0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TH4C476K010C0500

TH4C476K010C0500

  • 厂商:

    TFUNK(威世)

  • 封装:

    C6032-28

  • 描述:

    钽电容 2413 47µF ±10% 10V 500mΩ 6.00 x 3.20mm 2.80mm

  • 数据手册
  • 价格&库存
TH4C476K010C0500 数据手册
TH4 www.vishay.com Vishay Sprague Solid Tantalum Surface-Mount Chip Capacitors TANTAMOUNT™ Molded Case, HI-TMP® High Temperature 175 °C, Automotive Grade FEATURES • Operating temperature up to 175 °C with 50 % voltage derating • AEC-Q200 qualified • 100 % surge current tested • RoHS-compliant terminations available: matte tin (all cases), gold (D / E cases) LINKS TO ADDITIONAL RESOURCES 3D 3D 3D Models • Standard EIA 535BAAC case sizes Calculators Related Documents Infographics Did You Know? • Moisture sensitivity level 1 • Material categorization: for definitions of compliance please see www.vishay.com/doc?99912 Technical Notes APPLICATIONS PERFORMANCE / ELECTRICAL CHARACTERISTICS • Automotive www.vishay.com/doc?40215 • Industrial Operating Temperature: -55 °C to +175 °C • High temperature Capacitance Range: 10 μF to 100 μF Capacitance Tolerance: ± 10 %, ± 20 % Voltage Range: 6.3 VDC to 35 VDC Note • For recommended voltage derating guidelines see “Typical Performance Characteristics” ORDERING INFORMATION TH4 C 226 K 016 C 1000 TYPE CASE CODE CAPACITANCE CAPACITANCE TOLERANCE DC VOLTAGE RATING AT +85 °C TERMINATION AND PACKAGING ESR See Ratings and Case Codes table This is expressed in picofarads. The first two digits are the significant figures. The third is the number of zeros to follow. K = ± 10 % M = ± 20 % This is expressed in V. To complete the three-digit block, zeros precede the voltage rating. A decimal point is indicated by an “R” (6R3 = 6.3 V) Matte tin C = 7" (178 mm) reel D = 13" (330 mm) reel V = 7" (178 mm) reel, dry pack U = 13" (330 mm) reel, dry pack Gold plating A = 7" (178 mm) reel B = 13" (330 mm) reel Maximum 100 kHz ESR 0500 = 500 mΩ 5000 = 5.0 Ω 10R0 = 10.0 Ω Notes • We reserve the right to supply higher voltage ratings and tighter capacitance tolerance capacitors in the same case size. Voltage substitutions will be marked with the higher voltage rating • Dry pack as specified in J-STD-033 • Gold plated terminations are available for D / E cases only Revision: 09-Aug-2022 Document Number: 40152 1 For technical questions, contact: tantalum@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 TH4 www.vishay.com Vishay Sprague DIMENSIONS in inches [millimeters] L W H Glue Pad TH (MIN.) TW Glue Pad P CASE CODE EIA SIZE L W H P TW TH (MIN.) B 3528-21 0.138 ± 0.008 [3.5 ± 0.20] 0.110 ± 0.008 [2.8 ± 0.20] 0.075 ± 0.008 [1.9 ± 0.20] 0.031 ± 0.012 [0.80 ± 0.30] 0.087 ± 0.004 [2.2 ± 0.10] 0.028 [0.70] C 6032-28 0.236 ± 0.012 [6.0 ± 0.30] 0.126 ± 0.012 [3.2 ± 0.30] 0.098 ± 0.012 [2.5 ± 0.30] 0.051 ± 0.012 [1.3 ± 0.30] 0.087 ± 0.004 [2.2 ± 0.10] 0.039 [1.0] D 7343-31 0.287 ± 0.012 [7.3 ± 0.30] 0.169 ± 0.012 [4.3 ± 0.30] 0.110 ± 0.012 [2.8 ± 0.30] 0.051 ± 0.012 [1.3 ± 0.30] 0.094 ± 0.004 [2.4 ± 0.10] 0.039 [1.0] E 7343-43 0.287 ± 0.012 [7.3 ± 0.30] 0.169 ± 0.012 [4.3 ± 0.30] 0.157 ± 0.012 [4.0 ± 0.30] 0.051 ± 0.012 [1.3 ± 0.30] 0.094 ± 0.004 [2.4 ± 0.10] 0.039 [1.0] Note • Glue pad (non-conductive, part of molded case) is dedicated for glue attachment (as user option) RATINGS AND CASE CODES μF 6.3 V 10 V 16 V 35 V 4.7 50 V D (0.9) 10 B (1.8) B (1.8) B (2.0) 22 B (1.5) B (1.6) C (1.4) B (1.9) C (1.4, 1.0) D (0.8, 0.6) 47 C (0.8) C (0.5) C (0.8) D (0.4, 0.7) 100 D (0.5) E (0.6) MARKING Indicates 175 °C temperature Voltage Capacitance, μF 22 Polarity band (+) XX Date code B10 2 Vishay marking Marking Capacitor marking includes an anode (+) polarity band, capacitance in microfarads and the voltage rating. The Vishay identification marking is included if space permits. Vishay marking (“circled 2”) may show additives in the form of short lines, depicting actual manufacturing facility. For A case capacitors discontinuation in polarity bar maybe used as actual manufacturing facility designation. Capacitors rated at 6.3 V are marked 6 V. A manufacturing date code is marked on all capacitors. Call the factory for further explanation. Revision: 09-Aug-2022 Document Number: 40152 2 For technical questions, contact: tantalum@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 TH4 www.vishay.com Vishay Sprague STANDARD RATINGS CAPACITANCE (μF) CASE CODE PART NUMBER MAX. DCL AT +25 °C (μA) MAX. DF AT +25 °C 120 Hz (%) MAX. ESR AT +25 °C 100 kHz (Ω) MAX. RIPPLE AT +25 °C 100 kHz IRMS (A) 6.3 VDC AT +85 °C; 3 VDC AT +175 °C 10 B TH4B106(1)6R3(2)1800 0.6 6.0 1.800 0.22 22 B TH4B226(1)6R3(2)1500 1.4 6.0 1.500 0.24 47 C TH4C476(1)6R3(2)0800 3.0 6.0 0.800 0.37 10 B TH4B106(1)010(2)1800 1.0 4.5 1.800 0.22 22 B TH4B226(1)010(2)1600 2.2 6.0 1.600 0.23 22 C TH4C226(1)010(2)1400 2.2 6.0 1.400 0.28 47 C TH4C476(1)010(2)0500 4.7 4.5 0.500 0.47 10 B TH4B106(1)016(2)2000 1.6 6.0 2.000 0.21 22 B TH4B226(1)016(2)1900 3.5 6.0 1.900 0.21 22 C TH4C226(1)016(2)1400 3.5 6.0 1.400 0.28 22 C TH4C226(1)016(2)1000 3.5 6.0 1.000 0.33 22 D TH4D226(1)016(2)0800 3.5 6.0 0.800 0.43 10 VDC AT +85 °C; 5 VDC AT +175 °C 16 VDC AT +85 °C; 8 VDC AT +175 °C 22 D TH4D226(1)016(2)0600 3.5 6.0 0.600 0.50 47 C TH4C476(1)016(2)0800 7.5 6.0 0.800 0.37 47 D TH4D476(1)016(2)0700 7.5 6.0 0.700 0.46 47 D TH4D476(1)016(2)0400 7.5 6.0 0.400 0.61 100 E TH4E107(1)016(2)0600 16 8.0 0.600 0.52 22 D TH4D226(1)035(2)0500 6.0 0.500 0.55 6.0 0.900 0.41 35 VDC AT +85 °C; 17.5 VDC AT +175 °C 6.0 50 VDC AT +85 °C; 25 VDC AT +175 °C 4.7 D TH4D475(1)050(2)0900 2.4 Note • Part number definitions: (1) Capacitance tolerance: K, M (2) Termination and packaging: C, D, V, U, A, B (A and B - for cases D / E only) POWER DISSIPATION CASE CODE MAXIMUM PERMISSIBLE POWER DISSIPATION AT +25 °C (W) IN FREE AIR B 0.085 C 0.110 D 0.150 E 0.165 Revision: 09-Aug-2022 Document Number: 40152 3 For technical questions, contact: tantalum@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 TH4 www.vishay.com Vishay Sprague RIPPLE CURRENT FACTOR TEMPERATURE (°C) DERATING FACTOR 25 1.0 85 0.9 125 0.4 150 0.3 175 0.2 STANDARD PACKAGING QUANTITY CASE CODE UNITS PER REEL 7" REEL 13" REEL B 2000 8000 C 500 3000 D 500 2500 E 400 1500 PRODUCT INFORMATION Guide for Molded Tantalum Capacitors Pad Dimensions www.vishay.com/doc?40074 Packaging Dimensions Moisture Sensitivity (MSL) www.vishay.com/doc?40135 SELECTOR GUIDES Solid Tantalum Selector Guide www.vishay.com/doc?49053 Solid Tantalum Chip Capacitors www.vishay.com/doc?40091 FAQ Frequently Asked Questions Revision: 09-Aug-2022 www.vishay.com/doc?40110 Document Number: 40152 4 For technical questions, contact: tantalum@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Molded Guide www.vishay.com Vishay Sprague Guide for Molded Tantalum Capacitors INTRODUCTION Tantalum electrolytic capacitors are the preferred choice in applications where volumetric efficiency, stable electrical parameters, high reliability, and long service life are primary considerations. The stability and resistance to elevated temperatures of the tantalum / tantalum oxide / manganese dioxide system make solid tantalum capacitors an appropriate choice for today's surface mount assembly technology. Vishay Sprague has been a pioneer and leader in this field, producing a large variety of tantalum capacitor types for consumer, industrial, automotive, military, and aerospace electronic applications. Tantalum is not found in its pure state. Rather, it is commonly found in a number of oxide minerals, often in combination with Columbium ore. This combination is known as “tantalite” when its contents are more than one-half tantalum. Important sources of tantalite include Australia, Brazil, Canada, China, and several African countries. Synthetic tantalite concentrates produced from tin slags in Thailand, Malaysia, and Brazil are also a significant raw material for tantalum production. Electronic applications, and particularly capacitors, consume the largest share of world tantalum production. Other important applications for tantalum include cutting tools (tantalum carbide), high temperature super alloys, chemical processing equipment, medical implants, and military ordnance. Vishay Sprague is a major user of tantalum materials in the form of powder and wire for capacitor elements and rod and sheet for high temperature vacuum processing. THE BASICS OF TANTALUM CAPACITORS Most metals form crystalline oxides which are non-protecting, such as rust on iron or black oxide on copper. A few metals form dense, stable, tightly adhering, electrically insulating oxides. These are the so-called “valve”metals and include titanium, zirconium, niobium, tantalum, hafnium, and aluminum. Only a few of these permit the accurate control of oxide thickness by electrochemical means. Of these, the most valuable for the electronics industry are aluminum and tantalum. Capacitors are basic to all kinds of electrical equipment, from radios and television sets to missile controls and automobile ignitions. Their function is to store an electrical charge for later use. Capacitors consist of two conducting surfaces, usually metal plates, whose function is to conduct electricity. They are separated by an insulating material or dielectric. The dielectric used in all tantalum electrolytic capacitors is tantalum pentoxide. Tantalum pentoxide compound possesses high-dielectric strength and a high-dielectric constant. As capacitors are being manufactured, a film of tantalum pentoxide is applied to their electrodes by means of an electrolytic process. The film is applied in various thicknesses and at various voltages and although transparent to begin with, it takes on different colors as light refracts through it. This coloring occurs on the tantalum electrodes of all types of tantalum capacitors. Revision: 25-Jan-2022 Rating for rating, tantalum capacitors tend to have as much as three times better capacitance / volume efficiency than aluminum electrolytic capacitors. An approximation of the capacitance / volume efficiency of other types of capacitors may be inferred from the following table, which shows the dielectric constant ranges of the various materials used in each type. Note that tantalum pentoxide has a dielectric constant of 26, some three times greater than that of aluminum oxide. This, in addition to the fact that extremely thin films can be deposited during the electrolytic process mentioned earlier, makes the tantalum capacitor extremely efficient with respect to the number of microfarads available per unit volume. The capacitance of any capacitor is determined by the surface area of the two conducting plates, the distance between the plates, and the dielectric constant of the insulating material between the plates. COMPARISON OF CAPACITOR DIELECTRIC CONSTANTS DIELECTRIC Air or vacuum Paper Plastic Mineral oil Silicone oil Quartz Glass Porcelain Mica Aluminum oxide Tantalum pentoxide Ceramic e DIELECTRIC CONSTANT 1.0 2.0 to 6.0 2.1 to 6.0 2.2 to 2.3 2.7 to 2.8 3.8 to 4.4 4.8 to 8.0 5.1 to 5.9 5.4 to 8.7 8.4 26 12 to 400K In the tantalum electrolytic capacitor, the distance between the plates is very small since it is only the thickness of the tantalum pentoxide film. As the dielectric constant of the tantalum pentoxide is high, the capacitance of a tantalum capacitor is high if the area of the plates is large: eA C = ------t where C = capacitance e = dielectric constant A = surface area of the dielectric t = thickness of the dielectric Tantalum capacitors contain either liquid or solid electrolytes. In solid electrolyte capacitors, a dry material (manganese dioxide) forms the cathode plate. A tantalum lead is embedded in or welded to the pellet, which is in turn connected to a termination or lead wire. The drawings show the construction details of the surface mount types of tantalum capacitors shown in this catalog. Document Number: 40074 1 For technical questions, contact: tantalum@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Molded Guide www.vishay.com Vishay Sprague SOLID ELECTROLYTE TANTALUM CAPACITORS Solid electrolyte capacitors contain manganese dioxide, which is formed on the tantalum pentoxide dielectric layer by impregnating the pellet with a solution of manganous nitrate. The pellet is then heated in an oven, and the manganous nitrate is converted to manganese dioxide. The pellet is next coated with graphite, followed by a layer of metallic silver, which provides a conductive surface between the pellet and the leadframe. Molded Chip tantalum capacitor encases the element in plastic resins, such as epoxy materials. The molding compound has been selected to meet the requirements of UL 94 V-0 and outgassing requirements of ASTM E-595. After assembly, the capacitors are tested and inspected to assure long life and reliability. It offers excellent reliability and high stability for consumer and commercial electronics with the added feature of low cost Surface mount designs of “Solid Tantalum” capacitors use lead frames or lead frameless designs as shown in the accompanying drawings. TANTALUM CAPACITORS FOR ALL DESIGN CONSIDERATIONS Solid electrolyte designs are the least expensive for a given rating and are used in many applications where their very small size for a given unit of capacitance is of importance. They will typically withstand up to about 10 % of the rated DC working voltage in a reverse direction. Also important are their good low temperature performance characteristics and freedom from corrosive electrolytes. Vishay Sprague patented the original solid electrolyte capacitors and was the first to market them in 1956. Vishay Sprague has the broadest line of tantalum capacitors and has continued its position of leadership in this field. Data sheets covering the various types and styles of Vishay Sprague capacitors for consumer and entertainment electronics, industry, and military applications are available where detailed performance characteristics must be specified. MOLDED CHIP CAPACITOR Silver Adhesive Epoxy Encapsulation Anode Polarity Bar MnO2/Carbon/ Silver Coating Solderable Leadframe Cathode Sintered Termination Tantalum Revision: 25-Jan-2022 Solderable Anode Termination Document Number: 40074 2 For technical questions, contact: tantalum@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Molded Guide www.vishay.com Vishay Sprague COMMERCIAL PRODUCTS SOLID TANTALUM CAPACITORS - MOLDED CASE SERIES 793DX-CTC3CTC4 293D 593D TR3 TP3 TL3 High performance, automotive grade Very low DCL PRODUCT IMAGE TYPE FEATURES Surface mount TANTAMOUNT™, molded case Standard industrial grade CECC approved Low ESR TEMPERATURE RANGE -55 °C to +125 °C CAPACITANCE 0.1 μF to 1000 μF RANGE VOLTAGE RANGE 4 V to 75 V CAPACITANCE TOLERANCE 0.1 μF to 100 μF 1 μF to 470 μF 0.47 μF to 1000 μF 0.1 μF to 470 μF 4 V to 50 V 4 V to 50 V 4 V to 75 V 4 V to 50 V 0.1 μF to 470 μF 4 V to 50 V ± 10 %, ± 20 % LEAKAGE CURRENT DISSIPATION FACTOR CASE CODES TERMINATION Low ESR 0.005 CV or 0.25 μA, whichever is greater 0.01 CV or 0.5 μA, whichever is greater 4 % to 30 % 4 % to 6 % A, B, C, D, E A, B, C, D 4 % to 15 % 4 % to 30 % A, B, C, D, E A, B, C, D, E, W 100 % matte tin standard, tin / lead available 4 % to 15 % 4 % to 15 % A, B, C, D, E A, B, C, D, E SOLID TANTALUM CAPACITORS - MOLDED CASE SERIES TH3 TH4 TH5 PRODUCT IMAGE TYPE FEATURES TEMPERATURE RANGE CAPACITANCE RANGE VOLTAGE RANGE CAPACITANCE TOLERANCE LEAKAGE CURRENT DISSIPATION FACTOR CASE CODES TERMINATION Revision: 25-Jan-2022 High temperature +150 °C, automotive grade Surface mount TANTAMOUNT™, molded case High temperature +175 °C, Very high temperature +200 °C automotive grade -55 °C to +150 °C -55 °C to +175 °C -55 °C to +200 °C 0.33 μF to 220 μF 10 μF to 100 μF 4.7 μF to 100 μF 6.3 V to 50 V 6.3 V to 35 V 5 V to 24 V ± 10 %, ± 20 % 0.01 CV or 0.5 μA, whichever is greater 4 % to 8 % 4.5 % to 8 % 6 % to 10 % A, B, C, D, E 100 % matte tin standard, tin / lead and gold plated available B, C, D, E D, E 100 % matte tin Gold plated Document Number: 40074 3 For technical questions, contact: tantalum@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Molded Guide www.vishay.com Vishay Sprague HIGH RELIABILITY PRODUCTS SOLID TANTALUM CAPACITORS - MOLDED CASE SERIES TM3 T83 CWR11 TANTAMOUNT™, molded case, hi-rel. TANTAMOUNT™, molded case, hi-rel. COTS High reliability, for medical Instruments High reliability, standard and low ESR 95158 PRODUCT IMAGE TYPE FEATURES TEMPERATURE RANGE CAPACITANCE RANGE VOLTAGE RANGE CAPACITANCE TOLERANCE LEAKAGE CURRENT TANTAMOUNT™, molded case, DLA approved MIL-PRF-55365/8 qualified Low ESR -55 °C to +125 °C 1 μF to 220 μF 0.1 μF to 470 μF 4 V to 20 V 4 V to 63 V 0.1 μF to 100 μF 4.7 μF to 220 μF 4 V to 50 V ± 10 %, ± 20 % ± 5 %, ± 10 %, ± 20 % 0.005 CV or 0.25 μA, whichever is greater ± 10 %, ± 20 % 0.01 CV or 0.5 μA, whichever is greater DISSIPATION FACTOR 4 % to 8 % 4 % to 15 % 4 % to 6 % 4 % to 12 % CASE CODES A, B, C, D, E A, B, C, D, E A, B, C, D C, D, E TERMINATION 100 % matte tin; tin / lead 100 % matte tin; tin / lead; tin / lead solder fused Tin / lead; tin / lead solder fused Tin / lead solder plated; gold plated Revision: 25-Jan-2022 Document Number: 40074 4 For technical questions, contact: tantalum@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Molded Guide www.vishay.com Vishay Sprague PLASTIC TAPE AND REEL PACKAGING in inches [millimeters] 0.157 ± 0.004 [4.0 ± 0.10] Tape thickness Deformation between embossments 0.014 [0.35] MAX. 0.059 + 0.004 - 0.0 [1.5 + 0.10 - 0.0] Top cover tape B1 MAX. (Note 6) Center lines of cavity 0.069 ± 0.004 [1.75 ± 0.10] Embossment 0.030 [0.75] MIN. (Note 3) B0 Top cover tape For tape feeder reference only including draft. Concentric around B0 (Note 5) 0.079 ± 0.002 [2.0 ± 0.05] A0 K0 0.004 [0.1] MAX. 10 pitches cumulative tolerance on tape ± 0.008 [0.200] 20° F W Maxim um component rotation 0.030 [0.75] MIN. (Note 4) (Side or front sectional view) P1 USER DIRECTION OF FEED Maximum cavity size (Note 1) D1 MIN. for components 0.079 x 0.047 [2.0 x 1.2] and larger . (Note 5) Cathode (-) Anode (+) Direction of Feed 20° maximum component rotation Typical component cavity center line B0 Typical component center line A0 (Top view) Tape and Reel Specifications: all case sizes are available on plastic embossed tape per EIA-481. Standard reel diameter is 7" [178 mm], 13" [330 mm] reels are available and recommended as the most cost effective packaging method. 3.937 [100.0] 0.039 [1.0] MAX. Tape 0.039 [1.0] MAX. 0.9843 [250.0] Camber (top view) Allowable camber to be 0.039/3.937 [1/100] non-cumulative over 9.843 [250.0] The most efficient packaging quantities are full reel increments on a given reel diameter. The quantities shown allow for the sealed empty pockets required to be in conformance with EIA-481. Reel size and packaging orientation must be specified in the Vishay Sprague part number. Notes • Metric dimensions will govern. Dimensions in inches are rounded and for reference only (1) A , B , K , are determined by the maximum dimensions to the ends of the terminals extending from the component body and / or the body 0 0 0 dimensions of the component. The clearance between the ends of the terminals or body of the component to the sides and depth of the cavity (A0, B0, K0) must be within 0.002" (0.05 mm) minimum and 0.020" (0.50 mm) maximum. The clearance allowed must also prevent rotation of the component within the cavity of not more than 20° (2) Tape with components shall pass around radius “R” without damage. The minimum trailer length may require additional length to provide “R” minimum for 12 mm embossed tape for reels with hub diameters approaching N minimum (3) This dimension is the flat area from the edge of the sprocket hole to either outward deformation of the carrier tape between the embossed cavities or to the edge of the cavity whichever is less (4) This dimension is the flat area from the edge of the carrier tape opposite the sprocket holes to either the outward deformation of the carrier tape between the embossed cavity or to the edge of the cavity whichever is less (5) The embossed hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of embossment location shall be applied independent of each other (6) B dimension is a reference dimension tape feeder clearance only 1 CASE CODE TAPE SIZE B1 (MAX.) MOLDED CHIP CAPACITORS; ALL TYPES A 0.165 8 mm [4.2] B C D 0.32 12 mm [8.2] E W Revision: 25-Jan-2022 D1 (MIN.) F K0 (MAX.) P1 W 0.039 [1.0] 0.138 ± 0.002 [3.5 ± 0.05] 0.094 [2.4] 0.157 ± 0.004 [4.0 ± 1.0] 0.315 ± 0.012 [8.0 ± 0.30] 0.059 [1.5] 0.217 ± 0.00 [5.5 ± 0.05] 0.177 [4.5] 0.315 ± 0.004 [8.0 ± 1.0] 0.472 ± 0.012 [12.0 ± 0.30] Document Number: 40074 5 For technical questions, contact: tantalum@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Molded Guide www.vishay.com Vishay Sprague RECOMMENDED REFLOW PROFILES Capacitors should withstand reflow profile as per J-STD-020 standard, three cycles. TEMPERATURE (°C) Tp TL Ts max. TC - 5 °C tp Max. ramp-up rate = 3 °C/s Max. ramp-down rate = 6 °C/s tL Preheat area Ts min. ts 25 Time 25 °C to peak TIME (s) PROFILE FEATURE Preheat / soak Temperature min. (Ts min.) Temperature max. (Ts max.) Time (ts) from (Ts min. to Ts max.) Ramp-up Ramp-up rate (TL to Tp) Liquidus temperature (TL) Time (tL) maintained above TL Peak package body temperature (Tp) Time (tp) within 5 °C of the specified classification temperature (TC) Time 25 °C to peak temperature Ramp-down Ramp-down rate (Tp to TL) SnPb EUTECTIC ASSEMBLY LEAD (Pb)-FREE ASSEMBLY 100 °C 150 °C 60 s to 120 s 150 °C 200 °C 60 s to 120 s 3 °C/s max. 3 °C/s max. 183 °C 217 °C 60 s to 150 s 60 s to 150 s Depends on case size - see table below 20 s 30 s 6 min max. 8 min max. 6 °C/s max. 6 °C/s max. PEAK PACKAGE BODY TEMPERATURE (Tp) PEAK PACKAGE BODY TEMPERATURE (Tp) CASE CODE SnPb EUTECTIC PROCESS LEAD (Pb)-FREE PROCESS A, B, C 235 °C 260 °C D, E, W 220 °C 250 °C PAD DIMENSIONS in inches [millimeters] B D C A A (MIN.) MOLDED CHIP CAPACITORS, ALL TYPES A 0.071 [1.80] B 0.118 [3.00] C 0.118 [3.00] D 0.157 [4.00] E 0.157 [4.00] W 0.185 [4.70] CASE CODE Revision: 25-Jan-2022 B (NOM.) C (NOM.) D (NOM.) 0.067 [1.70] 0.071 [1.80] 0.094 [2.40] 0.098 [2.50] 0.098 [2.50] 0.098 [2.50] 0.053 [1.35] 0.065 [1.65] 0.118 [3.00] 0.150 [3.80] 0.150 [3.80] 0.150 [3.80] 0.187 [4.75] 0.207 [5.25] 0.307 [7.80] 0.346 [8.80] 0.346 [8.80] 0.346 [8.80] Document Number: 40074 6 For technical questions, contact: tantalum@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Molded Guide www.vishay.com Vishay Sprague GUIDE TO APPLICATION 1. AC Ripple Current: the maximum allowable ripple current shall be determined from the formula: be established when calculating permissible operating levels. (Power dissipation calculated using +25 °C temperature rise). P -----------R ESR 6. power dissipation in W at +25 °C as given in the tables in the product datasheets (Power Dissipation). Printed Circuit Board Materials: molded capacitors are compatible with commonly used printed circuit board materials (alumina substrates, FR4, FR5, G10, PTFE-fluorocarbon and porcelanized steel). 7. Attachment: 7.1 Solder Paste: the recommended thickness of the solder paste after application is 0.007" ± 0.001" [0.178 mm ± 0.025 mm]. Care should be exercised in selecting the solder paste. The metal purity should be as high as practical. The flux (in the paste) must be active enough to remove the oxides formed on the metallization prior to the exposure to soldering heat. In practice this can be aided by extending the solder preheat time at temperatures below the liquidous state of the solder. Soldering: capacitors can be attached by conventional soldering techniques; vapor phase, convection reflow, infrared reflow, wave soldering, and hot plate methods. The soldering profile charts show recommended time / temperature conditions for soldering. Preheating is recommended. The recommended maximum ramp rate is 3 °C per second. Attachment with a soldering iron is not recommended due to the difficulty of controlling temperature and time at temperature. The soldering iron must never come in contact with the capacitor. For details see www.vishay.com/doc?40214. I RM S = where, P= RESR = the capacitor equivalent series resistance at the specified frequency 2. AC Ripple Voltage: the maximum allowable ripple voltage shall be determined from the formula: V RMS = I RM S x Z or, from the formula: P V R MS = Z -----------R ESR 7.2 where, P= power dissipation in W at +25 °C as given in the tables in the product datasheets (Power Dissipation). RESR = the capacitor equivalent series resistance at the specified frequency Z= 2.1 2.2 the capacitor impedance at the specified frequency The sum of the peak AC voltage plus the applied DC voltage shall not exceed the DC voltage rating of the capacitor. The sum of the negative peak AC voltage plus the applied DC voltage shall not allow a voltage reversal exceeding 10 % of the DC working voltage at +25 °C. 3. Reverse Voltage: solid tantalum capacitors are not intended for use with reverse voltage applied. However, they have been shown to be capable of withstanding momentary reverse voltage peaks of up to 10 % of the DC rating at 25 °C and 5 % of the DC rating at +85 °C. 4. Temperature Derating: if these capacitors are to be operated at temperatures above +25 °C, the permissible RMS ripple current shall be calculated using the derating factors as shown: TEMPERATURE (°C) +25 +85 +125 +150 (1) +175 (1) +200 (1) DERATING FACTOR 1.0 0.9 0.4 0.3 0.2 0.1 Note (1) Applicable for dedicated high temperature product series 5. Power Dissipation: power dissipation will be affected by the heat sinking capability of the mounting surface. Non-sinusoidal ripple current may produce heating effects which differ from those shown. It is important that the equivalent IRMS value Revision: 25-Jan-2022 7.2.1 Backward and Forward Compatibility: capacitors with SnPb or 100 % tin termination finishes can be soldered using SnPb or lead (Pb)-free soldering processes. 8. Cleaning (Flux Removal) After Soldering: molded capacitors are compatible with all commonly used solvents such as TES, TMS, Prelete, Chlorethane, Terpene and aqueous cleaning media. However, CFC / ODS products are not used in the production of these devices and are not recommended. Solvents containing methylene chloride or other epoxy solvents should be avoided since these will attack the epoxy encapsulation material. 8.1 When using ultrasonic cleaning, the board may resonate if the output power is too high. This vibration can cause cracking or a decrease in the adherence of the termination. DO NOT EXCEED 9W/l at 40 kHz for 2 min. 9. Recommended Mounting Pad Geometries: proper mounting pad geometries are essential for successful solder connections. These dimensions are highly process sensitive and should be designed to minimize component rework due to unacceptable solder joints. The dimensional configurations shown are the recommended pad geometries for both wave and reflow soldering techniques. These dimensions are intended to be a starting point for circuit board designers and may be fine tuned if necessary based upon the peculiarities of the soldering process and / or circuit board design. Document Number: 40074 7 For technical questions, contact: tantalum@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Typical Performance Characteristics www.vishay.com Vishay Sprague Molded Chip Tantalum Capacitors, Automotive Grade ELECTRICAL PERFORMANCE CHARACTERISTICS ITEM PERFORMANCE CHARACTERISTICS Category temperature range -55 °C to +85 °C (to +125 °C / +150 °C / +175 °C with voltage derating - refer to graph “Category Voltage vs. Temperature”) (1) Capacitance tolerance ± 20 %, ± 10 %, tested via bridge method, at 25 °C, 120 Hz Dissipation factor Limits per Standard Ratings table. Tested via bridge method, at 25 °C, 120 Hz ESR Limits per Standard Ratings table. Tested via bridge method, at 25 °C, 100 kHz Leakage current After application of rated voltage applied to capacitors for 5 min using a steady source of power with 1 kΩ resistor in series with the capacitor under test, leakage current at 25 °C is not more than 0.01 CV or 0.5 μA, whichever is greater. Note that the leakage current varies with temperature and applied voltage. See graph “Typical Leakage Current Temperature Factor” for the appropriate adjustment factor. Capacitance change by temperature +30 % max. (at +175 °C) +20 % max. (at +125 °C and +150 °C) +10 % max. (at +85 °C) -10 % max. (at -55 °C) Reverse voltage Capacitors are capable of withstanding peak voltages in the reverse direction equal to: 10 % of the DC rating at +25 °C 5 % of the DC rating at +85 °C 1 % of the DC rating at +125 °C Ripple current For maximum ripple current values (at 25 °C) refer to relevant datasheet. If capacitors are to be used at temperatures above +25 °C, the permissible RMS ripple current (or voltage) shall be calculated using the derating factors: 1.0 at +25 °C 0.9 at +85 °C 0.4 at +125 °C 0.3 at +150 °C 0.2 at +175 °C Maximum operating and surge voltages vs. temperature +85 °C +125 °C +150 °C / +175 °C RATED VOLTAGE (V) SURGE VOLTAGE (V) CATEGORY VOLTAGE (V) SURGE VOLTAGE (V) CATEGORY VOLTAGE (V) 4 5.2 2.7 3.4 n/a 6.3 8 4 5 3 10 13 7 8 5 16 20 10 12 8 20 26 13 16 10 25 32 17 20 12.5 35 46 23 28 17.5 50 65 33 40 25 60 33 40 n/a 75 42 50 n/a 75 50 50 n/a 50 (2) 63 75 (3) Notes • All information presented in this document reflects typical performance characteristics (1) Series TH3 - up to 150 °C; TH4 - up to 175 °C (2) Capacitance value 15 μF and higher (3) For 293D and TR3 only Revision: 19-Sep-2022 Document Number: 40215 1 For technical questions, contact: tantalum@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Typical Performance Characteristics www.vishay.com Vishay Sprague RECOMMENDED VOLTAGE DERATING GUIDELINES (for temperature below +85 °C) VOLTAGE RAIL (V) ≤ 3.3 5 10 12 15 24 CAPACITOR VOLTAGE RATING (V) 6.3 10 20 25 35 50 or series configuration Notes • For temperatures above +85 °C the same voltage derating ratio is recommended, but with respect to category voltage. Up to +85 °C: category voltage = rated voltage At +125 °C: category voltage = 2/3 of rated voltage At 150 °C / 175 °C: category voltage = 1/2 of rated voltage • For more information about recommended voltage derating see: www.vishay.com/doc?40246 CATEGORY VOLTAGE VS. TEMPERATURE Axis Title 10000 0.8 1000 1st line 2nd line 2nd line Category Voltage (V) 1.0 0.6 0.4 100 0.2 10 0 -55 0 25 85 125 150 175 Temperature (°C) Note • Below 85 °C category voltage is equal to rated voltage TYPICAL LEAKAGE CURRENT FACTOR Axis Title 10000 100 +175 °C 1 1000 +150 °C +125 °C 1st line 2nd line 2nd line Leakage Current Factor 10 85 °C 0.1 +55 °C 100 +25 °C 0.01 0 °C -55 °C 10 0.001 0 10 20 30 40 50 60 70 80 90 100 Percent of Rated Voltage Note • At +25 °C, the leakage current shall not exceed the value listed in the Standard Ratings table. At +85 °C, the leakage current shall not exceed 10 times the value listed in the Standard Ratings table. At +125 °C, the leakage current shall not exceed 12 times the value listed in the Standard Ratings table. At +150 °C, the leakage current shall not exceed 15 times the value listed in the Standard Ratings table. At +175 °C, the leakage current shall not exceed 18 times the value listed in the Standard Ratings table Revision: 19-Sep-2022 Document Number: 40215 2 For technical questions, contact: tantalum@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Typical Performance Characteristics www.vishay.com Vishay Sprague ENVIRONMENTAL PERFORMANCE CHARACTERISTICS ITEM CONDITION POST TEST PERFORMANCE High temperature exposure (storage) MIL-STD-202, method 108 1000 h, at maximum rated temperature, unpowered Capacitance change Dissipation factor Leakage current ESR Within ± 20 % of initial value Initial specified limit Initial specified limit Initial specified limit Operational life test at +125 °C AEC-Q200 1000 h application 2/3 of rated voltage Capacitance change Dissipation factor Leakage current ESR Within ± 20 % of initial value Initial specified limit Shall not exceed 10 times the initial limit Initial specified limit Operational life test at +150 °C (for TH3) and at +175 °C (for TH4) AEC-Q200 1000 h application 1/2 of rated voltage Capacitance change Dissipation factor Leakage current ESR Within ± 20 % of initial value Shall not exceed 3 times the initial limit Shall not exceed 10 times the initial limit Shall not exceed 3 times the initial limit Surge voltage MIL-PRF-55365: 1000 successive test cycles at 85 °C of surge voltage (as specified in the table above), in series with a 33 Ω resistor at the rate of 30 s ON, 30 s OFF Capacitance change Dissipation factor Leakage current ESR Within ± 30 % of initial value Shall not exceed 1.5 times the initial limit Shall not exceed 2 times the initial limit Shall not exceed 1.5 times the initial limit Biased humidity test AEC-Q200 At 85 °C / 85 % RH, 1000 h, with rated voltage applied Capacitance change Dissipation factor Leakage current ESR Within ± 20 % of initial value Shall not exceed 3 times the initial limit Shall not exceed 10 times the initial limit Shall not exceed 3 times the initial limit Temperature cycling AEC-Q200 / JESD22, method JA-104 -55 °C / +125 °C, for 1000 cycles Capacitance change Dissipation factor Leakage current ESR Within ± 20 % of initial value Initial specified limit Initial specified limit Initial specified limit MECHANICAL PERFORMANCE CHARACTERISTICS ITEM CONDITION POST TEST PERFORMANCE Vibration MIL-STD-202, method 204: 10 Hz to 2000 Hz, 5 g peak for 20 min, 12 cycles each of 3 orientations (total 36 cycles), at rated voltage Capacitance change Dissipation factor Leakage current Within ± 20 % of initial value Initial specified limit Initial specified limit There shall be no mechanical or visual damage to capacitors post-conditioning. Mechanical shock MIL-STD-202, method 213, condition F, 1500 g peak, 0.5 ms, half-sine Capacitance change Dissipation factor Leakage current Within ± 20 % of initial value Initial specified limit Initial specified limit There shall be no mechanical or visual damage to capacitors post-conditioning. Resistance to solder heat MIL-STD-202, method 210, condition D Solder dip 260 °C ± 5 °C, 10 s Capacitance change Dissipation factor Leakage current Within ± 20 % of initial value Initial specified limit Initial specified limit Resistance to solvents MIL-STD-202, method 215 Capacitance change Dissipation factor Leakage current Within ± 20 % of initial value Initial specified limit Initial specified limit There shall be no mechanical or visual damage to capacitors post-conditioning. Body marking shall remain legible. Solderability AEC-Q200 / J-STD-002 Electrical test not required Terminal strength / Shear force test AEC-Q200-006 Apply a pressure load of 17.7 N (1.8 kg) for 60 s horizontally to the center of capacitor side body Exception: for case size 0603 pressure load is 5N Part should not be sheared off the pads and no body cracking post-conditioning. Electrical test not required. Flammability Encapsulation materials meet UL 94 V-0 with an oxygen index of 32 % n/a Revision: 19-Sep-2022 Document Number: 40215 3 For technical questions, contact: tantalum@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Legal Disclaimer Notice www.vishay.com Vishay Disclaimer ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein. Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. © 2022 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED Revision: 01-Jan-2022 1 Document Number: 91000
TH4C476K010C0500 价格&库存

很抱歉,暂时无法提供与“TH4C476K010C0500”相匹配的价格&库存,您可以联系我们找货

免费人工找货