0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
0097054009

0097054009

  • 厂商:

    LAIRD(莱尔德)

  • 封装:

    -

  • 描述:

    AP,STR,NID,PSA

  • 数据手册
  • 价格&库存
0097054009 数据手册
EMI CATALOG www.lairdtech.com ABOUT LAIRD Laird is a global technology business focused on enabling wireless communication and smart systems, and providing components and systems that protect electronics. Laird operates through two divisions, Wireless Systems and Performance Materials. Wireless Systems solutions include antenna systems, embedded wireless modules, telematics products and wireless automation and control solutions. Performance Materials solutions include electromagnetic interference shielding, thermal management and signal integrity products. As a leader in the design, supply and support of innovative technology, our products allow people, organisations, machines and applications to connect effectively, helping to build a world where smart technology transforms the way of life. Custom products are supplied to major sectors of the electronics industry including the handset, telecommunications, IT, automotive, public safety, consumer, medical, rail, mining and industrial markets. Providing value and differentiation to our customers though innovation, reliable fulfilment and speed, Laird PLC is listed and headquartered in London, and employs over 9,000 people in more than 58 facilities located in 18 countries. . TABLE OF CONTENTS EMI INTRODUCTION 2 EMI SUMMARY 3 BOARD LEVEL SHIELDS 6 Product Selection Guide 6 Introduction 8 Standard Design Shields 9 EZ Peel™ 11 Rigid Corner 11 ReCovr™ 12 ReMovl 12 Overview 13 FINGERSTOCK Product Selection Guide Introduction Mounting Methods Ordering Information UltraSoft® Series Recyclable Clean Copper Slot Mount Series Dual Slot Series Teardrop Series Compact PCI Symmetrical Mount Alternate Slot Series Variable Slot Mount Symmetrical (S3) Slotted Shielding Solid Top (S3) Symmetrical Slotted Shielding Clip-On Symmetrical Shielding No Snag Gasket All-Purpose Series Clip-On Series Low Profile Hook-On Gasket Low Profile Gasket Large Enclosure Series Double-Sided Contact Series Foldover Series Stainless Steel I/O Shielding Flexible Low Compression Series Clip-On Twist Series Twist Series Divider Edge Shielding Card Guide Clip-On Clip-On Perpendicular Shielding Clip-On Perpendicular Grounding Strip Clip-On Longitudinal Grounding Strip Mini-Longitudinal Grounding Gasket Longitudinal Grounding Series Custom Stamping Contact Strips / Contact Rings IEEE 1394 Horizontal Connector Gasket DIN Connector Series USB Connector www.lairdtech.com 14 14 15 16 17 18 18 19 21 21 22 22 23 24 25 26 27 28 29 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39 39 39 40 Fiber Optic Shield 40 GBIC Fiber Optic Shield 40 "D" Connector Shielding / Slotted "D" 41 Precision Stamped Metals 42 Contacts 42 Custom Design 44 Metals Galvanic Compatibility Chart 46 VENT PANELS 48 MaxAir™ 49 Elecro-Air™ 50 Electrovent™ 51 FABRIC-OVER FOAM 52 Product Selection Guide 52 Introduction 54 EcoGreen™ 56 I/O / Gasket Selection Guide 57 Profile Selection Guide 58 I/O Selection Guide 62 Knitted Conductive Gaskets 65 Visual Part Reference Guide 66 Part Number Cross Reference 67 Ultraflex® 68 All Mesh 69 Elastomer Core 70 Electroground® EMI Washers 72 Electromesh® Tape 75 Conductive Fabric 76 MRI "A" Fabric 77 Conductive Tape 78 ELECTRICALLY CONDUCTIVE ELASTOMERS 79 Introduction 79 Product Selection Guide 80 Case Study 81 Visual Part Reference Guide 85 Electroseal™ Conductive Elastomer 86 Extrusions Guide 87 Gemini™ Coextrusions 93 Fabricated Components Guide 95 Metal Impregnated Materials 99 Specialty Products 102 Automated Form-In-Place Gaskets 103 MICROWAVE ABSORBERS Product Selection Guide Design Guide Q-Zorb® 2000 HF Q-Zorb® 3000 HP RFRET 4000 RFLS 5000 Analysis, Test and Prototype Development 105 105 106 109 110 111 112 113 TABLE OF CONTENTS EMI INTRODUCTION 2 EMI SUMMARY 3 BOARD LEVEL SHIELDS 6 Product Selection Guide 6 Introduction 8 Standard Design Shields 9 EZ Peel™ 11 Rigid Corner 11 ReCovr™ 12 ReMovl 12 Overview 13 FINGERSTOCK Product Selection Guide Introduction Mounting Methods Ordering Information UltraSoft® Series Recyclable Clean Copper Slot Mount Series Dual Slot Series Teardrop Series Compact PCI Symmetrical Mount Alternate Slot Series Variable Slot Mount Symmetrical (S3) Slotted Shielding Solid Top (S3) Symmetrical Slotted Shielding Clip-On Symmetrical Shielding No Snag Gasket All-Purpose Series Clip-On Series Low Profile Hook-On Gasket Low Profile Gasket Large Enclosure Series Double-Sided Contact Series Foldover Series Stainless Steel I/O Shielding Flexible Low Compression Series Clip-On Twist Series Twist Series Divider Edge Shielding Card Guide Clip-On Clip-On Perpendicular Shielding Clip-On Perpendicular Grounding Strip Clip-On Longitudinal Grounding Strip Mini-Longitudinal Grounding Gasket Longitudinal Grounding Series Custom Stamping Contact Strips / Contact Rings IEEE 1394 Horizontal Connector Gasket DIN Connector Series USB Connector www.lairdtech.com 14 14 15 16 17 18 18 19 21 21 22 22 23 24 25 26 27 28 29 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39 39 39 40 Fiber Optic Shield 40 GBIC Fiber Optic Shield 40 "D" Connector Shielding / Slotted "D" 41 Precision Stamped Metals 42 Contacts 42 Custom Design 44 Metals Galvanic Compatibility Chart 46 VENT PANELS 48 MaxAir™ 49 Elecro-Air™ 50 Electrovent™ 51 FABRIC-OVER FOAM 52 Product Selection Guide 52 Introduction 54 EcoGreen™ 56 I/O / Gasket Selection Guide 57 Profile Selection Guide 58 I/O Selection Guide 62 Knitted Conductive Gaskets 65 Visual Part Reference Guide 66 Part Number Cross Reference 67 Ultraflex® 68 All Mesh 69 Elastomer Core 70 Electroground® EMI Washers 72 Electromesh® Tape 75 Conductive Fabric 76 MRI "A" Fabric 77 Conductive Tape 78 ELECTRICALLY CONDUCTIVE ELASTOMERS 79 Introduction 79 Product Selection Guide 80 Case Study 81 Visual Part Reference Guide 85 Electroseal™ Conductive Elastomer 86 Extrusions Guide 87 Gemini™ Coextrusions 93 Fabricated Components Guide 95 Metal Impregnated Materials 99 Specialty Products 102 Automated Form-In-Place Gaskets 103 MICROWAVE ABSORBERS Product Selection Guide Design Guide Q-Zorb® 2000 HF Q-Zorb® 3000 HP RFRET 4000 RFLS 5000 Analysis, Test and Prototype Development 105 105 106 109 110 111 112 113 EMI ESSENTIALS EMI INTRODUCTION Overview of EMC/RFI Issues The phenomenon of electromagnetic interference (EMI) is familiar to virtually everyone, even if they do not understand the underlying principles. Most people have witnessed firsthand the effects of interference. To control EMI, government organizations, such as the FCC, CSA, and EEC, mandate that manufacturers may not design, produce or sell electronic equipment that jams the public broadcast services. In other instances, however, EMI can constitute more than a mere nuisance. The military and medical communities, for example, require trouble-free operation of their electronic equipment in adverse electromagnetic environments since malfunctions could jeopardize missions and personnel. The European Union’s EMC directive also mandates that “the apparatus has an adequate level of intrinsic immunity to electromagnetic disturbance to enable it to operate as intended”. EMC Design of High Speed Systems The interference and susceptibility (immunity) effects of electronic apparatus are created by time-variant electromagnetic fields which may be propagated along a conducting medium or by radiation through space. Because the source of the conducted and radiated interference energy levels may be related, a coordinated systems design effort is required to reduce these effects. A design program for an equipment item that must meet both an emission and an immunity requirement consists of: • Suppression: Reducing the interference at its source. • Isolation: Isolating the offending circuits by filtering, grounding and shielding. • Desensitization: Increasing the immunity of any susceptible circuits. These three steps should be carried on throughout the entire equipment design and implemented as early as possible within the design program. Effects of Logic Speed The trend in today’s electronic devices is faster, smaller, and digital rather than analog. Most equipment (95%) of today contains digital circuits. Today’s digital designer must create a circuit board that has the lowest possible EMI, combined with the highest possible operating/processing speeds. Design of the PCB is the most critical EMC influencing factor for any system, since virtually all active devices are located on the board. It is the changing current (accelerated electron movement) produced by the active devices that result in EMI. Design Approaches There are two approaches that can be used to reduce the emission from the PC board. The first approach is to operate the circuit at the slowest speeds consistent with the functionality of the system, lay out the PCB with the smallest possible loop areas (especially the high speed devices), and insert suppression components such as filters, ferrite beads, and bypass capacitors into the circuit to reduce its bandwidth. These techniques will result in a desired decrease in the high frequency harmonic amplitudes and circuit bandwidth and a corresponding undesired decrease in both the operating speed and system reliability. The use of slower speeds with reduced bandwidth will help to desensitize the circuit to external susceptibility fields. The second is to use shielding. Shielding is the only non-invasive suppression technique. Since the shielding is not inserted into the circuit, it does not affect the high frequency operating speed of the system, nor does it affect the operation of the system should changes be made to the design in the future. In addition, shielding does not create timing problems and waveform distortion; it does not decrease system reliability; and it reduces crosstalk. Plus, shielding works for both emission suppression as well as susceptibility (immunity) problems. 2 Even with the overall advantages of shielding, the most cost-effective approach is to use a combination of circuit suppression/hardening and shielding. www.lairdtech.com Fabric-Over-Foam and Conductive Foam Wire Mesh Tape Applications • Shielding or grounding of computer and telecommunication equipment seams and apertures • Covers opened infrequently for servicing (6-12 times per year) • Long lasting resiliency is ideal for highly sensitive components in permanent or semi-permanent enclosures • Consistent point-to-point contact for high shielding effectiveness over the life of the gasket • Design flexibility provides grounding and shielding solutions for I/O shielding panels, disk drive insulators, ground planes or circuit boards, electromedical devices, keyboard devices • Mask-and-peel tape for painted electronic enclosures • Cable and wire harness wrapping Features and Benefits Product Highlights • UL 94VO and HB flame retardant • Ideal for applications requiring low pressure force • Self-terminating cut-to lengths • High conductivity and shielding attenuation • Galvanically-compatible with most mating surfaces • High abrasion and shear resistance • Most economical gasket for low-cycling applications • High shielding effectiveness over broad frequency range • Available in wide variety of sizes and shapes • Knit construction for long lasting resiliency • Versatile mounting options • Available with elastomer gasket for moisture and dust sealing • Simple installation • Ideally suited for thin or low-profile applications • Conductive foil tape with release mask for painted enclosures • Tin copper cloth and nickel copper cloth versions provide easy-to-handle alternatives to foils Electrical Shielding Effectiveness Transfer Impedance (500 MHz) >85 dB 90 - 105 dB — H-field (200 MHz) Modified Mil 285 30 - 45 dB 55 - 65 dB — Plane Wave (2 GHz) Modified Mil 285 90 - 100 dB 80 - 115 dB 85 - 95 dB Surface Resistivity
0097054009 价格&库存

很抱歉,暂时无法提供与“0097054009”相匹配的价格&库存,您可以联系我们找货

免费人工找货