0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
π162U31

π162U31

  • 厂商:

    2PAISEMI(荣湃

  • 封装:

    SOIC16

  • 描述:

    π162U31

  • 数据手册
  • 价格&库存
π162U31 数据手册
2Pai Semi Enhanced ESD, 3.0 kV rms/6.0 kV rms 150Kbps Hexa-Channel Digital Isolators Data Sheet FEATURES Ultra low power consumption (150Kbps): 0.55mA/Channel High data rate: π16xAxx: 600Mbps π16xExx: 200Mbps π16xMxx: 10Mbps π16xUxx: 150kbps High common-mode transient immunity: 150 kV/µs typical High robustness to radiated and conducted noise Isolation voltages: π16xx3x: AC 3000Vrms π16xx6x: AC 6000Vrms High ESD rating: ESDA/JEDEC JS-001-2017 Human body model (HBM) ±8kV, all pins Safety and regulatory approvals (Pending): UL certificate number: E494497 3000Vrms/6000Vrms for 1 minute per UL 1577 CSA Component Acceptance Notice 5A VDE certificate number: 40047929 DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 VIORM = 707V peak/1200V peak CQC certification per GB4943.1-2011 3 V to 5.5 V level translation AEC-Q100 qualification Wide temperature range: -40°C to 125°C 16-lead, RoHS-compliant, (W)SOIC package π160U/π161U/π162U/π163U rating of 1.5 kV rms to 6.0 kV rms and the data rate from DC up to 600Mbps (see the Ordering Guide). The devices operate with the supply voltage on either side ranging from 3.0 V to 5.5 V, providing compatibility with lower voltage systems as well as enabling voltage translation functionality across the isolation barrier. The fail-safe state is available in which the outputs transition to a preset state when the input power supply is not applied. FUNCTIONAL BLOCK DIAGRAMS π160XXX VDD1 1 16 VDD2 VIA 2 15 VOA VIB 3 14 VOB VIC 4 13 VOC VOD VID 5 12 VIE 6 11 VOE VIF 7 10 VOF GND1 8 9 GND2 VDD1 1 16 VDD2 VIA 2 15 VOA VIB 3 14 VOB VIC 4 13 VOC VID 5 12 VOD VIE 6 11 VOE VOF 7 10 VIF GND1 8 9 GND 2 VDD1 1 16 VDD2 VIA 2 15 VOA VIB 3 14 VOB VIC 4 13 VOC VOD π161XXX π162XXX VID 5 12 VOE 6 11 VOF 7 10 1 8 9 VDD1 1 16 VDD2 VIA 2 15 VOA VIB 3 14 VOB VIC 4 13 VOC VOD 5 12 VID VOE 6 11 V IE VOF 7 10 VIF GND 1 8 9 GND2 GND VIE VIF GND 2 APPLICATIONS General-purpose multichannel isolation Industrial field bus isolation ENERAL DESCRIPTION The π1xxxxx is a 2PaiSemi digital isolators product family that includes over hundreds of digital isolator products. By using maturated standard semiconductor CMOS technology and 2PaiSEMI iDivider technology, these isolation components provide outstanding performance characteristics and reliability superior to alternatives such as optocoupler devices and other integrated isolators. Intelligent voltage divider technology (iDivider technology) is a new generation digital isolator technology invented by 2PaiSEMI. It uses the principle of capacitor voltage divider to transmit voltage signal directly cross the isolator capacitor without signal modulation and demodulation. π163XXX Figure1. π160xxx/π161xxx/π162xxx/π163xxx functional Block Diagram VDD1 VDD2 CIN COUT 0.1uF 0.1 uF 1 2 3 4 5 6 7 8 VIN_A VIN_B VIN_C VIN_D VIN_E VIN_F GND 1 VDD1 VIA VIB VIC VID VIE VIF GND1 VDD2 VOA VOB VOC VOD VOE VOF GND2 16 15 14 13 12 11 10 9 VOUT_A VOUT_B VOUT_C VOUT_D VOUT_E VOUT_F GND2 Figure2. π160xxx Typical Application Circuit The π1xxxxx isolator data channels are independent and are available in a variety of configurations with a withstand voltage Rev.1 Information furnished by 2Pai semi is believed to be accurate and reliable. However, no responsibility is assumed by 2Pai semi for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of 2Pai semi. Trademarks and registered trademarks are the property of their respective owners. Room 308-309, No.22, Boxia Road, Pudong New District, Shanghai, 201203, China 021-50850681 2Pai Semiconductor Co., Limited. All rights reserved. http://www.rpsemi.com/ π160U/π161U/π162U/π163U Data Sheet PIN CONFIGURATIONS AND FUNCTIONS π160Uxx Pin Function Descriptions Pin No. Name Description 1 VDD1 Supply Voltage for Isolator Side 1. 2 VIA Logic Input A. 3 VIB Logic Input B. 4 VIC 5 VDD1 1 16 VDD2 π160 15 VOA VIA 2 VIB 3 14 VOB Logic Input C. VIC 4 13 VOC VID Logic Input D. VID 5 6 VIE Logic Input E. 6 VIF Logic Input F. VIE 7 8 GND1 Ground 1. This pin is the ground reference for Isolator Side 1. 9 GND2 Ground 2. This pin is the ground reference for Isolator Side 2. 10 VOF Logic Output F. 11 VOE Logic Output E. 12 VOD Logic Output D. 13 VOC Logic Output C. 14 VOB Logic Output B. 15 VOA Logic Output A. 16 VDD2 Supply Voltage for Isolator Side 2. TOP VIEW (Not to scale) VIF 7 12 VOD 11 VOE 10 VOF GND1 8 9 GND2 Figure3. π160Uxx Pin Configuration Figure3. π160Mxx Pin Configuration π161Uxx Pin Function Descriptions Pin No. Name Description 1 VDD1 Supply Voltage for Isolator Side 1. 2 VIA Logic Input A. VIA 3 VIB Logic Input B. VIC Logic Input C. VIB 3 14 VOB 4 5 VID Logic Input D. VIC 13 VOC 6 VIE Logic Input E. VID 5 7 VOF Logic Output F. VIE 8 GND1 Ground 1. This pin is the ground reference for Isolator Side 1. VOF 7 9 GND2 Ground 2. This pin is the ground reference for Isolator Side 2. 10 VIF Logic Input F. 11 VOE Logic Output E. 12 VOD Logic Output D. 13 VOC Logic Output C. 14 VOB Logic Output B. 15 VOA Logic Output A. 16 VDD2 Supply Voltage for Isolator Side 2. VDD1 1 2 16 VDD2 π161 4 6 GND1 8 TOP VIEW (Not to scale) 15 VOA 12 VOD 11 VOE 10 VIF 9 GND2 Figure4. π161Uxx Pin Configuration Figure8. π121x6 Pin Configuration Rev. 1 | Page 2 of 16 π160U/π161U/π162U/π163U Data Sheet π162Uxx Pin Function Descriptions Pin No. Name Description 1 VDD1 Supply Voltage for Isolator Side 1. 2 VIA Logic Input A. VIA 2 3 VIB Logic Input B. VIB 3 14 VOB 4 VIC Logic Input C. VIC 4 VID Logic Input D. 13 VOC 5 6 VOE Logic Output E. VID 5 7 VOF Logic Output F. VOE 6 8 GND1 Ground 1. This pin is the ground reference for Isolator Side 1. VOF 7 9 GND2 Ground 2. This pin is the ground reference for Isolator Side 2. GND1 8 10 VIF Logic Input F. 11 VIE Logic Input E. 12 VOD Logic Output D. 13 VOC Logic Output C. 14 VOB Logic Output B. 15 VOA Logic Output A. 16 VDD2 Supply Voltage for Isolator Side 2. VDD1 1 16 VDD2 π162 TOP VIEW (Not to scale) 15 VOA 12 VOD 11 VIE 10 VIF 9 GND2 Figure5. π162Uxx Pin Configuration Figure9. π122x6 Pin Configuration π163Uxx Pin Function Descriptions Pin No. Name Description 1 VDD1 Supply Voltage for Isolator Side 1. 2 VIA Logic Input A. VIA 2 3 VIB Logic Input B. VIB 3 14 VOB 4 VIC Logic Input C. VIC 4 VOD Logic Output D. 13 VOC 5 6 VOE Logic Output E. 7 VOF Logic Output F. VOE 6 8 GND1 Ground 1. This pin is the ground reference for Isolator Side 1. VOF 7 9 GND2 Ground 2. This pin is the ground reference for Isolator Side 2. GND1 8 10 VIF Logic Input F. 11 VIE Logic Input E. 12 VID Logic Input D. 13 VOC Logic Output C. 14 VOB Logic Output B. 15 VOA Logic Output A. 16 VDD2 Supply Voltage for Isolator Side 2. VDD1 1 VOD 5 16 VDD2 π163 TOP VIEW (Not to scale) 15 VOA 12 VID 11 VIE 10 VIF 9 GND2 Figure6. π163Uxx Pin Configuration Figure9. π122x6 Pin Configuration Rev. 1 | Page 3 of 16 π160U/π161U/π162U/π163U Data Sheet ABSOLUTE MAXIMUM RATINGS TA = 25°C, unless otherwise noted. Table 1. Absolute Maximum Ratings4 Parameter Rating Supply Voltages (VDD1-GND1, VDD2-GND2) Input Voltages −0.5 V to +7.0 V (VIA, VIB)1 Output Voltages −0.5 V to VDDx + 0.5 V (VOA, VOB)1 −0.5 V to VDDx + 0.5 V Average Output Current per Pin2 Side 1 Output Current (IO1) −10 mA to +10 mA Average Output Current per Pin2 Side 2 Output Current (IO2) −10 mA to +10 mA Common-Mode Transients Immunity 3 −150 kV/µs to +150 kV/µs Storage Temperature (TST) Range −65°C to +150°C Ambient Operating Temperature (TA) Range −40°C to +125°C Notes: 1 VDDx is the side voltage power supply VDD, where x = 1 or 2. 2 See Figure7 for the maximum rated current values for various temperatures. 3 See Figure21 for Common-mode transient immunity (CMTI) measurement. 4 Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. RECOMMENDED OPERATING CONDITIONS Table 2. Recommended Operating Conditions Parameter Supply Voltage Symbol Min VDDx 1 3 High Level Input Signal Voltage VIH 0.7*VDDx Low Level Input Signal Voltage VIL 0 High Level Output Current IOH -6 Low Level Output Current IOL Maximum Data Rate Typ 1 Max Unit 5.5 V VDDx 1 0.3*VDDx V 1 V mA 6 mA 0 150 Kbps Junction Temperature TJ -40 150 °C Ambient Operating Temperature TA -40 125 °C Notes: 1 VDDx is the side voltage power supply VDD, where x = 1 or 2. Truth Tables Table 3. π160xxx/π161xxx/π162xxx/π163xxx Truth Table Default Low Default High VOx Output1 VOx Output1 Test Conditions /Comments Powered2 Low Low Normal operation Powered2 High High Normal operation Open Powered2 Powered2 Low High Default output Don’t Care4 Unpowered3 Powered2 Low High Default output5 Don’t Care4 Powered2 Unpowered3 High Impedance High Impedance VIx Input1 VDDI State1 VDDO State1 Low Powered2 High Powered2 Notes: 1 VIx/VOx are the input/output signals of a given channel (A or B). VDDI/VDDO are the supply voltages on the input/output signal sides of this given channel. Rev. 1 | Page 4 of 16 π160U/π161U/π162U/π163U Data Sheet 2 Powered means VDDx≥ 2.9 V means VDDx < 2.3V 4 Input signal (VIx) must be in a low state to avoid powering the given VDDI1 through its ESD protection circuitry. 5 If the VDDI goes into unpowered status, the channel outputs the default logic signal after around 1us. If the VDDI goes into powered status, the channel outputs the input status logic signal after around 3us. 3 Unpowered SPECIFICATIONS ELECTRICAL CHARACTERISTICS Table 4. Switching Specifications VDD1 - VGND1 = VDD2 - VGND2 = 3.3VDC±10% or 5VDC±10%, TA=25°C, unless otherwise noted. Parameter Minimum Pulse Width Symbol Maximum Data Rate Propagation Delay Time1,4 Pulse Width Distortion4 Part to Part Propagation Delay Skew4 Channel to Channel Propagation Delay Skew4 Min Typ Max PW 6.5 150 Common-Mode Transient Immunity3 CMTI ESD(HBM - Human body model) ESD Within PWD limit us The different time between 50% input signal to 50% output signal 50% @ 5VDC supply 3.2 4.8 us @ 3.3VDC supply 0 0.02 0.2 us The max different time between tpHL and tpLH@ 5VDC supply. And The value is | tpHL - tpLH | 0 0.02 0.2 us @ 3.3VDC supply 0.3 us The max different propagation delay time between any two devices at the same temperature, load and voltage @ 5VDC supply 0.3 us 0 0.2 us 0 0.2 us tCSK tr/tf Kbps 4.5 tPSK Output Signal Rise/Fall Time4 Test Conditions/Comments Within pulse width distortion (PWD) limit 3.0 tpHL, tpLH PWD Unit us 100 @ 3.3VDC supply The max amount propagation delay time differs between any two output channels in the single device @ 5VDC supply. @ 3.3VDC supply 1.5 ns 10% to 90% signal terminated 50,See figure17. 150 kV/µs VIN = VDDx2 or 0V, VCM = 1000 V ±8 kV All pins Notes: 1 tpLH = low-to-high propagation delay time, tpHL = high-to-low propagation delay time. See figure 18. 2 VDDx is the side voltage power supply VDD, where x = 1 or 2. 3 See Figure21 for Common-mode transient immunity (CMTI) measurement. 4 Output Signal Terminated 50 Table 5. DC Specifications VDD1 - VGND1 = VDD2 - VGND2 = 3.3VDC±10% or 5VDC±10%, TA=25°C, unless otherwise noted. Symbol Rising Input Signal Voltage Threshold Falling Input Signal Voltage Threshold High Level Output Voltage Low Level Output Voltage Min VIT+ Typ Max 0.6*VDDx1 0.7*VDDx1 Unit Test Conditions/Comments V VIT- 0.3* VDDX1 0.4* VDDX1 V VOH 1 VDDx − 0.1 VDDx V −20 µA output current VDDx − 0.2 VDDx − 0.1 V −2 mA output current V 20 µA output current VOL 0 0.1 Rev. 1 | Page 5 of 16 π160U/π161U/π162U/π163U Data Sheet Input Current per Signal Channel VDDx1 Undervoltage Rising Threshold VDDx1 Undervoltage Falling Threshold VDDx1 Hysteresis 0.1 0.2 V 2 mA output current 0 V ≤ Signal voltage ≤ VDDX1 IIN −10 0.5 10 µA VDDxUV+ 2.45 2.65 2.9 V VDDxUV− 2.3 2.5 2.75 V VDDxUVH 0.15 V Notes: 1 VDDx is the side voltage power supply VDD, where x = 1 or 2. Table 6. Quiescent Supply Current VDD1 - VGND1 = VDD2 - VGND2 = 3.3VDC±10% or 5VDC±10%, TA=25°C, CL = 0 pF, unless otherwise noted. Parameter Symbol π160Uxx Quiescent Supply Current @ 5VDC Supply @ 3.3VDC Supply π161Uxx Quiescent Supply Current @ 5VDC Supply @ 3.3VDC Supply π162Uxx Quiescent Supply Current @ 5VDC Supply @ 3.3VDC Supply π163Uxx Quiescent Supply Current @ 5VDC Supply @ 3.3VDC Supply Min Typ Max Unit Test Conditions IDD1 (Q) 461 576 749 µA 0V Input signal IDD2 (Q) 2124 2655 3452 µA 0V Input signal IDD1 (Q) 182 228 296 µA 5V Input signal IDD2 (Q) 2302 2877 3740 µA 5V Input signal IDD1 (Q) 338 423 550 µA 0V Input signal IDD2 (Q) 2088 2610 3393 µA 0V Input signal IDD1 (Q) 180 225 293 µA 3.3V Input signal IDD2 (Q) 2275 2844 3697 µA 3.3V Input signal IDD1 (Q) 738 923 1199 µA 0V Input signal IDD2 (Q) 1847 2309 3002 µA 0V Input signal IDD1 (Q) 536 670 870 µA 5V Input signal IDD2 (Q) 1949 2436 3167 µA 5V Input signal IDD1 (Q) 630 788 1024 µA 0V Input signal IDD2 (Q) 1797 2246 2920 µA 0V Input signal IDD1 (Q) 529 662 860 µA 3.3V Input signal IDD2 (Q) 1926 2408 3130 µA 3.3V Input signal IDD1 (Q) 1015 1269 1650 µA 0V Input signal IDD2 (Q) 1570 1963 2552 µA 0V Input signal IDD1 (Q) IDD2 (Q) 889 1596 1111 1995 1444 2594 µA µA 5V Input signal 5V Input signal IDD1 (Q) 922 1152 1498 µA 0V Input signal IDD2 (Q) 1506 1882 2447 µA 0V Input signal IDD1 (Q) 878 1098 1427 µA 3.3V Input signal IDD2 (Q) 1578 1972 2564 µA 3.3V Input signal IDD1 (Q) 1294 1617 2102 µA 0V Input signal IDD2 (Q) 1294 1617 2102 µA 0V Input signal IDD1 (Q) 1243 1554 2020 µA 5V Input signal IDD2 (Q) 1243 1554 2020 µA 5V Input signal IDD1 (Q) 1214 1518 1973 µA 0V Input signal IDD2 (Q) 1214 1518 1973 µA 0V Input signal IDD1 (Q) 1229 1536 1997 µA 3.3V Input signal IDD2 (Q) 1229 1536 1997 µA 3.3V Input signal Rev. 1 | Page 6 of 16 π160U/π161U/π162U/π163U Data Sheet Table 7. Total Supply Current vs. Data Throughput (CL = 0 pF) VDD1 - VGND1 = VDD2 - VGND2 = 3.3VDC±10% or 5VDC±10%, TA=25°C, CL = 0 pF, unless otherwise noted. Parameter Symbol π160Uxx Supply Current @ 5VDC @ 3.3VDC π161Uxx Supply Current @ 5VDC @ 3.3VDC π162Uxx Supply Current @ 5VDC @ 3.3VDC π163Uxx Supply Current @ 5VDC @ 3.3VDC 2 Kbps Min 50Kbps Typ Max IDD1 0.39 IDD2 Min 150Kbps Typ Max 0.59 0.39 2.76 4.14 IDD1 0.30 IDD2 Min Typ Max Unit 0.59 0.39 0.59 mA 2.79 4.19 2.82 4.23 mA 0.45 0.30 0.45 0.30 0.45 mA 2.73 4.10 2.73 4.10 2.76 4.14 mA IDD1 0.79 1.18 0.79 1.19 0.80 1.19 mA IDD2 2.37 3.56 2.39 3.59 2.42 3.63 mA IDD1 0.71 1.06 0.71 1.07 0.71 1.07 mA IDD2 2.33 3.50 2.33 3.50 2.35 3.53 mA IDD1 1.18 1.77 1.19 1.79 1.21 1.82 mA IDD2 1.97 2.96 1.99 2.99 2.02 3.03 mA IDD1 1.11 1.67 1.12 1.68 1.12 1.68 mA IDD2 1.92 2.88 1.93 2.90 1.94 2.91 mA IDD1 1.59 2.39 1.59 2.39 1.62 2.43 mA IDD2 1.59 2.39 1.59 2.39 1.62 2.43 mA IDD1 1.53 2.30 1.53 2.30 1.53 2.30 mA IDD2 1.53 2.30 1.53 2.30 1.53 2.30 mA INSULATION AND SAFETY RELATED SPECIFICATIONS Table 8. Insulation Specifications Parameter Symbol Rated Dielectric Insulation Voltage Minimum External Air Gap (Clearance) Minimum External Tracking (Creepage) Minimum Internal Gap (Internal Clearance) Tracking Resistance (Comparative Tracking Index) Value Unit Test Conditions/Comments π16xU3x π16xU6x 3000 6000 L (CLR) 4 8 mm min L (CRP) 4 8 mm min 11 21 µm min Insulation distance through insulation >400 >400 V DIN IEC 112/VDE 0303 Part 1 II II CTI Material Group V rms 1-minute duration Measured from input terminals to output terminals, shortest distance through air Measured from input terminals to output terminals, shortest distance path along body Material Group (DIN VDE 0110, 1/89, Table 1) PACKAGE CHARACTERISTICS Table 9. Package Characteristics Parameter Resistance (Input to Output)1 Capacitance (Input to Output)1 Symbol Typical Value Unit π16xU3x π16xU6x RI-O 10 11 10 11 Ω Test Conditions/Comments CI-O 0.6 0.6 pF @1MHz Input Capacitance2 CI 3 3 pF @1MHz IC Junction to Ambient Thermal Resistance θJA 76 45 °C/W Thermocouple located at center of package underside Rev. 1 | Page 7 of 16 π160U/π161U/π162U/π163U Data Sheet Notes: 1The device is considered a 2-terminal device; SOIC-16 Pin 1 - Pin 8(WSOIC-16 Pin 1-Pin8) are shorted together as the one terminal, and SOIC-16 Pin 9 - Pin 16(WSOIC-16 Pin 9-Pin16) are shorted together as the other terminal. 2Testing from the input signal pin to ground. REGULATORY INFORMATION See Table 10 and the Insulation Lifetime section for details regarding recommended maximum working voltages for specific cross isolation waveforms and insulation levels. Table10. Regulatory π16xU3x Regulatory UL CSA VDE CQC π16xU6x Recognized under UL 1577 Recognized under UL 1577 Component Recognition Program1 Component Recognition Program1 Single Protection, 3000 V rms Isolation Voltage Single Protection, 6000 V rms Isolation Voltage File (E494497) File (pending) Approved under CSA Component Acceptance Notice 5A Approved under CSA Component Acceptance Notice 5A CSA 60950-1-07+A1+A2 and CSA 60950-1-07+A1+A2 and IEC 60950-1, second edition, +A1+A2: IEC 60950-1, second edition, +A1+A2: Basic insulation at 500 V rms (707 V peak) Basic insulation at 845 V rms (1200 V peak) Reinforced insulation at 250 V rms Reinforced insulation at 422 V rms (353 V peak) (600 V peak) File (pending) File (pending) DIN V VDE V 0884-10 (VDE V 0884-10):2006-122 DIN V VDE V 0884-10 (VDE V 0884-10):2006-122 Basic insulation, VIORM = 707 V peak, VIOSM = 4615 V peak Basic insulation, VIORM = 1200 V peak, VIOSM = 7000 V peak File (40047929) File (pending) Certified under Certified under CQC11-471543-2012 CQC11-471543-2012 GB4943.1-2011 GB4943.1-2011 Basic insulation at 500 V rms (707 V peak) working voltage Basic insulation at 845 V rms (1200 V peak) working voltage Reinforced insulation at Reinforced insulation at 250 V rms (353 V peak) 422 V rms (600 V peak) File (pending) File (pending) Notes: 1 In accordance with UL 1577, each π160U3x/π161U3x/π162U3x /π163U3xis proof tested by applying an insulation test voltage ≥ 3600 V rms for 1 sec; each π160U6x/π161U6x/π162U6x /π163U6xis proof tested by applying an isulation test voltage ≥ 7200 V rms for 1 sec 2 In accordance with DIN V VDE V 0884-10, eachπ160U3x/π161U3x/π162U3x /π163U3x is proof tested by applying an insulation test voltage ≥ 1326 V peak for 1 sec (partial discharge detection limit = 5 pC); each π160U6x/π161U6x/π162U6x /π163U6x is proof tested by ≥ 2250 V peak for 1 sec. The * marking branded on the component designates DIN V VDE V 0884-10 approval. DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS These isolators are suitable for reinforced electrical isolation only within the safety limit data. Protective circuits ensure the maintenance of the safety data. The * marking on packages denotes DIN V VDE V 0884-10 approval. Table 11. VDE Insulation Characteristics Description Test Conditions/Comments Symbol Characteristic π16xx3x π16xx6x I to IV I to IV Installation Classification per DIN VDE 0110 For Rated Mains Voltage ≤ 150 V rms Rev. 1 | Page 8 of 16 Unit π160U/π161U/π162U/π163U Data Sheet For Rated Mains Voltage ≤ 300 V rms I to III I to III For Rated Mains Voltage ≤ 400 V rms I to III I to III 40/105/21 40/105/21 Climatic Classification Pollution Degree per DIN VDE 0110, Table 1 2 2 VIORM 707 1200 V peak VIORM × 1.875 = Vpd (m), 100% production test, tini = tm = 1 sec, partial discharge < 5 pC Vpd (m) 1326 2250 V peak VIORM × 1.5 = Vpd (m), tini = 60 sec, tm = 10 sec, partial discharge < 5 pC Vpd (m) 1061 1800 V peak 849 1440 V peak Maximum Working Insulation Voltage Input to Output Test Voltage, Method B1 Input to Output Test Voltage, Method A After Environmental Tests Subgroup 1 After Input and/or Safety Test Subgroup 2 and Subgroup 3 Highest Allowable Overvoltage VIORM × 1.2 = Vpd (m), tini = 60 sec, tm = 10 sec, partial discharge < 5 pC VIOTM 4200 8500 V peak Surge Isolation Voltage Basic Basic insulation, 1.2 µs rise time, 50 µs, 50% fall time VIOSM 4615 7000 V peak Surge Isolation Voltage Reinforced Reinforced insulation, 1.2 µs rise time, 50 µs, 50% fall time VIOSM Safety Limiting Values Maximum value allowed in the event of a failure (see Figure 7) Maximum Junction Temperature TS Total Power Dissipation at 25°C Insulation Resistance at TS π16xU3x VIO = 800 V V peak 150 °C PS 1.56 2.78 W RS >109 >109 Ω π16xU6x Figure7. Thermal Derating Curve, Dependence of Safety Limiting Values with Ambient Temperature per VDE Rev. 1 | Page 9 of 16 150 π160U/π161U/π162U/π163U 3 Propagation Delay Time(uS) Power Supply Undervoltage Threshold Data Sheet 2.9 2.8 2.7 2.6 2.5 VDDxUV+(V) VDDxUV−(V) 2.4 2.3 3.2 3 2.8 2.6 2.4 0 50 100 0 150 tpHL(uS)@5V tpLH(uS)@5V 50 2.5 2 IDD1@ 0V Input IDD2@ 0V Input IDD1@ 3.3V Input IDD2@ 3.3V Input 1 0.5 0 0 50 100 150 Free-Air Temperature ( °C) Figure10. π160Uxx Quiescent Supply Current with 3.3V Supply vs. Free-Air Temperature 0.5 0 0 50 100 Free-Air Temperature ( °C) Figure12. π161Uxx Quiescent Supply Current with 3.3V Supply vs. Free-Air Temperature 150 π161Uxx Quiescent Supply Current (mA) IDD1@ 0V Input IDD2@ 0V Input IDD1@ 3.3V Input IDD2@ 3.3V Input 1 2.5 2 1.5 IDD1@ 0V Input IDD2@ 0V Input IDD1@ 5V Input IDD2@ 5V Input 1 0.5 0 0 50 100 150 Free-Air Temperature ( °C) Figure11. π160Uxx Quiescent Supply Current with 5.0V Supply vs. Free-Air Temperature 2 1.5 150 Figure9. Propagation Delay Time vs. Free-Air Temperature π160Uxx Quiescent Supply Current (mA) Figure8. UVLO vs. Free-Air Temperature 1.5 100 Free-Air Temperature ( °C) Free-Air Temperature ( °C) π160Uxx Quiescent Supply Current (mA) tpLH(uS)@3.3V 2.2 2.2 π161Uxx Quiescent Supply Current (mA) tpHL(uS)@3.3V 2 1.5 IDD1@ 0V Input IDD2@ 0V Input IDD1@ 5V Input IDD2@ 5V Input 1 0.5 0 0 50 100 150 Free-Air Temperature ( °C) Figure13. π161Uxx Quiescent Supply Current with 5.0V Supply vs. Free-Air Temperature Rev. 1 | Page 10 of 16 π160U/π161U/π162U/π163U π162Uxx Quiescent Supply Current (mA) 1.6 1.4 1.2 1 0.8 IDD1@ 0V Input IDD2@ 0V Input IDD1@ 3.3V Input IDD2@ 3.3V Input 0.6 0.4 0.2 0 0 50 100 150 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 IDD1@ 0V Input IDD2@ 0V Input IDD1@ 5V Input IDD2@ 5V Input 0 Figure14. π162Uxx Quiescent Supply Current with 3.3V Supply vs. Free-Air Temperature 50 100 150 Free-Air Temperature ( °C) Free-Air Temperature ( °C) Figure15. π162Uxx Quiescent Supply Current with 5.0V Supply vs. Free-Air Temperature 1.4 π163Uxx Quiescent Supply Current (mA) π162Uxx Quiescent Supply Current (mA) Data Sheet 1.2 1 0.8 @3.3V Supply with 0V Input 0.6 @3.3V Supply with 3.3V Input 0.4 @5V Supply with 0V Input @5V Supply with 5V Input 0.2 0 0 50 100 150 Free-Air Temperature ( °C) Figure16. π163Uxx Quiescent Supply Current vs. Free-Air Temperature VDDX Figure17. Transition time waveform measurement Figure18. Propagation delay time waveform measurement Rev. 1 | Page 11 of 16 π160U/π161U/π162U/π163U Data Sheet APPLICATIONS INFORMATION the user may also include resistors (50–300 Ω) in series with the inputs and outputs if the system is excessively noisy. OVERVIEW The π1xxxxx are 2PaiSemi digital isolators product family based on 2PaiSEMI unique iDivider technology. Intelligent voltage Divider technology (iDivider technology) is a new generation digital isolator technology invented by 2PaiSEMI. It uses the principle of capacitor voltage divider to transmit signal directly cross the isolator capacitor without signal modulation and demodulation. Compare to the traditional Opto-couple technology, icoupler technology, OOK technology, iDivider is a more essential and concise isolation signal transmit technology which leads to greatly simplification on circuit design and therefore significantly improves device performance, such as lower power consumption, faster speed, enhanced antiinterference ability, lower noise. By using maturated standard semiconductor CMOS technology and the innovative iDivider design, these isolation components provide outstanding performance characteristics and reliability superior to alternatives such as optocoupler devices and other integrated isolators. The π1xxxxx isolator data channels are independent and are available in a variety of configurations with a withstand voltage rating of 1.5 kV rms to 6.0 kV rms and the data rate from DC up to 600Mbps (see the Ordering Guide). The π160Uxx/π161Uxx/π162Uxx/π163Uxx are the outstanding 150Kbps hexa-channel digital isolators with the enhanced ESD capability. the devices transmit data across an isolation barrier by layers of silicon dioxide isolation. The devices operate with the supply voltage on either side ranging from 3.0 V to 5.5 V, offering voltage translation of 3.3 V and 5 V logic. The π160Uxx/π161Uxx/π162Uxx/π163Uxx have very low propagation delay and high speed. The input/output design techniques allow logic and supply voltages over a wide range from 3.0 V to 5.5 V, offering voltage translation of 3.3 V and 5 V logic. The architecture is designed for high common-mode transient immunity and high immunity to electrical noise and magnetic interference. Avoid reducing the isolation capability, Keep the space underneath the isolator device free from metal such as planes, pads, traces and vias. To minimize the impedance of the signal return loop, keep the solid ground plane directly underneath the high-speed signal path, the closer the better. The return path will couple between the nearest ground plane to the signal path. Keep suitable trace width for controlled impedance transmission lines interconnect. To reduce the rise time degradation, keep the length of input/output signal traces as short as possible, and route low inductance loop for the signal path and It’s return path. VDD1 VIA VIB VIC VID/VOD VIE/VOE VIF/VOF VDD2 VOA VOB VOC VOD/VID VOE/VIE VOF/VIF GND1 GND2 Figure19.Recommended Printed Circuit Board Layout CMTI MEASUREMENT To measure the Common-Mode Transient Immunity (CMTI) of π1xxxxx isolator under specified common-mode pulse magnitude (VCM) and specified slew rate of the common-mode pulse (dVCM/dt) and other specified test or ambient conditions, The common-mode pulse generator (G1) will be capable of providing fast rising and falling pulses of specified magnitude and duration of the common-mode pulse (VCM) and the maximum commonmode slew rates (dVCM/dt) can be applied to π1xxxxx isolator coupler under measurement. The common-mode pulse is applied between one side ground GND1 and the other side ground GND2 of π1xxxxx isolator and shall be capable of providing positive transients as well as negative transients. See the Ordering Guide for the model numbers that have the failsafe output state of low or high. PCB LAYOUT The low-ESR ceramic bypass capacitors must be connected between VDD1 and GND1 and between VDD2 and GND2. The bypass capacitors are placed on the PCB as close to the isolator device as possible. The recommended bypass capacitor value is between 0.1 μF and 10 μF. To enhance the robustness of a design, Figure20. Common-mode transient immunity (CMTI) measurement Rev. 1 | Page 12 of 16 π160U/π161U/π162U/π163U Data Sheet OUTLINE DIMENSIONS Figure21. 16-Lead Standard Small Outline Package [16-Lead SOIC_N] Figure22. 16-Lead Wide Body Outline Package [16-Lead SOIC_W] Rev. 1 | Page 13 of 16 π160U/π161U/π162U/π163U Data Sheet REEL INFORMATION 16-Lead SOIC_N 16-Lead SOIC_W Rev. 1 | Page 14 of 16 π160U/π161U/π162U/π163U Data Sheet ORDERING GUIDE Model Name Temperature Range No. of Inputs, VDD1 Side No. of Inputs, VDD2 Side Withstand Voltage Rating (kV rms) FailSafe Output State Package Description Package Option Quantity π160U31 Pai160U31 −40°C to +125°C 6 0 3 High 16-Lead SOIC_N S-16-N 2500 per reel π160U30 Pai160U30 −40°C to +125°C 6 0 3 Low 16-Lead SOIC_N S-16-N 2500 per reel π161U31 Pai161U31 −40°C to +125°C 5 1 3 High 16-Lead SOIC_N S-16-N 2500 per reel π161U30 Pai161U30 −40°C to +125°C 5 1 3 Low 16-Lead SOIC_N S-16-N 2500 per reel π162U31 Pai162U31 −40°C to +125°C 4 2 3 High 16-Lead SOIC_N S-16-N 2500 per reel π162U30 Pai162U30 −40°C to +125°C 4 2 3 Low 16-Lead SOIC_N S-16-N 2500 per reel π163U31 Pai163U31 −40°C to +125°C 3 3 3 High 16-Lead SOIC_N S-16-N 2500 per reel π163U30 Pai163U30 −40°C to +125°C 3 3 3 Low 16-Lead SOIC_N S-16-N 2500 per reel π160U61 Pai160U61 −40°C to +125°C 6 0 6 High 16-Lead SOIC_W S-16-W 1500 per reel π160U60 Pai160U60 −40°C to +125°C 6 0 6 Low 16-Lead SOIC_W S-16-W 1500 per reel π161U61 Pai161U61 −40°C to +125°C 5 1 6 High 16-Lead SOIC_W S-16-W 1500 per reel π161U60 Pai161U60 −40°C to +125°C 5 1 6 Low 16-Lead SOIC_W S-16-W 1500 per reel π162U61 Pai162U61 −40°C to +125°C 4 2 6 High 16-Lead SOIC_W S-16-W 1500 per reel π162U60 Pai162U60 −40°C to +125°C 4 2 6 Low 16-Lead SOIC_W S-16-W 1500 per reel π163U61 Pai163U61 −40°C to +125°C 3 3 6 High 16-Lead SOIC_W S-16-W 1500 per reel π163U60 Pai163U60 −40°C to +125°C 3 3 6 Low 16-Lead SOIC_W S-16-W 1500 per reel Notes: 1 π16xxxxQ special for Auto, qualified for AEC-Q100 PART NUMBER NAMED RULE π(1)(2)(0)(A)(3)(0)(S) SeriesNumber: 1,2,3... Total Channel Am ount: N=N Channels N=1,2,3,4,5,6... Reverse Channel Amount: N=N Channels N=0,1,2,3... Data Rate:A=600Mbps E=200Mbps M=10Mbps U=150Kbps Isolation Voltag es: N=1 1.5KVrms AC N=3 3KVrms AC N=6 6KVrms AC Fail-Safe Output Stat e: 0=Logic Low 1=Logic High Optional: S=SSOP Package Q=AEC-Q100 Qualified Notes:Pai16xxxx is equals to π16xxxx in the customer BOM Rev. 1 | Page 15 of 16 π160U/π161U/π162U/π163U Data Sheet REVISION HISTORY Revision Updated Date Page 1 Devin 2018/09/19 All 2 Devin 2018/11/28 P1,P12 3 Devin 2019/09/08 P1,P13, P15,P16 Change Record Initial version Changed CIN,COUT in Figure2 from 0.1uF to 1uF. Changed the recommended bypass capacitor value from between 0.1 μF and 1 μF to between 0.1 μF and 10 μF. P1: Changed the address from ‘Room 19307, Building 8, No.498, GuoShouJing Road’ to ‘Room 308-309, No.22, Boxia Road’; Add iDivider technology description in General Description. Changed CIN,COUT in Figure2 from 1uF to 0.1uF. P13: Add iDivider technology description in overview. P15: Updated 16-Lead SOIC_W reel drawing. P16: Add character ‘S’ and ‘Q’ in part number named rule; Changed the SOIC_W quantity from ‘1000 per reel’ to ‘1500 per reel’. Rev. 1 | Page 16 of 16
π162U31 价格&库存

很抱歉,暂时无法提供与“π162U31”相匹配的价格&库存,您可以联系我们找货

免费人工找货