0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MS41929

MS41929

  • 厂商:

    RUIMENG(瑞盟科技)

  • 封装:

    QFN32_5X5MM_EP

  • 描述:

    2.7~3.6V

  • 数据手册
  • 价格&库存
MS41929 数据手册
RuiMeng MS41929 Lens Driver IC for camcorder and securitycamera Overview MS41929 is a lens motor driver IC for camcorder and securitycamera featuring the functions of Iris control. Voltage drive system and several torque ripple correction techniques enable super- low noise microstep drive. MS41929 integrated a DC motor driver featuring Infrared Rejector driver MS41929 can use 27MHz passive crystal instead Of oscillator. Features  Voltage drive system 256-step microstep drivers (2 systems) H-bridge max current 0.5A Applications  Motor control by 4-line serial data communication  Camcorder  2 systems of open-drain for driving LED  Security-camera  Infrared Rejector DC motor driver, max current 0.5A  passive crystal  QFN32 package Package Part Number Package Marking MS41929 QFN32(0505X0.75-0.5) MS41929 VERSION:1.2 2015.08.10 Hang zhou Ruimeng Technology Co.,LTD Http://www.relmon.com -1- RuiMeng MS41929 Contents  Block Diagram………………………………………………………………………………………..…3  Absolute Maximum Ratings …………………………………………………………………………3  Electrical Characteristics…………………………………………………………………………..…5  Pin Diagram……………………………..……………………………………………………………....9  Pin Descriptions……………………………………………………………………………………….10  Function description …………………………………………………………………………………11 a)Serial Interface…………………………………………………………………………………….11 b)Register detail description……………………………………………………………………...15 c) Micro Stepping Motor Driver …………………..……………………………………………...16 d) Test signals………………………………………………………………………………….……27 e) LED Driver……………………………………………………..……………………………….…30 f) Reset/Protect circuit………………………………………..……………………………………31 g) Infrared Rejector……………………………………….…………………………………….…..32 h) application note……………………………………….…………………………………..……..33  Application Circuit Example………………………………………………………………………..33  Package information………………………………………………………………..………………..34 VERSION:1.2 2015.08.10 Hang zhou Ruimeng Technology Co.,LTD Http://www.relmon.com -2- RuiMeng MS41929 Block Diagram Absolute Maximum Ratings (Note) Absolute maximum ratings are limit values which do not result in damages to this IC, and IC operation is not guaranteed at these limit values. Parameter Symbol Rating Unit Notes DVDD -0.3~+4.0 V *1 MVCCx ,VDD5 -0.3~+6.0 V *1 PD 141.1 mW *2 Operating ambient temperature Topr -20~+85 ℃ *3 Storage temperature Tstg -55~+125 ℃ *3 Controller supply voltage Supply voltage for motor controller Power dissipation VERSION:1.2 2015.08.10 Hang zhou Ruimeng Technology Co.,LTD Http://www.relmon.com -3- RuiMeng MS41929 Motor driver 1 (focus, zoom) H bridge drive current IM1(CD) ±0.5 A/ch ─ Instantaneous H bridge drive current IM(pluse) ±0.6 A/ch ─ Vin -0.3~(DVDD + 0.3) V *4 HBM ±3k V - Digital input voltage ESD (Notes) *1 : The values under the condition not exceeding the above absolute maximum ratings and the power dissipation. *2 : The power dissipation shown is the value at Ta = 85°C for the independent (unmounted) IC package without a heat sink. When using this IC, refer to the PD-Ta diagram of the package standard and design the heat radiation with sufficient margin so that the allowable value might not be exceeded based on the conditions of power supply voltage, load, and ambient temperature. *3 : Except for the power dissipation, operating ambient temperature, and storage temperature, all ratings are for Ta = 25°C. *4 : (DVDD + 0.3 ) V must not be exceeded 4.0 V. Operating Supply Voltage Range Parameter Symbol Range Min Typ Max DVDD 2.7 3.1 3.6 MVCCx 3.0 4.8 5.5 Supply voltage range Unit Notes V *1 (Note) *1 : The values under the condition not exceeding the above absolute maximum ratings and the power dissipation. Allowable Current and Voltage Range (Notes)  Allowable current and voltage ranges are limit ranges which do not result in damages to this IC, and IC operation is not guaranteed within these limit ranges.  Voltage values, unless otherwise specified, are with respect to GND.  GND is voltage for GNDD, GND5, MGNDA, and MGNDB. GND = GNDD = GND5 = MGNDA = MGNDB  VCC3V is voltage for DVDD.VCC3V = DVDD  Do not apply external currents or voltages to any pin not specifically mentioned.  For the circuit currents, "+" denotes current flowing into the IC, and "–" denotes current flowing out of the IC. Pin No Pin name Rating Unit Notes 24 OSCIN -0.3~(DVDD + 0.3) V *1 23 OSCOUT -0.3~(DVDD + 0.3) V *1 27 CS -0.3~(DVDD + 0.3) V *1 26 SCK -0.3~(DVDD + 0.3) V *1 29 SIN -0.3~(DVDD + 0.3) V *1 30 VD_FZ -0.3~(DVDD + 0.3) V *1 VERSION:1.2 2015.08.10 Hang zhou Ruimeng Technology Co.,LTD Http://www.relmon.com -4- RuiMeng MS41929 1 RSTB -0.3~(DVDD + 0.3) V *1 8 OUTD2 ±0.5 A ─ 10 OUTD1 ±0.5 A ─ 11 OUTC2 ±0.5 A ─ 13 OUTC1 ±0.5 A ─ 14 OUTB2 ±0.5 A ─ 16 OUTB1 ±0.5 A ─ 17 OUTA2 ±0.5 A ─ 19 OUTA1 ±0.5 A ─ 7 OUTE1 ±0.5 A ─ 5 OUTE2 ±0.5 A ─ 20 LED1 30 mA ─ 21 LED2 30 mA ─ (Note) *1 : (DVDD3 + 0.3) V must not be exceeded 4.0 V Electrical Characteristics (Note)  MVCCx =VDD 5 =4.8 V, DVDD = 3.1 V  Ta = 25°C±2°C unless otherwise specified. Parameter Symbol Conditions Min Typ Max Unit IOmdisable No load, no 27 MHz input ─ 0 3.0 μA Imenable Output open ─ 0.5 1.5 mA 3 V supply current on Reset Icc3reset No 27 MHz input ─ 0 10.0 μA 3 V supply current on Enable Icc3enable Output open ─ 3.6 20.0 mA Supply current on Standby Iccstandby ─ 5.0 10.0 mA Supply current when FZ is Enable ICCps ─ 6.0 12.0 mA Current circuit, Common circuit MVCC supply current on Reset MVCC supply current on Enable RSTB = High, output open, 27 MHz input, Total current RSTB = High, output open, 27 MHz input, FZ = Enable, Total current Digital input / output High-level input Vin(H) RSTB Low-level input Vin(L) RSTB SOUT High-level output VERSION:1.2 Vout(H): SDATA [SOUT] 1mA(Source) 2015.08.10 0.54× DVDD -0.3 DVDD -0.5 ─ ─ ─ DVDD +0.3 0.2× DVDD ─ V V V Hang zhou Ruimeng Technology Co.,LTD Http://www.relmon.com -5- RuiMeng SOUT High-level output PLS1 to 2 High-level output PLS1 to 2 Low-level output MS41929 Vout(L): SDATA [SOUT] 1mA (Sink) Vout(H): ─ MUX Vout(L): MUX ─ 0.9× DVDD ─ 0.5 V ─ ─ V ─ ─ ─ 0.1× DVDD V Input pull-down resistance Rpullret RSTB 50 100 200 kΩ Parameter Symbol Conditions Min Typ Max Unit H bridge ON resistance RonFZ IM = 100mA 0.6 0.8 1.4 Ω H bridge leak current IleakFZ ─ ─ ─ 0.8 μA Output ON resistance RonLED IM = 20mA,5Vcell 1.2 1.6 2.6 Ω Output leak current IleakLED ─ ─ ─ 0.8 μA Motor driver 1 (focus, zoom) LED driver Infrared Rejector driver(DRIVER E ) VDD5=5V,RL=20Ω,T=25℃ Output ON resistance Roncut IoutE=300mA H bridge leak current IleakE ─ Output enable time T7 Output disable time 1.1 ─ ─ Ω 0.8 μA RL=20Ω 300 ns T8 RL=20Ω 300 ns T9 RL=20Ω 160 ns T10 RL=20Ω 160 ns Output rise time T11 RL=20Ω 30 188 ns Output fall time T12 RL=20Ω 30 188 ns T13 SPI control,RL=20Ω delay time, INx high to OUTx high Delay time, INx low to OUTx low Delay time, SPI IN to OUTx change VERSION:1.2 25*TSC s K 2015.08.10 Hang zhou Ruimeng Technology Co.,LTD Http://www.relmon.com -6- RuiMeng MS41929 Serial port input Serial clock Sclock ─ 1 ─ 5 MHz SCK low time Ts1 ─ 100 ─ ─ ns SCK high time Ts2 ─ 100 ─ ─ ns CS setup time Ts3 ─ 60 ─ ─ ns CS hold time Ts4 ─ 60 ─ ─ ns CS disable high time Ts5 ─ 100 ─ ─ ns SIN setup time Ts6 ─ 50 ─ ─ ns SIN hold time Ts7 ─ 50 ─ ─ ns SOUT delay time Ts8 ─ ─ ─ 60 ns SOUT hold time Ts9 ─ 60 ─ ─ ns SOUT Enable-Hi-Z time Ts10 ─ ─ ─ 60 ns SOUT Hi-Z-Enable time Ts11 ─ ─ ─ 60 ns Sout C load Tsc ─ ─ ─ 40 pF ─ 1.36 ─ V ─ 1.02 ─ V 100 ─ ─ μs ─ 0.34 ─ V Digtal input/output High-level input threshold voltage Low-level input threshold voltage Vin(H) Vin(L) SCK,SIN,CS,OSCIN, VD_FZ SCK,SIN,CS,OSCIN, VD_FZ RSTB signal pulse width Trst ─ Input hysteresis width Vhysin Video sync. signal width VDw ─ 80 ─ ─ μs CS signal wait time 1 T(VD-CS) ─ 400 ─ ─ ns CS signal wait time 2 T(CS-DT1) ─ 5 ─ ─ μs Pulse start resolution for pulse 1 PL1wait OSCIN = 27MHz ─ 20.1 ─ μs Pulse resolution for pulse 1 PL1width OSCIN = 27MHz ─ 1.2 ─ μs Pulse start resolution for pulse 2 PL2wait OSCIN = 27MHz ─ 20.1 ─ μs SCK,SIN,CS,OSCIN, VD_FZ Pulse generator VERSION:1.2 2015.08.10 Hang zhou Ruimeng Technology Co.,LTD Http://www.relmon.com -7- RuiMeng MS41929 Thermal shutdown Thermal shutdown operation temperature Thermal shutdown hysteresis temperature Ttsd ─ ─ 145 ─ °C ΔTtsd ─ ─ 35 ─ °C 3.3 V Reset operation Vrston ─ ─ 2.48 ─ V 3.3 V Reset hysteresis width Vrsthys ─ ─ 0.2 ─ V VrstFZon ─ ─ 2.42 ─ V VrstFZhys ─ ─ 0.21 ─ V Supply voltage monitor circuit VDD5,MVCCx Reset operation VDD5,MVCCx Reset hysteresis width VERSION:1.2 2015.08.10 Hang zhou Ruimeng Technology Co.,LTD Http://www.relmon.com -8- RuiMeng MS41929 Pin diagram QFN32 VERSION:1.2 2015.08.10 Hang zhou Ruimeng Technology Co.,LTD Http://www.relmon.com -9- RuiMeng MS41929 Pin Descriptions Pin NO. Pin name I/O QFN32 VERSION:1.2 Description 2 IN1 Input Infrared Rejector logic in1 3 IN2 Input Infrared Rejector logic in2 5 OUTE2 Output Infrared Rejector motor out2 4 VDD5 Power Power for Infrared Rejector 6 GND5 Ground Groud for Infrared Rejector 7 OUTE1 Output Infrared Rejector motor out1 8 OUTD2 Output Motor output D2 9 MVCCB Power Power supply for motor B 10 OUTD1 Output Motor output D1 11 OUTC2 Output Motor output C2 12 MGNDB Ground GND for motor B 13 OUTC1 Output Motor output C1 14 OUTB2 Output Motor output B2 15 MVCCA Power Power supply for motor A 16 OUTB1 Output Motor output B1 17 OUTA2 Output Motor output A2 18 MGNDA Ground GND for motor A 19 OUTA1 Output Motor output A1 20 LED1 Input Open-drain 1 for driving LED 21 LED2 Input Open-drain 2 for driving LED 22 GNDD Ground 23 OSCOUT Inout OSC output (cryctal 2) 24 OSCIN Inout OSC input (cryctal 1) 25 DVDD Power 3 V digital power supply 28 SOUT Output Serial data output 27 CS Input Chip select signal input 26 SCK Input Serial clock input 29 SIN Input Serial data input 30 VD_FZ Input Focus zoom sync. signal input 31 PLS1 Output Pulse 1 output 32 PLS2 Output Pulse 2 output 1 RSTB Input 2015.08.10 Digital GND Reset signal input Hang zhou Ruimeng Technology Co.,LTD Http://www.relmon.com - 10 - RuiMeng MS41929 Function Description a)Serial Interface (Note) 1)CS default value of each cycle (Write / Read mode) starts from Low-level. 2)It is necessary to input the system clock OSCIN at write mode. VERSION:1.2 2015.08.10 Hang zhou Ruimeng Technology Co.,LTD Http://www.relmon.com - 11 - RuiMeng MS41929 Serial Interface Specifications: Data transfer starts at the rising edge of CS, and stops at the falling edge of CS. One unit of data is 24 bits. (24 bits of the following format are called a data set in this book.) Address and data are serially input from SIN pin in synchronization with the data clock SCK at CS = 1. Data is retrieved at the rising edge of SCK. Moreover, data is output from SOUT pin at data readout. (Data is output at the rising edge of SCK.) SOUT outputs Hi-Z at CS = 0, and outputs "0" except data readout at CS = 1. The control circuit of serial interface is reset at CS = 0. Date Format: 0 1 2 3 4 5 6 7 A0 A1 A2 A3 A4 A5 C0 C1 8 9 10 11 12 13 14 15 D0 D1 D2 D3 D4 D5 D6 D7 16 17 18 19 20 21 22 23 D8 D9 D10 D11 D12 D13 D14 D15 C0 : Register write / read selection 0 : write mode, 1 : read mode C1 : Unused A5 to A0 : Address of register D15 to D0 : Data written in register Register Map: D15 0BH 20H D14 D13 D12 D11 Reserved PWMRES[1: 0] D10 D9 D8 D7 MOD Reser TEST ESEL ved EN1 PWMMODE[4:0] TEST EN2 PHMODAB[5:0] 23H 24H D2 D1 D0 Reserved FZTEST[4:0] PSUMAB[7:0] INTCTAB[15:0] PHMODCD[5:0] 28H DT2B[7:0] PPWD[7:0] PPWC[7:0] MICROCD[1 ENDI BRA CCW LEDA :0] SCD KEC CWC 2AH VERSION:1.2 D3 PPWA[7:0] MICROAB[1 ENDI BRA CCW LEDB :0] SAB KEAB CWA 27H 29H D4 DT2A[7:0] PPWB[7:0] 25H D5 DT1[7:0] 21H 22H D6 PSUMCD[7:0] INTCTCD[15:0] 2015.08.10 Hang zhou Ruimeng Technology Co.,LTD Http://www.relmon.com - 12 - RuiMeng MS41929 2CH SEL IN1 IN2 Register List: Address 0Bh 20h 21h 22h 23h 24h 25h 27h 28h 29h 2Ah 2Ch Register name / Bit wide Function Page TESTEN1 Test mode enable 1 28 MODESEL_FZ VD_FZ polarity selection 16 DT1[7:0] Start point wait time 20 PWMMODE[4:0] Micro step output PWM frequency 22 PWMRES[1:0] Micro step output PWM resolution 22 FZTEST[4:0] PLS1/2 pin output signal selection 28 TESTEN2 Test mode enable 2 28 DT2A[7:0] α motor start point excitation wait time 21 PHMODAB[5:0] α motor phase correction 23 PPWA[7:0] Driver A peak pulse width 23 PPWB[7:0] Driver B peak pulse width 23 PSUMAB[7:0] α motor step count number 24 CCWCWAB α motor rotation direction 24 BRAKEAB α motor brake 25 ENDISAB α motor enable/disable control 25 LEDB LED B output control 31 MICROAB[1:0] α motor sine wave division number 26 INTCTAB[15:0] α motor step cycle 26 DT2B[7:0] β motor start point excitation wait time 21 PHMODCD[5:0] β motor phase correction 23 PPWC[7:0] Driver C peak pulse width 23 PPWD[7:0] Driver D peak pulse width 23 PSUMCD[7:0] β motor step count number 24 CCWCWCD β motor rotation direction 24 BRAKECD β motor brake 25 ENDISCD β motor enable/disable control 25 LEDA LED A output control 30 MICROCD[1:0] β motor sine wave division number 26 INTCTCD[15:0] β motor step cycle 26 SEL Infrared Rejector input model selector 32 IN1 Infrared Rejector SPI model input1 32 IN2 Infrared Rejector SPI model input2 32 Note: All the SIF functions containing a data register are formatted at RSTB = 0. VERSION:1.2 2015.08.10 Hang zhou Ruimeng Technology Co.,LTD Http://www.relmon.com - 13 - RuiMeng MS41929 Register Setup Timing: Address 0Bh 20h 21h 22h 23h 24h 25h 27h 28h 29h 2Ah Register Name Setup Timing TESTEN1 CS MODESEL_FZ CS DT1[7:0] VD_FZ PWMMODE[4:0] DT1 PWMRES[1:0] DT1 FZTEST[4:0] CS TESTEN2 CS DT2A[7:0] DT1 PHMODAB[5:0] DT2A PPWA[7:0] DT1 PPWB[7:0] DT1 PSUMAB[7:0] DT2A CCWCWAB DT2A BRAKEAB DT2A ENDISAB DT1 or DT2A* LEDB CS MICROAB[1:0] DT2A INTCTAB[15:0] DT2A DT2B[7:0] DT1 PHMODCD[5:0] DT2B PPWC[7:0] DT1 PPWD[7:0] DT1 PSUMCD[7:0] DT2B CCWCWCD DT2B BRAKECD DT2B ENDISCD DT1 or DT2B* LEDA CS MICROCD[1:0] DT2B INTCTCD[15:0] DT2B In principle, the setup of registers for micro step should be performed during the interval of start point wait (Refer to the figure in page 15). The data which is written at timing except the interval of start point wait can be also received. However, ifthe write operation continues after the reflecting timing such as the end of start point excitation wait, the setup reflection timing may not be performed at the intended timing (Refer to the following figure). For example, if the data 1 to 4 which is updated at the end of start point excitation wait are written as the following figure, data 1 and 2 is updated at the timing a, anddata 3 and 4 is updated at the timing b. Even if the VERSION:1.2 2015.08.10 Hang zhou Ruimeng Technology Co.,LTD Http://www.relmon.com - 14 - RuiMeng MS41929 data is written continuously like this, the update timing may be shifted to 1VD. Due to the above reason, the setup of registers should be performed during the interval of start point wait in order to reflectthe updated content certainly. In this LSI, reflection timing and rotation timing of a stepping motor are based on the rising edge of VD_IS and VD_FZ respectively. The polarities of VD_IS and VD_FZ which are used for the internal processing can be set by thefollowing setup. b) Register detail description MODESEL_FZ (VD_FZ polarity selection) Address D15 D14 0Bh D13 D12 D11 Initial value D10 D9 D8 D7 0 D6 D5 D4 D3 D2 D1 D0 MODE SEL_F Z MODESEL_FZ respectively set the polarities of VD_FZ signals which is input tothis IC. When setting to "0", the polarity is based on the rising edge of VD_FZ inputted. When setting to "1", the polarity is based on the falling edge of VD_FZ inputted. Setup value VD polarity 0 Non-inverting 1 Inverting VERSION:1.2 2015.08.10 Hang zhou Ruimeng Technology Co.,LTD Http://www.relmon.com - 15 - RuiMeng MS41929 c) Micro Stepping Motor Driver Block Diagram This block is a stepping motor driver for focus and zoom, and the following setup can be performed by serial control.(The following description is for α motor: driver A/B. β motor: driver C/D is the same function as α motor .) VERSION:1.2 2015.08.10 Hang zhou Ruimeng Technology Co.,LTD Http://www.relmon.com - 16 - RuiMeng MS41929 Main setup parameters 1) Phase correction : The phase difference between a driver A and a driver B is on the basis of 90 degree, and can be adjusted from –22.5 degree to +21.8 degree. 2) ・・・PHMODAB[5:0] Amplitude correction : It is possible to set the load current of driver A/B independently. ・・・PPWA[7:0], PPWB[7:0] 3) PWM frequency : PWM driver chopping frequency is set. ・・・PWMMODE[4:0], PWMRES[1:0] 4) Quasi-sine wave : Number of divisions can be set to 64, 128 and 256. 5) Stepping cycle : Motor rotation speed is set. The rotation speed is constant regardless of number of ・・・MICROAB[1:0] divisions of quasi-sine wave. ・・・INTCTAB[15:0] Setup Timing for Each Setup Setup timing and number of times are shown as follows. Since the setups for address 27h to 2Ah are the same as those of 22h to 25h, the descriptions for address 27h to 2Ah are omitted. If each setup is set once, the setup is reflected at every VD pulses. Therefore, when the same setup is performed at two or more VD pulses, it is unnecessary to write at every VD pulse. DT1[7:0] (Start point wait, Address 20h) Update timing is set. After hard reset release (Pin 39 RSTB : Low → High), this setup should be performed before starting to excite and drive a motor. Since this setup is updated by the start of VD, it is unnecessary to write during the start point wait. PWMMODE[4:0],PWMRES[1:0] (Micro step output PWM frequency setup,Address 20h) Micro step output PWM frequency is set. After hard reset release (Pin 39 RSTB : Low to High), this setup should be performed before starting to excite and drive a motor (DT1 ends). DT2A[7:0] (Start point excitation wait, Address 22h) Updated timing is set. After hard reset release (Pin 39 RSTB : Low → High), this setup should be performed before starting to excite and drive a motor (DT1 ends). PHMODAB[5:0] (Phase correction, Address 22h) The correlation phase difference between coil A and B is corrected, and the driving noise is reduced. Since the amount of suitable phase correction depends on the rotation direction or rotation speed, the change of this setup should be performed simultaneously with the changes of the rotations direction (CCWCWAB) or rotation speed (INTCTAB), or it should be performed when a motor does not rotate. PPWA[7:0],PPWB[7:0] (Peak pulse width, Address 23h) PWM maximum duty is set. This setup should be performed before starting to excite and drive a motor (DT1 ends). PSUMAB[7:0] (Step count number, Address 24h) The amount of motor rotations in 1 VD interval is set. Every time VD pulse is input, the motor keeps rotating depending on the amount of rotations. Therefore, set to "0" in order to stop rotation of the motor. When the amount of rotations which exceeds 1 VD interval is set, the amount of rotations of a part which VERSION:1.2 2015.08.10 Hang zhou Ruimeng Technology Co.,LTD Http://www.relmon.com - 17 - RuiMeng MS41929 exceeds 1 VD interval is cancelled CCWCWAB (Rotation direction, Address 24h) Rotation direction is set. This setup should be performed just before switching the rotation direction. BRAKEAB (Brake setup, Address 24h) A current is set to 0 by braking. Since it becomes impossible to get the excitation position of a motor by braking, this setup should not be preformed except for the case of stopping immediately. ENDISAB (Motor enable/disable setup, Address 24h) Enable of a motor is set. Since a motor pin is Hi-Z when it is set to "Disable", do not set to "Disable" while a motor keeps rotating. LEDA (LED setup, Address 24h) LED ON/OFF is set. The setup is performed at the falling edge of CS. (It is understood that it is not related to driving a motor. It is possible to turn ON/OFF independently.) MICROAB[1:0] (Number of sine wave divisions, Address 24h) Number of sine wave divisions is set. Even if this setup is changed, the amount of rotations and rotation speed do not vary. If only the control which the number of divisions varies depending on the rotation speed is not performed, the problem dose not occur if it is set once after hard reset release (Pin 39 RSTB : Low → High). VERSION:1.2 2015.08.10 Hang zhou Ruimeng Technology Co.,LTD Http://www.relmon.com - 18 - RuiMeng MS41929 INTCTAB[15:0] (Pulse cycle, Address 25h) Pulse cycle is set. Rotation speed is determined by this setup. How to adjust register setting for micro stepping motor driver In order to control lens, it is required to set motor rotation speed and amount of rotation per VD. Register settings relating to speed and amount of rotation are: INTCTxx[15:0]: set time of each step (that is, the rotation speed) PSUMxx[7:0]: amount of rotation per VD period When driving the motor continuously for several VD period, it is best to match rotation time (per VD) to VD period. Below is a method to calculate INTCTxx[15:0] and PSUMxx[7:0] for smooth motor rotation. 1) Calculate INTCTxx[15:0] from desired rotation speed. INTCTxx[15:0] × 768 = OSCIN frequency / rotation frequency 2) Calculate PSUMxx[7:0] from INTCTxx[15:0]. Round off if the result of PSUMxx[7:0] is not integer. When the below equation is satisfied, the rotation time is equal to VD period, and smooth rotation is realized. INTCTxx[15:0] × PSUMxx[7:0] × 24 = OSCIN frequency / VD frequency 3) If PSUMxx[7:0] is rounded off, recalculate INTCTxx[15:0] from the equation in 2). Example) OSCIN frequency = 27 MHz, VD frequency = 60 Hz Calculate PSUMxx[7:0] and INTCTxx[15:0] to rotate motor at 800 pps (1-2 phase). 800 pps = 100 Hz, so from equation in 1), INTCTxx[15:0] = 27 MHz / (100 Hz × 768) = 352 Next, calculate PSUMxx[7:0] from equation in 2): PSUMxx[7:0] = 1/(60 Hz) × 27 MHz / (352 × 24) = 53 Since PSUMxx[7:0] is rounded off, recalculate INTCTxx[15:0] from equation in 2): INTCTxx[15:0] = 1/(60 Hz) × 27 MHz / (53 × 24) = 354 Refer to pages 24 and 26 for detail of PSUMxx[7:0] and INTCTxx[15:0]. If the value of left-hand side in 2) is smaller than right-hand side, the rotation time will be shorter than VD period and will cause discontinuous rotation. If left-hand side is smaller, the rotation time that exceeds 1 VD will be cancelled. Detail descriptions of register DT1[7:0] (Start point wait time) Address D15 D14 VERSION:1.2 20h D13 D12 D11 Initial Value D10 D9 D8 D7 2015.08.10 0Ah D6 D5 D4 D3 DT1[7:0] D2 D1 D0 Hang zhou Ruimeng Technology Co.,LTD Http://www.relmon.com - 19 - RuiMeng MS41929 DT1[7:0] sets the delay time (start point wait time) until the data written in the serial data communication sends to the output. It becomes possible to excite a motor after a start point wait switches "1" to "0". The start point wait starts to count after the rising edge of video sync signal (VD_FZ). Since start point wait time is the trigger required for data acquisition, be sure to set to other than "0". When the value of register is "0", the data cannot be updated. Refer to page 19 for the relationship of VD_FZ and start point wait time. DT1 Start point wait 0 Prohibition 1 303.4μs 255 77.4ms n n×8192/27MHz DT2A[7:0]( Start point excitation wait α motor) Address 22h 03h Initial Value D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 DT2A[7:0] D2 D1 D0 D4 D3 DT2B[7:0] D2 D1 D0 DT2B[7:0]( Start point excitation wait β motor) Address 27h Initial Value D15 D14 D13 D12 D11 D10 D9 D8 D7 03h D6 D5 DT2A[7:0] and DT2B[7:0] set the delay time (start point excitation wait) until α motor and β motor start rotation. Motor rotation starts after start point excitation wait switches "1" to "0". The start point excitation wait starts to count after the falling edge of start point wait. Since the falling edge is the trigger pulse which is required for data acquisition, be sure to input the data of other than "0". When the value of register is "0", the data cannot be updated. Refer to page 19 for the relationship of VD_FZ and start point excitation wait time. DT1 Start point excitation wait 0 Prohibition 1 303.4μs 255 77.4ms n n×8192/27MHz PWMMODE[4:0] (Micro step output PWM frequency) VERSION:1.2 2015.08.10 Hang zhou Ruimeng Technology Co.,LTD Http://www.relmon.com - 20 - RuiMeng Address MS41929 20h Initial Value D15 D14 D13 D12 D11 D10 D9 D8 PWMMODE[4:0] D7 1Ch D6 D5 D4 D3 D2 D1 D0 D4 D3 D2 D1 D0 PWMRES[1:0] (Micro step output PWM frequency resolution) Address 20h Initial Value D15 D14 D13 D12 D11 D10 PWMRES D9 D8 D7 1 D6 D5 PWMMODE[4:0] sets the frequency division value of system clock, OSCIN, which is used as the standard of PWM signal for micro step output. PWMMODE[4:0] can set in the range from 1 to 31. PWM frequency at PWMMODE = 0 is the same as that at PWMMODE = 1. PWMRES[1:0] sets the resolution of frequency division value set by PWMMODE[4:0]. PWM frequency is calculated by the following formula. 3 PWM frequency = OSCIN frequency / ((PWMMODE×2 ) × 2PWMRES) Table for the specific PWM frequency set by PWMMODE[4:0] and PWMRES[1:0] at OSCIN = 27 MHz.. PWMMODE PWMRES(kHZ) 0 1 2 1 3375.0 1687.5 843.8 2 1687.5 843.8 3 1125.0 4 PWMMODE PWMRES(kHZ) 0 1 2 17 198.5 99.3 49.6 421.9 18 187.5 93.8 46.9 526.5 281.3 19 177.6 88.8 44.4 843.8 421.9 210.9 20 168.8 84.4 42.2 5 675.0 337.5 168.8 21 160.7 80.4 40.2 6 526.5 281.3 140.6 22 153.4 76.7 38.4 7 482.1 241.1 120.5 23 146.7 73.4 36.7 8 421.9 210.9 105.5 24 140.6 70.3 35.2 9 375.0 187.5 93.8 25 135.0 67.5 33.8 10 337.5 168.8 84.4 26 129.8 64.9 32.5 11 306.8 153.4 76.7 27 125.0 62.5 31.3 12 281.3 140.6 70.3 28 120.5 60.3 30.1 13 259.6 129.8 64.9 29 116.4 58.2 29.1 14 241.1 120.5 60.3 30 112.5 56.3 28.1 15 225.0 112.5 56.3 31 108.9 54.4 27.2 16 210.9 105.5 52.7 VERSION:1.2 2015.08.10 Hang zhou Ruimeng Technology Co.,LTD Http://www.relmon.com - 21 - RuiMeng MS41929 PHMODAB[5:0] (Phase correction α motor) Address 22h Initial Value D15 D14 D13 D12 D11 D10 D9 PHMODAB[5:0] D8 D7 0 D6 D5 D4 D3 D2 D1 D0 D4 D3 D2 D1 D0 PHMODCD[5:0] (Phase correction β motor) 27h Address Initial Value D15 D14 D13 D12 D11 D10 D9 PHMODCD[5:0] D8 D7 0 D6 D5 Current phase differences of α motor and β motor shifts from 90 degree by PHMODAB[5:0] and PHMODCD[5:0] respectively. Setup resolution is 0.7 degree, and data is set in two's complement. PHMODAB Amount of phase correction 000000 ±0° 000001 +0.7° 011111 +21.80° 100000 -22.50° 111111 -0.7° Resolution 360°/512 = 0.70° Stepping motor is configured so that phase difference between coils becomes 90 degree. However, the phase difference may shift from 90 degree due to the variation of a motor. Therefore, even if phase difference in current waveform is exactly 90 degree, driving noise may occur due to the occurrence of rotation torque ripple. This setup is for reducing the torque ripple which is occurred by the variation of a motor. PPWA[7:0] (Driver A peak pulse width) PPWB[7:0] (Driver B peak pulse width) Address 23h D15 D14 D13 D12 D11 D10 PPWB[7:0] Initial Value D9 D8 D7 0,0 D6 D5 D4 D3 D2 PPWA[7:0] D1 D0 D4 D3 D2 PPWC[7:0] D1 D0 PPWC[7:0] (Driver C peak pulse width)) PPWD[7:0] (Driver D peak pulse width) Address 28h D15 D14 D13 D12 D11 D10 PPWD[7:0] VERSION:1.2 Initial Value D9 D8 D7 2015.08.10 0,0 D6 D5 Hang zhou Ruimeng Technology Co.,LTD Http://www.relmon.com - 22 - RuiMeng MS41929 PPWA[7:0] to PPWD[7:0] set the maximum duty of PWM at the position which the currents in driver A to D are peak value respectively. The maximum duty is calculated by the following formula. Driver X Maximum duty = PPWx / (PWMMODE × 8) When PPWx = 0 is set, coil current becomes 0. when the duty exceeding 100% is set,Since the duty does not certainly exceed 100% at PWM operation in this case, the peak point of sine wave (current waveform) becomes flat. (Example) When PPWA[7:0] = 200, PWMMODE[4:0] = 28 is set, maximum duty of driver A will be 200 / (28 × 8) = 0.89 PSUMAB[7:0] (α motor step count number) Address 24h 0 Initial Value D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 PSUMAB[7:0] D1 D0 D4 D3 D2 PSUMCD[7:0] D1 D0 PSUMCD[7:0] (β motor step count number) Address 29h 0 Initial Value D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 PSUMAB[7:0] and PSUMCD[7:0] set the number of step counts of α motor and β motor respectively. Since the number of setup step counts is converted to 256-step inside, the amount of rotation becomes the same regardless of the number of divisions. To stop the rotation of a motor, set PSUMxx[7:0] = 0. Number of steps Setting 64-step 128-step 256-step conversion conversion conversion 0 0 0 0 1 2 4 8 255 510 1020 2040 n 2n 4n 8n value If maximum duty is set to other than "0" at PSUMxx[7:0] = 0, the position is held in the state of excitation. If a motor can hold the position by cogging torque without motor current, the position is held even if the maximum duty is set to 0. Example) When PSUMAB[7:0] = 8 is set, the amount of rotation is 16 steps (64-step conversion). This is 16/64 =1/4 of a sine wave. The amount of rotation becomes 1/4 of a sine wave also in 128 and 256-step conversion. CCWCWAB (α motor rotation direction) Address 24h D15 D14 D13 D12 D11 D10 0 Initial Value D9 D8 D7 CCWCWAB D6 D5 D4 D3 D2 D1 D0 D4 D3 D2 D1 D0 CCWCWCD (β motor rotation direction) Address 29h D15 D14 D13 D12 D11 D10 VERSION:1.2 0 Initial Value D9 D8 D7 CCWCWCD 2015.08.10 D6 D5 Hang zhou Ruimeng Technology Co.,LTD Http://www.relmon.com - 23 - RuiMeng MS41929 CCWCWAB and CCWCWCD set the rotation direction of α motor and β motor respectively. Setup value Motor rotation direction 0 Forward 1 Reverse BRAKEAB (α motor brake) Address 24h 0 Initial Value D15 D14 D13 D12 D11 D10 D9 D8 BRAKEAB D7 D6 D5 D4 D3 D2 D1 D0 D4 D3 D2 D1 D0 BRAKECD (β motor brake) Address 29h 0 Initial Value D15 D14 D13 D12 D11 D10 D9 D8 BRAKECD D7 D6 D5 BRAKEAB and BRAKECD set the brake mode of α motor and β motor respectively.。 Setup value α motor brake 0 Normal operation 1 Brake mode Both of upper-side P-ch MOSs of output H bridge turn on in brake mode. The brake mode is not used in normal operation, and is used for emergency shutdown. It is recommended to use only in abnormal state. ENDISAB(αmotor Enable/Disable) Address 24h 0 Initial Value D15 D14 D13 D12 D11 D10 D9 ENDISAB D8 D7 D6 D5 D4 D3 D2 D1 D0 D4 D3 D2 D1 D0 ENDISCD(βmotor Enable/Disable) 29h Address 0 Initial Value D15 D14 D13 D12 D11 D10 D9 ENDISCD D8 D7 D6 D5 ENDISAB and ENDISCD configure the setting for output stage control of α motor and β motor respectively. The output becomes the state of OFF (Hi-Z) at ENDISxx = 0. However, internal excitation position counter keeps counting even ENDISxx = 0. Therefore, when stopping the motor during normal operation, set PSUMxx[7:0] = 0 (not ENDISxx = 0). Setup value Motor output condition 0 Output OFF (Hi-Z) 1 Output ON VERSION:1.2 2015.08.10 Hang zhou Ruimeng Technology Co.,LTD Http://www.relmon.com - 24 - RuiMeng MS41929 MICROAB(α motor quasi-sin wave division number) Address 24h Initial Value D15 D14 D13 D12 D11 D10 MICROAB D9 D8 D7 0 D6 D5 D4 D3 D2 D1 D0 D4 D3 D2 D1 D0 MICROCD(β motor quasi-sine wave division number) 29h Address Initial Value D15 D14 D13 D12 D11 D10 MICROCD D9 D8 D7 0 D6 D5 MICROAB[1:0] and MICROCD[1:0] set the number of quasi-sine wave divisions for α motor and β motor respectively. Waveform example for 64 divisions is on page 27 . MICROAB Number of divisions 00 256 01 256 10 128 11 64 INTCTAB(α motor step cycle setup) Address 25h Initial Value D15 D14 D13 D12 D11 D10 0 D9 D8 D7 D6 INTCTAB[15:0] D5 D4 D3 D2 D1 D0 D4 D3 D2 D1 D0 INTCTCD(β motor step cycle setup) 2Ah Address Initial Value D15 D14 D13 D12 D11 D10 0 D9 D8 D7 D6 INTCTCD[15:0] D5 INTCTAB[15:0] and INTCDCD[15:0] set the step cycle of α motor and β motor respectively. Since the step cycle is converted to 64-step inside, motor rotation speed becomes the same regardless of the number of divisions set by MICROxx[1:0]. I Step cycle Setup value 64-step 128-step 256-step 0 0 0 0 1 444ns 222ns 111ns Max 29.1ms 14。6ms 7.3ms VERSION:1.2 2015.08.10 Hang zhou Ruimeng Technology Co.,LTD Http://www.relmon.com - 25 - RuiMeng n MS41929 12n/27MHz 6n/27MHz 3n/27MHz If maximum duty is set to other than "0" at INTCTxx[15:0] = 0, the position is held in the state of excitation. If a motor can hold the position by cogging torque without motor current, the position is held even if the maximum duty is set to 0. e. g.) If ITCTAB[15:0] = 400 is set, time of 1 step for 64-step is12 × 400 / 27 MHz = 0.178 ms Therefore, period of one sinusoidal wave cycle is 11.4 ms (87.9 Hz). This is the same for 128-step and 256-step. 64 divisions quasi-sine wave : VERSION:1.2 2015.08.10 Hang zhou Ruimeng Technology Co.,LTD Http://www.relmon.com - 26 - RuiMeng MS41929 d)Test signals FZTEST[4:0] (Test signal output setup) Address 21h Initial Value D15 D14 D13 D12 D11 D10 D9 D8 D7 0 D6 D5 D4 D3 D2 D1 FZTEST[4:0] D0 D4 D3 D2 D1 D0 D4 D3 D2 D1 D0 TESTEN1(Test enable 1) 0Bh Address Initial Value D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 TESTEN1 0 D5 TESTEN2(Test enable 2) 21h Address Initial Value D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 TESTEN2 0 D5 FZTEST[4:0] makes a choice of the test signal which is output to PLS1 and PLS2 pins. TESTEN1 (0Bh) and TESTEN2 (21h) should be set to "1" in order to enable the test signal. Since the test signal used in our company is output, do not set other than the setups described in the following table. Setup Value Step cycle Description PLS1 PLS2 1 Start point wait 0 “H” output during start point wait 2 Start point excitation wait A Start point excitation wait B “H” output during start point excitation wait 3 ENDISAB ENDISCD ENDISxx setting 4 CCWCWAB CCWCWCD CCWCWxx setting 5 Pulse output monitorA Pulse output monitorB During motor rotation, “H”/”L” changes at the speed of 64-step 6 PWM cycle monitor 0 PWM frequency signal for micro step 7 Pulse completion output A Pulse completion output B “H” output during motor rotation Waveform for each test signal is described below. VERSION:1.2 2015.08.10 Hang zhou Ruimeng Technology Co.,LTD Http://www.relmon.com - 27 - RuiMeng VERSION:1.2 MS41929 2015.08.10 Hang zhou Ruimeng Technology Co.,LTD Http://www.relmon.com - 28 - RuiMeng MS41929 e)LED Driver LEDA (LED A setup) Address 29h D15 D14 D13 D12 D11 D10 LED A VERSION:1.2 Initial Value D9 D8 D7 2015.08.10 0 D6 D5 D4 D3 D2 D1 D0 Hang zhou Ruimeng Technology Co.,LTD Http://www.relmon.com - 29 - RuiMeng MS41929 LEDB (LED B setup) Address 24h Initial Value D15 D14 D13 D12 D11 D10 LED B D9 D8 0 D7 D6 D5 D4 D3 D2 D1 D0 LEDA and LEDB set the output of LED A and LED B respectively. Setup value LED output 0 OFF 1 ON f) Reset / Protection circuit Block Diagram / Specifications MVCCx Driver E DVDD VDD RST B UVLO LOGIC Driver ABCD TSD Driver LED Stop direction (Enable → Disable) is shown as above. The specifications are shown as follows. COMMON Focus/Zoom output LED Infrared Rejector RSTB pin Disable Logic reset→ Output OFF Thermal shutdown (TSD) × Output OFF Under-voltage lock-out (UVLO) × Logic reset → Output OFF VERSION:1.2 2015.08.10 Hang zhou Ruimeng Technology Co.,LTD Http://www.relmon.com - 30 - RuiMeng MS41929 g) Infrared Rejector driver Infrared Rejector driver is a DC motor driver with a H bridge control system. There is two way to control the DC motor: direct model or SPI model. 2Ch bit2 = ‘1’,system feature SPI model, ‘0‘ direct model. Register for Infrared Rejector as below: Address 2Ch D15 D14 D13 D12 D11 D10 Initial Value D9 D8 D7 Direct model SPI model SEL=‘0’ SEL=‘1’ IN1 IN2 0 0 0 Register 0 D6 D5 D4 D3 D2 D1 SEL IN1 Output state OUTE1 OUTE2 Motor state 0004h Z Z Coast 1 0005h L H reverse 1 0 0006h H L forward 1 1 0007h L L brake 2Ch value D0 In2 When power up ,SEL =’0’ system works in direct model. VERSION:1.2 2015.08.10 Hang zhou Ruimeng Technology Co.,LTD Http://www.relmon.com - 31 - RuiMeng MS41929 Infrared Rejector direct model timing : T7,T8,T9,T10
MS41929 价格&库存

很抱歉,暂时无法提供与“MS41929”相匹配的价格&库存,您可以联系我们找货

免费人工找货