analog supply pin (A3V3). Capacitor on analog supply pin, (pin 17), and capacitor on digital supply, (pin 16), should respect the ratio 2:1. It is suggested to fix a minimum value of 22 µF on digital supply pin and 47 µF on analog supply pin, which correspond to a typical Turn-on time of 1.5 ms and a typical turn-off time of 8.5 ms. 6.2 Turn-on diagnostic description Turn-on diagnostic is activated under I2C bus request. Detectable output faults are:  Short to GND  Short to Vs  Short across the speaker  Open load In the TDA7801 a new diagnostic that exploits the presence of D/A converters has been implemented. To verify if some of the above connections are in place, a subsonic (inaudible) voltage pulse is digitally and internally generated and converted (Figure 27). The amplitude of this pulse is stopped when the current flowing through the speaker is the same as the prefixed one corresponding to a specified load. The exact knowledge of the voltage drop across the load in any phase of the diagnostic time gives the possibility to know the connected load. During the observation time, the measured load is compared with tabled values in order to determine the result. The turn-on diagnostic status is internally stored until a successive diagnostic pulse is requested. Figure 27. Turn-on diagnostic cycle. Positive and negative output behaviour /UT /UT 6 6CC TSEC 4D !# '!0'03 A turn-on diagnostic cycle is activated writing '1' on the D7 of byte IB0 only when the amplifier is in Tristate-mode. Note that the turn-on diagnostic state machine is sensible to the rise edge of this bit. To run another cycle of turn-on diagnostic it is necessary to: 1. wait that the previous cycle ends; 2. clear the D7-IB0 bit. 3. write '1' on D7-IB0 bit. DocID022674 Rev 4 23/48 Functional description TDA7801 It is possible to run the turn-on diagnostic several times by simply resetting the D7-IB0 meanwhile the amplifier is in amplifier mode and writing back '1' on D7-IB0 when the amplifier is in tristate mode. Between two diagnostic sequences it is necessary to reset the data register by an I2C reading instruction. Note that the reading instruction has been placed during the second diagnostic pulse. The µP can program the TDA7801 in order to run a cycle of turn-on diagnostic and to move in amplifier-mode at the end of this cycle (Figure 28)); the I2C bus instructions needed to program this sequence are: 11011000 -00100000-1XXXXXXX-1XXXXXXX Note: The diagnostic enable bit (D7-IB0) has to be set before the amplifier mode bit (D7-IB1) Figure 28. Turn-on diag. cycle with transition in amp. mode. Positive and negative output behaviour /UT /UT 6 6CC TSEC T342 T3( T0, T34& T342 T$%,!9 T$ '!0'03 Table 7. Start-up diagnostic pulse typical timing Value Symbol tSTR(1) tSH (2) Parameter Start-up diagnostic rise Typ. Max 0.8 1.5 3 Short to Vcc/Gnd check tPL(2) Plateau time tSTF(1) Start-up diagnostic fall tDELAY(2) Delay time before play tD Unit Min. Diagnostic pulse 6 ms 5 ms 162 ms 8.5 14 5 182 ms ms 190 ms 1. These tSTR and tSTF values are relative to capacitors on A3V3 and D3V3 respectively equal to 47 µF and 22 µF. The tSTR and tSTF are proportional to capacitors value. 2. Values relative to fs = 44100Hz. The information related to the outputs status is read and memorized at the end of the voltage pulse top. The diagnostic cycle last no more than Td. No audible noise is generated in the process. As for short to GND / Vs the fault-detection thresholds remain unchanged independently of the gain setting. They are as in Figure 29. 24/48 DocID022674 Rev 4 TDA7801 Functional description Figure 29. Short to GND and short to Vs, threshold description 3#TO '.$ 6 8 .ORMAL /PERATION 6 6 8 6S 6 3#TO 6S 6S 6 6S '!0'03 Concerning short across the speaker / open speaker, the threshold varies from speaker mode to booster mode diagnostic setting, since different loads are expected (either normal speaker's impedance or high impedance). The speaker or booster mode is selected with bit D6-IB0 (channel 1 and 3) and bit D5-IB0 (channel 2 and 4). The values in case of speaker mode gain are as in Figure 30. Figure 30. Short across the speaker and open load threshold description, in amplifier mode. 3#ACROSS ,OAD  8  .ORMAL ,OAD  8  /PEN,OAD INFINITE  '!0'03 If the booster mode is selected, the same thresholds will change as in Figure 31. Figure 31. Short across the speaker and open load threshold description, in line driver mode. 3#ACROSS ,OAD  8  .ORMAL ,OAD  8 K /PEN,OAD K INFINITE '!0'03 When the amplifier is biased and the diagnostic is still enabled the permanent diagnostic takes place. The previous turn-on state is kept until a short appears at the outputs because only in this case a new diagnostic cycle can start. 6.3 Permanent diagnostic Detectable conventional faults are:  Short to GND  Short to Vs  Short across the speaker The following additional features are provided:  Output offset detection  AC diagnostic The TDA7801 diagnostic has 2 different cycles: 1. Restart cycle. It is a 1 ms pulse. During this period a check of the outputs is made. 2. Plateau cycle. It is a 100 ms pulse. During this period a check of the outputs is performed and the result of diagnostic analysis is communicated by means of I2C bus. The TDA7801 has 2 different operating behaviors when a fault occurs: 1. Restart mode, (D6-IB0='0'). The diagnostic is not enabled. Each audio channel operates independently of each other. If any of the a.m. faults occurs, only the DocID022674 Rev 4 25/48 Functional description TDA7801 channel(s) concerned are shut down. The diagnostic performs restart cycles every 1 ms until a fault condition is present. The amplifier restarts in play only once the overload is removed. DIagnostic mode, (D6-IB0='1'). It is enabled via I2C bus and self activates if an output overload (so as to cause the intervention of the short-circuit protection) occurs to the speakers outputs. Once activated, the diagnostics procedure develops as below: – The diagnostic performs 1 restart cycle in order to avoid momentary re-circulation spikes which could give erroneous diagnostic results. If normal situation (no overloads) is detected the channel returns active. – Instead, if after 1 restart cycle an overload is detected then the diagnostic circuit performs a plateau cycle. – After the plateau cycle, the fault audio channel generates restart cycles every 1 ms until a fault condition is present. The relevant data acquired during plateau cycle are stored and can be read by the microprocessor. A new plateau cycle can be activated by an I2C reading only if the fault condition persists. This is to ensure continuous diagnostics throughout the car-radio operating time. The diagnostic performs another plateau cycle after each I2C bus registers read if the diagnostic bit is activated, (IB0-d7="1"). If I2C read is performed during the diagnostic permanent plateau cycle then, once the short is removed, the amplifier waits for another I2C read before starting to play again, in order to communicate the diagnostic plateau cycle results. 6.4 AC diagnostic It is targeted at detecting accidental disconnection of tweeters in 2-way speaker and, more in general, presence of capacitive (AC) coupled loads. This diagnostic is based on the notion that the overall speaker's impedance (woofer + parallel tweeter) will tend to increase towards high frequencies if the tweeter gets disconnected, because the remaining speaker (woofer) would be out of its operating range (high impedance). To determine the load impedance, a sinewave tone at a suitable (F > 10 kHz or even ultrasonic) frequency should be fed to the output pins. Depending on the test's result the AC diagnostic is able to determine if the tweeter is connected or not. The tweeter is not connected if for four consecutive sine wave the current threshold on the load is not respassed. AC diagnostic is managed by I2C commands. The AC diagnostic is enabled by bit D7 of register IB4, while the bit D6 is used to choose the current level threshold. The result of AC test are stored in the data register DB4 (bits D7:D4) which are set to logic level '1' if a tweeter is detected on the correspondent channel. Note, the results on D7:D4 are valid only if the bit D3 is zero; in order to avoid this condition the pulse generated has to respect the condition Vout_peak < Vbattery-4V. 6.5 Output DC offset detection Any DC output offset exceeding ± VO are signalled out. This inconvenient might occur as a consequence of improper DC input signal. The offset detection is performed at the end of the digital chain by a low pass digital filter. The offset detection is permanent, and also works in play mode. The results of the DC offset detection are obtained from the right pin for each channel (see I2C table in Section 9); the bits are continuously refreshed. 26/48 DocID022674 Rev 4 TDA7801 6.6 Functional description Multiple faults Faults can occur simultaneously. If this happens, faults are read out according to a "priority table" (see Table 8); this guarantees that the most dangerous fault is signalled. This is true only for the turn-on diagnostic but not in case of permanent diagnostic (only the faults causing protection intervention are recognized). Table 8. Multiple faults priority 1. S. GND S. Vs S. Across L. Open L. S. GND S. GND S. Vs + S. GND S. GND S. GND S. Vs / S. Vs S. Vs S. Vs S. Across L. / / S. Across L. N.A. Open L. / / / Open Load (1) Only in Startup Diagnostic In permanent diagnostic mode the table is the same, with only a difference concerning open load, which is not among the recognizable faults. If an open load is present during the device's normal operation, it should be detected at a subsequent turn-on diagnostic cycle (i.e. at the successive car radio turn-on). 6.7 Faults availability All the results coming from I2C bus, by read operations, are the consequence of measurements inside a defined period of time. If the fault is stable throughout the whole period, it will be sent out. The turn-on diagnostic faults are reported on the byte DB 0-3 at the bits D 4-0. The faults are consistent when the bit D6 of DB0 is '1'. The byte DB 0-3 is reset when read. During Amplifier-mode, when the bit D4 of byte DB 0-3 is '1' an overload on the correspondent channel has been detected and a 100 ms permanent diagnostic cycle has been done. The data on the bits D 4-0 reports the results of this diagnostic cycle. If the bits are all zero it means that an overload event has been detected, a 100ms cycle has been performed and the fault has not been detected or removed. 6.8 I2C programming/reading sequence A correct turn on/off sequence respectful of the diagnostic timings and producing no audible noises could be as follows (after battery connection): a) Turn-on: (Stand-by out + DIag Enable)  200 ms (min.)  Muting out b) Turn-off: Muting in  10 ms  (Diag disable + stand-by in) c) Car radio installation: DIag enable (write)  200 ms  I2C read (repeat until all faults disappear). DocID022674 Rev 4 27/48 Functional description 6.9 TDA7801 Legacy mode In case of applications without the I2C bus the TDA7801 could be turned on in legacy mode. In order to put the device in legacy mode it is enough to tie the IC clock pin (PIN 27) at Vcc. In this mode the device is turned on, as usual, with the ENABLE pin (PIN 2). The I2C Data pin (PIN26) acts as analog mute. The device is set with all the instruction registers equal to zero. In legacy mode the I2S interface does not support the TDM format. 6.10 Thermal protection The TDA7801 has four thermal warnings (Tw1, Tw2, Tw3, Tw4) at different temperatures which are stored on the I2C bus. Only one of the four thermal warnings could be sent to the DIAG pin. The selection is done by an I2C bus. A mute function dependent on temperature is present in order to protect the junction by over-temperature with limited effects on the sound quality. For junction temperature over the thermal warning threshold Tpl, the device is gradually carried in mute. The mute level depends on the temperature: when the junction temperature reaches the Tpl threshold (refer to Figure 32), the output signal is attenuated of 0.5 dB, while when the junction temperature reaches Tph the output attenuation is 60 dB. This attenuation is performed without output signal distortion. Figure 32. Thermal muting diagram 6OUT 47 47 47 47 40, 40( 40, 40( 4J # 6OUT 28/48 DocID022674 Rev 4 4J # '!0'03 TDA7801 Functional description 6.11 Under-voltage threshold 6.11.1 Supply voltage auto-mute threshold The device in play-mode is put in mute when the supply voltage gets lower than the VAM threshold. When the supply voltage gets lower than the VAM threshold the device is put in mute. The muting strategy in this case is reported in Figure 33: once the supply voltage Vs becomes lower than VAM_HIGH, analog mute and digital mute are activated. The analog mute attenuation is proportional to the Vs voltage and becomes equal to AM when the Vs gets lower than VAM_LOW. Note that once the digital mute procedure is started, it cannot be stopped to move back the device in play, the procedure is going on until the attenuation level has reached AM. This mechanism avoids that a fast oscillation on Vs cause a similar oscillation on the output. Figure 33. Low voltage mute attenuation, supply voltage variation (Vs); result digital attenuation (At) 6S!TTENUATION!T 6S 6 !- ()'( 6 !- ,/7 !T TSEC 4-54% 6.11.2 4-54% '!0'03 Digital mute disabling The digital mute is disabled in the following conditions:  when TW1 threshold is trespassed (to avoid simultaneous intervention of digital mute and thermal mute)  when the bit IB3-D5 is set to '1'  during the start-up diagnostic When the digital mute is disabled, the analog mute is kept active. 6.11.3 Power-on reset threshold When the ENABLE pin is low or the supply voltage value doesn't guarantee the integrity of The I2C bus registers (VPOWERONRESET) the TDA7801 is put in tristate-mode and the registers are set to the initial state. The event is signalled by the low value of DIAG pin and the '0' value of bit D7 of byte DB0. The DIAG pin is set to high after a POR when the bit D7 of byte IB1 is set to '1' (amplifier mode on) if no other event on DIAG pin is present. The same I2C bus write operation automatically set to '1' the bit D7 of byte DB0. When the device is programmed with the D7=1 of IB0 and D7=1 of byte IB1 the device turns-on after a diagnostic cycle and the DIAG pin stays low for the whole duration of the diagnostic cycle. DocID022674 Rev 4 29/48 Functional description 6.12 TDA7801 Fast mute features The TDA7801 is put in mute by a fast-mute procedure by one of the following event:  the ENABLE pin is set to low  the PLL loses the locking  the VS voltage level is under the auto-mute threshold.  30/48 by an I2C programming DocID022674 Rev 4 I2S bus interface TDA7801 7 I2S bus interface The TDA7801 accepts the I2S standard format that could be time division multiplexed (TDM), however the WS still needs a 50% duty-cycle to work correctly. The Figure 34 shows the different I2C settings allowed for the I2S interface (2,4 or 8 channels transmission on a single serial data line (SD) can be selected). By I2C programming it is possible to choose between the following interface settings: a) channel 1 and channel 3 channel on SD1_3 and channel 2 and channel 4 on SD2_4 b) all four channels on SD2_4. SD1_3 has not function. c) eight channels transferred on the SD2_4 line. This setting is feasible in the PowerSO36 and Flexiwatt27 package. Figure 34. TDM setting 3#+ 73 #( #( #( #( #( #( 3$? )" hv 3$? )" hv #( 3$? #( )" hv 3$? #( #( 8 8 #( #( 8 8 8 8 #( #( 8 8 #( #( )" hv 3$? )" hv '!0'03 The TDA7801 accepts the I2S standard format with a bit clock (SCK) equal to 64 fs. Note, TDM setting is guaranteed for a maximum Fs = 96 kHz. Figure 35. I2S format F3 , #HANNEL 2 #HANNEL  "IT     -3"       ,3"  "IT     -3"   ,3" DocID022674 Rev 4     '!0'03 31/48 I2S bus interface 7.1 TDA7801 Interface timings requirements The data interface timings are described below. In the TDA7801 the TDM format as shown in Figure 34, is an I2S extended: if the four channels option is set then the serial clock is multiplied by two while it will be multiplied by four when the eight channels option is set. This means that it is important to keep a duty-cycle of 50% for the Word Select signal and moreover, all the timings for serial clock and data don't change in every I2S configuration. Table 9. System clock frequencies for common audio sampling frequencies Frequency sampling (fs) System clock frequency (fSCK), (MHz) I2S standard (fs*64) TDM 4ch (fs*128) TDM 8ch md1 (fs*256) TDM 8ch md2 (fs*256) 44.1 (kHz) 2.82 5.64 11.29 11.29 48.0 (kHz) 3.07 6.14 12.29 12.29 96.0 (kHz) 6.14 12.29 24.58 24.58 192.0 (kHz) 12.29 24.58 N.A. N.A. Table 9 shows the values of system clock frequencies (serial clock SCK) for common audio sampling frequencies. Figure 12 shows the detail of the audio input format as specified by the standard I2S specification. When more channels are sent the input format does not change and they follow the sequence as shown in Figure 34. Figure 36. Audio data input format 3#+ 73 -3" ,3" 3$ ,3" -3" '!0'03 Figure 37. Audio interface timing 43+( 43+, 43+9 4$3 4$( 6()6 6,/6 '!0'03 32/48 DocID022674 Rev 4 I2S bus interface TDA7801 Table 10. Example timing for tck = 1/fSCK, where fSCK is stated in the Table 9 Parameter MIN TYP MAX Clock period TSKY 0.9*Tck Tck 1.1*Tck Clock HIGH TSKH 0.4*Tck Measured from VHI to VHI Clock LOW TSKL 0.4*Tck Measured from VLO to VLO Setup time SD to fSCK rising edge TDS 0.2*Tck Hold time SD from fSCK rising edge THD 0.2*Tck 0.8*Tck (1) 40% 60% fSCK duty-cycle VHI Note 1.3 VLO 0.8 1. Measured from VLO to VHI. 7.2 Group delay The group delay of the amplifier is basically due the FIR filter of the interpolator and it is given by: t DELAY = 32 ------ , (fs < 48 kHz) fs DocID022674 Rev 4 33/48 I2C bus interface 8 TDA7801 I2C bus interface Data transmission from microprocessor to the TDA7801 and viceversa takes place through the 2 wires I2C bus interface, consisting of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be connected). When I2C bus is active any operating mode of the IC may be modified and the diagnostic may be controlled and results read back. The protocol used for the bus is depicted in Figure 38 and comprises:  a start condition (S)  a chip address byte (the LSB bit determines read/write transmission)  a subaddress byte  a sequence of data (N-bytes + acknowledge)  a stop condition (P) Figure 38. I2C bus protocol description 3 !DDRESS ! 3UBADDRESS ! $ATA 0 !DDRESS         27 3UBADDRS  8 8 ) 35"! 35"! 35"! 35"! 35"! $ATA  $!4! $!4! $!4! $!4! $!4! $!4! $!4! $!4! '!0'03 Description: S = Start R/W = '0' => Receive-Mode (Chip could be programmed by µP) I = Auto increment; when 1, the address is automatically increased for each byte transferred X: not used A = Acknowledge P = Stop MAX CLOCK SPEED 400kbit/sec * = available in PowerSO36 34/48 DocID022674 Rev 4 I2C bus interface TDA7801 8.1 Writing procedure There are two possible procedures: 8.2 1. without increment: the I bit is set to 0 and the register is addressed by the subaddress. Only this register is written by the data following the subaddress byte. 2. with increment: the I bit is set to 1 and the first register written is the one addressed by subaddress. Then all the registers starting from the one indicated by this address up to stop bit (or up to last register) are written. Reading procedure There are two possible procedures: 1. without increment: the I bit is set to 0 and the register is addressed by the subaddress sent in the previous write procedure. Only this register is read by the data following the address. 2. with increment: the I bit is set to 1 and the first register read is the one addressed by subaddress sent in the previous write procedure. Then all registers starting from the one indicated by this address up to stop bit (or up to last register) are read. Note: the reading procedure reset the register that has been read. 8.3 Data validity The data on the SDA line must be stable during the high period of the clock. The high and low state of the data line can only change when the clock signal on the SCL line is low. 8.4 Start and stop conditions A start condition is a high to low transition of the SDA line while SCL is high. The stop condition is a low to high transition of the SDA line while SCL is high. 8.5 Byte format Every byte transferred to the SDA line must contain 8 bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first. 8.6 Acknowledge The transmitter* puts a resistive HIGH level on the SDA line during the acknowledge clock pulse. The receiver** has to pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is stable low using this clock pulse. * Transmitter = master (µP) when it writes an address to the TDA7801 = slave (TDA7801) when the µP reads a data byte from TDA7801 ** Receiver = slave (TDA7801) when the µP writes an address to the TDA7801 = master (µP) when it reads a data byte from TDA7801 DocID022674 Rev 4 35/48 I2C registers TDA7801 9 I2C registers 9.1 IB0-Addr:"00000" Table 11. IB0-Addr:"00000" Bit D7 0: diagnostic defeat 1: diagnostic enable D6 0: Speaker mode diagnostic ch. 1 and 3 (FRONT) 1: Booster mode diagnostic ch. 1 and 3 D5 0: Speaker mode diagnostic ch. 2 and 4 (REAR) 1: Booster mode diagnostic ch. 2 and 4 D4 D3 D2 D1 D0 9.2 Instruction decoding bit Gain channel 1 and 3 (FRONT) D4 D3 00 GV1 01 GV2 10 GV3 11 GV4 Gain channel 2 and 4 (REAR) D2 D1 00 GV1 01 GV2 10 GV3 11 GV4 0: No increase of digital gain 1: +6dB increase of digital gain IB1-Addr:"00001" Table 12. IB1-Addr:"00001" Bit D7 D6 D5 D4 D3 36/48 Instruction decoding bit 0: Amplifier mode off - Amplifier not working 1: Amplifier mode on - Amplifier working Mute Time Setting D6 D5 D4 mute timing(Fs=44.1kHz) 000 1.45 ms 001 5.8 ms 010 11.6 ms 011 23.2 ms 100 34.8 ms 101 69.6 ms 110 140 ms 111 278 ms 0: Mute channel 1 and 3 (FRONT) 1: Unmute channel 1 and 3 DocID022674 Rev 4 I2C registers TDA7801 Table 12. IB1-Addr:"00001" (continued) Bit D2 D1 D0 Instruction decoding bit 0: Mute channel 2 and 4 (REAR) 1: Unmute channel 2 and 4 Sample Frequency Range(1) D1 D0 00 44.1/48 kHz 01 44.1/48 kHz 10 96 kHz 11 192 kHz 1. When the amplifier is in Tristate Mode (IB0-D7=0 and IB1-D7=0), any accidental change of Frequency sample is ignored. 9.3 IB2-Addr:"00010" Table 13. IB3-Addr:"00010" Bit Instruction decoding bit D7 0: no short fault information on diag. pin 1: short fault information on diag. pin D6 0: Offset information on diag pin 1: no offset information on diag pin D5 D4 D3 D2 D1 D0 Temperature warning information on diag. pin D5 D4 D3 000 Tw1 001 Tw2 010 Tw3 011 Tw4 1xx no thermal warning information on diag. pin Clip detection level D2 D1 00 1 % 01 5 % 10 10 % 11 clip detection disabled 0 (no selectable from user) DocID022674 Rev 4 37/48 I2C registers 9.4 TDA7801 IB3-Addr:"00011" Table 14. IB3-Addr:"00011" Bit 9.5 Instruction decoding bit D7 0: Noise gating on 1: Noise gating off D6 0 (not used) D5 0: under-voltage digital mute on 1: under-voltage digital mute off D4 Tristate channel 3 (right front) 0: ch.3 not in tristate 1: ch.3 in tristate D3 Tristate channel 1 (left front) 0: ch.1 not in tristate 1: ch.1 in tristate D2 Tristate channel 4 (right rear) 0: ch.4 not in tristate 1: ch.4 in tristate D1 Tristate channel 2 (left rear) 0: ch.2 not in tristate 1: ch.2 in tristate D0 0: Input high pass filter off 1: Input high pass filter on IB4-Addr:"00100" Table 15. IB4-Addr:"00100" Bit D7 AC diagnostic On (D7='1') D6 AC diagnostic current threshold D6 = '0': high D6 = '1': low D5 D4 38/48 Instruction decoding bit TDM 00 I2S standard 01 I2S - 4 ch 10 I2S - 8 ch (first channels) 11 I2S - 8 ch (last channels) D3 0 (not used) D2 0 (not used) D1 0 (not used) D0 0 (not used) DocID022674 Rev 4 I2C registers TDA7801 9.6 DB0-Addr:"10000" - Channel 1 (left front) Table 16. DB0-Addr:"10000" - Channel 1 (left front) Bit D7 D6 D5 D4 D3 D2 D1 D0 Instruction decoding bit Power on reset (POR) 0: After a POR the device is in tristate 1: The device has been put out of tristate at least one time after POR Start-up diagnostic status 0: Turn-On diag. cycle not activated or not terminated 1: Turn-On diag. cycle terminated Channel 1 offset detection 0: No output offset 1: Output offset detected Channel 1(1) 0: Permanent diagnostic cycle not activated or not terminated 1: Permanent diagnostic cycle terminated Channel 1 0: Normal load 1: Short load Channel 1 0: No open load 1: Open load detection (only during turn-on diagnostic) Channel 1 0: No short to Vcc 1: Short to Vcc Channel 1 0: No short to GND 1: Short to GND 1. The permanent diagnostic cycle is activated after each register reading if the permanent diagnostic is still present, (IB0-d7="1"). DocID022674 Rev 4 39/48 I2C registers 9.7 TDA7801 DB1-Addr:"10001" - Channel 2 (left rear) Table 17. DB1-Addr:"10001" - Channel 2 (left rear) Bit Instruction decoding bit D7 TW1 active 0: TW1 threshold not trespassed 1: TW1 threshold tress-passed D6 TW2 active 0: TW2 threshold not trespassed 1: TW2 threshold tress-passed D5 Channel 2 offset detection 0: No output offset 1: Output offset detected D4 Channel 2(1) 0: permanent diag. cycle not activated or not terminated 1: Permanent diag. cycle terminated D3 Channel 2 0: Normal load 1: Short load D2 Channel 2 0: No open load 1: Open load detection (only during turn-on diagnostic) D1 Channel 2 0: No short to Vcc 1: Short to Vcc D0 Channel 2 0: No short to GND 1: Short to GND 1. The permanent diagnostic cycle is activated after each register reading if the permanent diagnostic is still present. 40/48 DocID022674 Rev 4 I2C registers TDA7801 9.8 DB2-Addr:"10010"" - Channel 3 (right front) Table 18. DB2-Addr:"10010"" - Channel 3 (right front) Bit Instruction decoding bit D7 TW3 active 0: TW3 threshold not trespassed 1: TW3 threshold tress-passed D6 TW4 active 0: TW4 threshold not trespassed 1: TW4 threshold tress-passed D5 Channel 3 offset detection 0: No output offset 1: Output offset detected D4 Channel 3(1) 0: Permanent diag. cycle not activated or not terminated 1: Permanent diag. cycle terminated D3 Channel 3 0: Normal load 1: Short load D2 Channel 3 0: No open load 1: Open load detection (only during turn-on diagnostic) D1 Channel 3 0: No short to Vcc 1: Short to Vcc D0 Channel 3 0: No short to GND 1: Short to GND 1. The permanent diagnostic cycle is activated after each register reading if the permanent diagnostic is still present. DocID022674 Rev 4 41/48 I2C registers 9.9 TDA7801 DB3-Addr:"10011" - Channel 4 (right rear) Table 19. DB3-Addr:"10011" - Channel 4 (right rear) Bit 1. 9.10 Instruction decoding bit D7 0: channel 2 and 4 in play (FRONT) 1: channel 2 and 4 in mute D6 0: channel 1 and 3 in play (REAR) 1: channel 1 and 3 in mute D5 Channel 4 offset detection 0: No output offset 1: Output offset detected D4 Channel 4(1) 0: permanent diag. cycle not activated or not terminated 1: Permanent diag. cycle terminated D3 Channel 4 0: Normal load 1: Short load D2 Channel 4 0: No open load 1: Open load detection (only during turn-on diagnostic) D1 Channel 4 0: No short to Vcc 1: Short to Vcc D0 Channel 4 0: No short to GND 1: Short to GND The permanent diagnostic cycle is activated after each register reading if the permanent diagnostic is still present. DB4-Addr:"10100" Table 20. DB4-Addr:"10100" Bit 42/48 Instruction decoding bit D7 Ch1 tweeter present D6 Ch2 tweeter present D5 Ch3 tweeter present D4 Ch4 tweeter present D3 Signal to high D2 0 D1 0 D0 0 DocID022674 Rev 4 TDA7801 10 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Figure 39. PowerSO36 (slug-up) mechanical data and package dimensions $)- ! ! ! ! A B C $ $ $ % % % % % E E ' ( H , . S -).                MM 490     -!8                  ƒ ƒ -).                INCH 490     -!8                  ƒ ƒ  h$AND%vDONOTINCLUDEMOLDFLASHORPROTUSIONS -OLDFLASHORPROTUSIONSSHALLNOTEXCEEDMMv   .OINTRUSIONALLOWEDINWARDSTHELEADS /54,).%!.$ -%#(!.)#!,$!4 ! 0OWER3/3,5'50 ' '!0'03 DocID022674 Rev 4 43/48 Package information TDA7801 Figure 40. Flexiwatt27 (vertical) mechanical data and package dimensions ',0 0,1   $ % & ' ( )  * * +  + + + /  / /  / / / 0 0 1 2 5 5 5 5 5 9 9 9 9            PP 7
TDA7801SMTR 价格&库存

很抱歉,暂时无法提供与“TDA7801SMTR”相匹配的价格&库存,您可以联系我们找货

免费人工找货