0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TPS65982ABZQZR

TPS65982ABZQZR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    VFBGA95

  • 描述:

    USB, Type-C Controller PMIC 96-BGA Microstar Junior (6x6)

  • 数据手册
  • 价格&库存
TPS65982ABZQZR 数据手册
TPS65982 SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 TPS65982 USB Type-C® and USB PD Controller, Power Switch, and High-Speed Multiplexer • • • • • This device is certified by the USB-IF for PD2.0 – PD2.0 is no longer certifiable on new designs as of June 2020 – All new designs requiring certification should use a PD3.0 compliant device – Article on PD2.0 vs PD3.0 Fully configurable USB PD controller – Control for external DC/DC supplies through GPIO • Ex: TPS65982EVM – Port data multiplexer • USB 2.0 HS data and low speed endpoint • Sideband-use data for alternate modes – GUI tool to easily configure TPS65982 for various applications – Support for DisplayPort alternate mode and thunderbolt alternate mode – For a more extensive selection guide and getting started information, please refer to www.ti.com/usb-c and E2E guide Integrated fully managed power paths: – Integrated 5-V, 3-A, 50-mΩ sourcing switch – Integrated 5-V to 20-V, 3-A, 95-mΩ bidirectional load switch – Gate control and current sense for external 5-V to 20-V, 5-A bidirectional switch (back-to-back NFETs) – UL2367 cert#: E169910-20150728 – IEC62368-1 cert #: 111895 Integrated robust power path protection – Integrated reverse current protection, undervoltage protection, overvoltage protection, and slew rate control the high-voltage bidirectional power path – Integrated undervoltage and overvoltage protection and current limiting for inrush current protection for the 5-V/3-A source power path USB Type-C® Power Delivery (PD) controller – 8 configurable GPIOs – BC1.2 charging support – USB PD 2.0 certified – USB Type-C specification certified – Cable attach and orientation detection – Integrated VCONN switch – Physical layer and policy engine – 3.3-V LDO output for dead battery support – Power supply from 3.3 V or VBUS source – 1 I2C primary port – 1 I2C secondary port 2 Applications • • • Rugged PC and laptop Docking station Flat panel monitor 3 Description The TPS65982 device is a stand-alone USB Type-C and Power Delivery (PD) controller providing cableplug and orientation detection at the USB TypeC connector. Upon cable detection, the TPS65982 device communicates on the CC wire using the USB PD protocol. After successful USB PD negotiation is complete, the TPS65982 enables the appropriate power path and configures alternate mode settings for internal and (optional) external multiplexers. The mixed-signal front end on the CC pins advertises default, 1.5 A or 3 A for USB Type-C power sources, detects a plug event and determines the Type-C cable orientation, and autonomously negotiates USB PD contracts using a Bi-phase Marked Coding (BMC) and the Physical Layer (PHY) protocol. Device Information(1) PART NUMBER TPS65982 PACKAGE BGA MicroStar Junior (96) BODY SIZE (NOM) 6.00 mm × 6.00 mm NFBGA (96) (1) For all available packages, see the orderable addendum at the end of the data sheet. 5A 5 to 20 V 5 to 20 V 5V External FET Sense and CTRL 3A 3A 3.3 V Host USB2.0 and Sideband-Use Data Host Interface Type-C Cable CC1/2 Detection and USB PD Controller USB_TP/TN High USB_BP/BN Speed SBU1/2 Mux Alternate Mode Mux Ctrl TPS65982 SEL EN POL 1 Features VBUS 2 CC/VCONN 2 D± 2 D± 2 SBU1/2 USB Type-C Connector GND SuperSpeed Mux Copyright © 2016, Texas Instruments Incorporated Simplified Diagram An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Table of Contents 1 Features............................................................................1 2 Applications..................................................................... 1 3 Description.......................................................................1 4 Revision History.............................................................. 2 5 Description (continued).................................................. 4 6 Pin Configuration and Functions...................................5 7 Specifications................................................................ 11 7.1 Absolute Maximum Ratings...................................... 11 7.2 ESD Ratings..............................................................11 7.3 Recommended Operating Conditions.......................12 7.4 Thermal Information..................................................12 7.5 Power Supply Requirements and Characteristics.....13 7.6 Power Supervisor Characteristics.............................14 7.7 Power Consumption Characteristics(4) .................... 14 7.8 Cable Detection Characteristics................................15 7.9 USB-PD Baseband Signal Requirements and Characteristics.............................................................16 7.10 USB-PD TX Driver Voltage Adjustment Parameter....................................................................16 7.11 Port Power Switch Characteristics.......................... 17 7.12 Port Data Multiplexer Switching Characteristics..... 20 7.13 Port Data Multiplexer Clamp Characteristics.......... 22 7.14 Port Data Multiplexer SBU Detection Characteristics.............................................................22 7.15 Port Data Multiplexer Signal Monitoring Pullup and Pulldown Characteristics...................................... 22 7.16 Port Data Multiplexer USB Endpoint Characteristics.............................................................22 7.17 Port Data Multiplexer BC1.2 Detection Characteristics.............................................................23 7.18 Analog-to-Digital Converter (ADC) Characteristics.............................................................23 7.19 Input/Output (I/O) Characteristics........................... 24 7.20 I2C Slave Characteristics........................................ 26 7.21 SPI Controller Characteristics.................................27 7.22 BUSPOWERZ Configuration Characteristics..........27 7.23 Thermal Shutdown Characteristics......................... 28 7.24 Oscillator Characteristics........................................ 28 7.25 Single-Wire Debugger (SWD) Timing Requirements.............................................................. 28 7.26 HPD Timing Requirements..................................... 28 7.27 Typical Characteristics............................................ 29 8 Parameter Measurement Information.......................... 30 9 Detailed Description......................................................32 9.1 Overview................................................................... 32 9.2 Functional Block Diagram......................................... 33 9.3 Feature Description...................................................33 9.4 Device Functional Modes..........................................70 9.5 Programming............................................................ 76 10 Application and Implementation................................ 81 10.1 Application Information........................................... 81 10.2 Typical Applications................................................ 81 11 Power Supply Recommendations..............................90 11.1 3.3-V Power............................................................ 90 11.2 1.8 V Core Power....................................................90 11.3 VDDIO.....................................................................90 12 Layout...........................................................................92 12.1 Layout Guidelines................................................... 92 12.2 Layout Example...................................................... 96 13 Device and Documentation Support........................110 13.1 Device Support......................................................110 13.2 Documentation Support........................................ 110 13.3 Receiving Notification of Documentation Updates 110 13.4 Support Resources............................................... 110 13.5 Trademarks........................................................... 110 13.6 Electrostatic Discharge Caution............................ 110 13.7 Glossary................................................................ 110 14 Mechanical, Packaging, and Orderable Information.................................................................. 110 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision D (June 2019) to Revision E (August 2021) Page • Updated the numbering format for tables, figures and cross-references throughout the document ..................1 • Globally changed instances of legacy terminology to controller and peripheral where SPI is mentioned.......... 1 • Updated the Features list....................................................................................................................................1 • Updated the Applications section....................................................................................................................... 1 Changes from Revision C (August 2016) to Revision D (June 2019) Page • Added NFBGA package to the Device Information table....................................................................................1 • Added NFBGA package to the Pin Configuration and Functions section...........................................................5 • Added NFBGA package to the Thermal Information table............................................................................... 12 Changes from Revision B (May 2016) to Revision C (August 2016) Page • Added the HRESET I/O voltage parameter to the Absolute Maximum Ratings table.......................................11 • Changed the value for the HBM from ±2000 to ±1500 in the ESD Ratings table............................................. 11 2 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com • • • SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Changed the maximum values for the ILDO_3V3 (50 to 70 mA) and ILDO_3V3EX (10 to 30 mA) current parameters in the Power Supply Requirements and Characteristics .............................................................. 13 Updated the GPIO_RPU parameter to show values for DEBUG_CTL1/2 separately in the Input/Output (I/O) Characteristics table......................................................................................................................................... 24 Added parameters for HRESET in the Input/Output (I/O) Characteristics table............................................... 24 Changes from Revision A (June 2015) to Revision B (May 2016) Page • Completed editorial changes to fix typographical errors and improve consistency of terminology.....................1 Changes from Revision * (March 2015) to Revision A (June 2015) Page • Initial release of Production Data sheet.............................................................................................................. 1 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 3 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 5 Description (continued) The port power switch provides up to 3 A downstream at 5 V for legacy and Type-C USB power. An additional bidirectional switch path provides USB PD power up to 3 A at a maximum of 20 V as either a source (host), sink (device), or source-sink. The TPS65982 is also an upstream-facing port (UFP), downstream-facing port (DFP), or dual-role port for data. The port data multiplexer passes data to or from the top or bottom D+/D– signal pair at the port for USB 2.0 HS; additionally, the Sideband-Use (SBU) signal pair is used for Alternate Modes. The power management circuitry supports dead battery or no-battery operation using VBUS as a primary power supply when 3.3 V is not available. 4 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 6 Pin Configuration and Functions 1 2 3 4 5 6 7 8 9 10 11 A GND LDO_1V8D SPI_CLK SPI_POCI I2C_SDA2 PP_HV PP_HV PP_HV HV_GATE2 SENSEN PP_5V0 B VDDIO GPIO0 SPI_CSZ SPI_PICO I2C_SCL2 I2C_IRQ2Z PP_HV GND HV_GATE1 SENSEP PP_5V0 C I2C_IRQ1Z GPIO1 GPIO4 PP_5V0 D I2C_SDA1 I2C_SCL1 E LDO_BMC UART_TX F I2C_ADDR G DEBUG_CTL2 HRESET GPIO7 GND GPIO2 PP_5V0 DEBUG_CTL1 GND GND GND GND GPIO5 MRESET UART_RX SWD_DATA GND GND GND GND BUSPOWERZ RESETZ LDO_3V3 R_OSC SWD_CLK GND GND GND GND GPIO6 GPIO3 H VIN_3V3 VOUT_3V3 GND GND GPIO8 SS GND PP_CABLE VBUS J AUX_P AUX_N VBUS VBUS K LDO_1V8A DEBUG2 DEBUG4 LSX_P2R USB_RP_N C_USB_TP C_USB_BP C_SBU1 RPD_G1 RPD_G2 VBUS L GND DEBUG1 DEBUG3 LSX_R2P USB_RP_P C_USB_TN C_USB_BN C_SBU2 C_CC1 C_CC2 NC Figure 6-1. ZQZ and ZBH Package 96-Pin BGA MicroStar Junior and NFBGA Top View High Power Low Power Ground GPIOs Application Specific No Connect Legend for Pinout Drawing Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 5 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Table 6-1. Pin Functions PIN TYPE CATEGORY POR STATE Ground Ground and no connect pins — DESCRIPTION NO. NAME A1 GND A10 SENSEN A11 PP_5V0 Power High-current power pins — 5-V supply for VBUS. Bypass with capacitance CPP_5V0 to GND. Tie pin to GND when unused. A2 LDO_1V8D Power Low-current power pins — Output of the 1.8-V LDO for core digital circuits. Bypass with capacitance CLDO_1V8D to GND. A3 SPI_CLK Digital output Digital core I/O and control pins Digital input SPI serial clock. Ground pin when unused A4 SPI_POCI Digital input Digital core I/O and control pins SPI serial controller input from peripheral. This pin is used during boot Digital input sequence to determine if the flash memory is valid. Refer to the Boot Code section for more details. Ground pin when unused. A5 I2C_SDA2 Digital I/O Digital core I/O and control pins I2C port 2 serial data. Open-drain output. Tie pin to LDO_3V3 or VDDIO Digital input (depending on configuration) through a 10-kΩ resistance when used or unused. PP_HV Power High-current power pins — A9 HV_GATE2 Analog output External HV-FET control and sense pins and soft start Short to VBUS B1 VDDIO Power Low-current power pins — B10 SENSEP B11 PP_5V0 Power High-current power pins — 5-V supply for VBUS. Bypass with capacitance CPP_5V0 to GND. Tie pin to GND when unused. B2 GPIO0 Digital I/O Digital core I/O and control pins Hi-Z General purpose digital I/O 0. Float pin if it is configured as a push-pull output in the application. Ground pin with a 1-MΩ resistor when unused in the application. B3 SPI_CSZ Digital output Digital core I/O and control pins Digital input SPI chipselect. Ground pin when unused. B4 SPI_PICO Digital output Digital core I/O and control pins Digital input SPI serial controller output to peripheral. Ground pin when unused. B5 I2C_SCL2 Digital I/O Digital core I/O and control pins I2C port 2 serial clock. Open-drain output. Tie pin to LDO_3V3 or VDDIO Digital input (depending on configuration) through a 10-kΩ resistance when used or unused. B6 I2C_IRQ2Z Digital output Digital core I/O and control pins Hi-Z I2C port 2 interrupt. Active-low. Implement externally as an open-drain with a pullup resistance. Float pin when unused. B7 PP_HV Power High-current power pins — HV supply for VBUS. Bypass with capacitance CPP_HV to GND. Tie pin to GND when unused. B8 GND Ground Ground and no connect pins — Ground. Connect all balls to ground plane. B9 HV_GATE1 Analog output External HV-FET control and sense pins and soft start Short to SENSEP C1 I2C_IRQ1Z Digital output Digital core I/O and control pins Hi-Z I2C port 1 interrupt. Active-low. Implement externally as an open-drain with a pullup resistance. Float pin when unused. C10 GPIO4 (HPD TXRX) Digital I/O Digital core I/O and control pins Hi-Z General purpose digital I/O 4. Configured as hot-plug detect (HPD) TX, HPD RX, or both when DisplayPort mode is supported. Ground pin with a 1-MΩ resistor when unused in the application. C11 PP_5V0 Power High-current power pins — 5-V supply for VBUS. Bypass with capacitance CPP_5V0 to GND. Tie pin to GND when unused. C2 GPIO1 Digital I/O Digital core I/O and control pins Hi-Z General purpose digital I/O 1. Float pin if it is configured as a push-pull output in the application. Ground pin with a 1-MΩ resistor when unused in the application. Ground. Connect all balls to ground plane. External HV-FET Positive sense for external high-voltage power-path current-sense Analog input control and sense Analog input resistance. Short pin to VBUS when unused. pins and soft start A6 A7 HV supply for VBUS. Bypass with capacitance CPP_HV to GND. Tie pin to GND when unused. A8 6 External NFET gate control for high-voltage power path. Float pin when unused. VDD for I/O. Some I/Os are reconfigurable to be powered from VDDIO instead of LDO_3V3. When VDDIO is not used, tie pin to LDO_3V3. When not tied to LDO_3V3 and used as a supply input, bypass with capacitance CVDDIO to GND. External HV-FET Positive sense for external high-voltage power-path current-sense Analog input control and sense Analog input resistance. Short pin to VBUS when unused. pins and soft start External NFET gate control for high-voltage power path. Float pin when unused. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Table 6-1. Pin Functions (continued) PIN TYPE CATEGORY POR STATE No Ball Blank Ground and no connect pins — D1 I2C_SDA1 Digital I/O Digital core I/O and control pins D10 GPIO2 Digital I/O Digital core I/O and control pins Hi-Z General purpose digital I/O 2. Float pin if it is configured as a push-pull output in the application. Ground pin with a 1-MΩ resistor when unused in the application. D11 PP_5V0 Power High-current power pins — 5-V supply for VBUS. Bypass with capacitance CPP_5V0 to GND. Tie pin to GND when unused. D2 I2C_SCL1 Digital I/O Digital core I/O and control pins No Ball Blank Ground and no connect pins — D5 DEBUG_CTL2 (GPIO17, I2C ADDR B5) Digital I/O Digital core I/O and control pins Hi-Z General purpose digital I/O 17. At power-up, pin state is sensed to determine bit 5 of the I2C address. D6 HRESET Digital I/O Digital core I/O and control pins Hi-Z Active high hardware reset input. Will re-load settings from external flash memory. Ground pin when HRESET functionality is not used. D7 GPIO7 Digital I/O Digital core I/O and control pins Hi-Z General purpose digital I/O 7. Float pin if it is configured as a push-pull output in the application. Ground pin with a 1-MΩ resistor when unused in the application. D8 GND Ground Ground and no connect pins — Ground. Connect all balls to ground plane. D9 No Ball Blank Ground and no connect pins — Unpopulated ball for A1 marker and unpopulated inner ring. E1 LDO_BMC Power Low-current power pins — Output of the USB-PD BMC transceiver output level LDO. Bypass with capacitance CLDO_BMC to GND. E10 GPIO5 (HPD RX) Digital I/O Digital core I/O and control pins Hi-Z General purpose digital I/O 5. Can be configured as Hot Plug Detect (HPD) RX when DisplayPort mode supported. Must be tied high or low through a 1-kΩ pullup or pulldown resistor when used as a configuration input. Ground pin with a 1-MΩ resistor when unused in the application. E11 MRESET (GPIO11) Digital I/O Digital core I/O and control pins Hi-Z General purpose digital I/O 11. Forces RESETZ to assert. By default, this pin asserts RESETZ when pulled high. The pin can be programmed to assert RESETZ when pulled low. Ground pin with a 1MΩ resistor when unused in the application. E2 UART_TX Digital output Port multiplexer pins UART_RX E3 No Ball Blank Ground and no connect pins — E4 DEBUG_CTL1 (GPIO16, I2C ADDR B4) Digital I/O Digital core I/O and control pins Hi-Z GND Ground Ground and no connect pins — Ground. Connect all balls to ground plane. E9 No Ball Blank Ground and no connect pins — Unpopulated ball for A1 marker and unpopulated inner ring. F1 I2C_ADDR Analog I/O Digital core I/O and control pins Analog input NO. NAME DESCRIPTION C3 C4 C5 C6 Unpopulated ball for A1 marker and unpopulated inner ring. C7 C8 C9 D3 D4 I2C port 1 serial data. Open-drain output. Tie pin to LDO_3V3 or VDDIO Digital input (depending on configuration) through a 10-kΩ resistance when used or unused. I2C port 1 serial clock. Open-drain output. Tie pin to LDO_3V3 or VDDIO Digital input (depending on configuration) through a 10-kΩ resistance when used or unused. Unpopulated ball for A1 marker and unpopulated inner ring. UART serial transmit data. Connect pin to another TPS65982 UART_TX to share firmware. Connect UART_RX to UART_TX when not connected to another TPS65982. Unpopulated ball for A1 marker and unpopulated inner ring. General purpose digital I/O 16. At power-up, pin state is sensed to determine bit 4 of the I2C address. E5 E6 E7 E8 Sets the I2C address for both I2C ports as well as determine the master and slave devices for memory code sharing. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 7 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Table 6-1. Pin Functions (continued) PIN TYPE CATEGORY POR STATE BUSPOWERZ (GPIO10) Analog Input Digital core I/O and control pins Input (Hi-Z) F11 RESETZ (GPIO9) Digital I/O Digital core I/O and control pins Push-pull General purpose digital I/O 9. Active-low reset output when VOUT_3V3 is output (Low) low (driven low on start-up). Float pin when unused. F2 UART_RX Digital input Port multiplexer pins UART serial receive data. Connect pin to another TPS65982 UART_TX to Digital input share firmware. Connect UART_RX to UART_TX when not connected to another TPS65982 and ground pin through a 100-kΩ resistance. F3 No Ball Blank Ground and no connect pins F4 SWD_DATA Digital I/O Port multiplexer pins GND Ground Ground and no connect pins — Ground. Connect all balls to ground plane. F9 No Ball Blank Ground and no connect pins — Unpopulated ball for A1 marker and unpopulated inner ring. G1 LDO_3V3 Power Low-current power pins — Output of the VBUS to 3.3-V LDO or connected to VIN_3V3 by a switch. Main internal supply rail. Used to power external flash memory. Bypass with capacitance CLDO_3V3 to GND. G10 GPIO6 Digital I/O Digital core I/O and control pins Hi-Z General purpose digital I/O 6. Float pin if it is configured as a push-pull output in the application. Ground pin with a 1-MΩ resistor when unused in the application. G11 GPIO3 Digital I/O Digital core I/O and control pins Hi-Z General purpose digital I/O 3. Float pin if it is configured as a push-pull output in the application. Ground pin with a 1-MΩ resistor when unused in the application. G2 R_OSC Analog I/O Digital core I/O and control pins Hi-Z External resistance setting for oscillator accuracy. Connect R_OSC to GND through resistance RR_OSC. G3 No Ball Blank Ground and no connect pins — G4 SWD_CLK Digital input Port multiplexer pins GND Ground Ground and no connect pins — Ground. Connect all balls to ground plane. G9 No Ball Blank Ground and no connect pins — Unpopulated ball for A1 marker and unpopulated inner ring. H1 VIN_3V3 Power Low-current power pins — Supply for core circuitry and I/O. Bypass with capacitance CVIN_3V3 to GND. H10 PP_CABLE Power High-current power pins — 5-V supply for C_CC pins. Bypass with capacitance CPP_CABLE to GND when not tied to PP_5V0. Tie pin to PP_5V0 when unused. H11 VBUS Power High-current power pins — 5-V output from PP_5V0. Input or output from PP_HV up to 20 V. Bypass with capacitance CVBUS to GND. H2 VOUT_3V3 Power Low-current power pins — Output of supply switched from VIN_3V3. Bypass with capacitance COUT_3V3 to GND. Float pin when unused. H3 No Ball Blank Ground and no connect pins — Unpopulated ball for A1 marker and unpopulated inner ring. GND Ground Ground and no connect pins — Ground. Connect all balls to ground plane. H6 GPIO8 Digital I/O Digital core I/O and control pins Hi-Z H7 SS Analog output External HV-FET control and sense pins and soft start Driven low NO. NAME F10 — DESCRIPTION General purpose digital I/O 10. Sampled by ADC at boot. Tie pin to LDO_3V3 through a 100-kΩ resistor to disable PP_HV and PP_EXT power paths during dead-battery or no-battery boot conditions. Refer to the BUSPOWERZ table for more details. Unpopulated ball for A1 marker and unpopulated inner ring. Resistive pull SWD serial data. Float pin when unused. high F5 F6 F7 F8 Unpopulated ball for A1 marker and unpopulated inner ring. Resistive pull SWD serial clock. Float pin when unused. high G5 G6 G7 G8 H4 H5 8 General purpose digital I/O 8. Float pin if it is configured as a push-pull output in the application. Ground pin with a 1-MΩ resistor when unused in the application. Soft Start. Tie pin to capacitance CSS to ground. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Table 6-1. Pin Functions (continued) PIN TYPE CATEGORY POR STATE GND Ground Ground and no connect pins — Ground. Connect all balls to ground plane. H9 No Ball Blank Ground and no connect pins — Unpopulated ball for A1 marker and unpopulated inner ring. J1 AUX_P Analog I/O Port multiplexer pins Hi-Z System-side DisplayPort connection to port multiplexer. Ground pin with between 1-kΩ and 5-MΩ resistance when unused. VBUS Power High-current power pins — 5-V output from PP_5V0. Input or output from PP_HV up to 20 V. Bypass with capacitance CVBUS to GND. AUX_N Analog I/O Port multiplexer pins Hi-Z System-side DisplayPort connection to port multiplexer. Ground pin with between 1-kΩ and 5-MΩ resistance when unused. No Ball Blank Ground and no connect pins — Unpopulated ball for A1 marker and unpopulated inner ring. K1 LDO_1V8A Power Low-current power pins — Output of the 1.8-V LDO for core analog circuits. Bypass with capacitance CLDO_1V8A to GND. K10 RPD_G2 Analog I/O Type-C port pins Hi-Z K11 VBUS Power High-current power pins — 5-V output from PP_5V0. Input or output from PP_HV up to 20 V. Bypass with capacitance CVBUS to GND. K2 DEBUG2 (GPIO14) Digital I/O Digital core I/O and control pins Hi-Z General purpose digital I/O 14. Float pin if it is configured as a push-pull output in the application. Ground pin with a 1-MΩ resistor when unused in the application. K3 DEBUG4 (GPIO12) Digital I/O Digital core I/O and control pins Hi-Z General purpose digital I/O 12. Float pin if it is configured as a push-pull output in the application. Ground pin with a 1-MΩ resistor when unused in the application. K4 LSX_P2R Digital output Port multiplexer pins Hi-Z System side low speed RX to system from port. This pin is configurable to be an output from the digital core or the crossbar multiplexer from the port. Float pin when unused. K5 USB_RP_N Analog I/O Port multiplexer pins Hi-Z System side USB2.0 high-speed connection to Port Multiplexer. Ground pin with between 1-kΩ and 5-MΩ resistance when unused. K6 C_USB_TP Analog I/O Type-C port pins Hi-Z Port-side top USB D+ connection to port multiplexer. K7 C_USB_BP Analog I/O Type-C port pins Hi-Z Port-side bottom USB D+ connection to port multiplexer. K8 C_SBU1 Analog I/O Type-C port pins Hi-Z Port-side Sideband Use connection of port multiplexer. K9 RPD_G1 Analog I/O Type-C port pins Hi-Z Tie pin to C_CC1 when configured to receive power in dead-battery or no-power condition. Tie pin to GND otherwise. L1 GND Ground Ground and no connect pins — L10 C_CC2 Analog I/O Type-C port pins Hi-Z L11 NC Blank Ground and no connect pins — L2 DEBUG1 (GPIO15) Digital I/O Digital core I/O and control pins Hi-Z General purpose digital I/O 15. Float pin if it is configured as a push-pull output in the application. Ground pin with a 1-MΩ resistor when unused in the application. L3 DEBUG3 (GPIO13) Digital I/O Digital core I/O and control pins Hi-Z General purpose digital I/O 13. Float pin if it is configured as a push-pull output in the application. Ground pin with a 1-MΩ resistor when unused in the application. L4 LSX_R2P Digital input Port multiplexer pins L5 USB_RP_P Analog I/O Port multiplexer pins Hi-Z System side USB2.0 high-speed connection to Port Multiplexer. Ground pin with between 1-kΩ and 5-MΩ resistance when unused. L6 C_USB_TN Analog I/O Type-C port pins Hi-Z Port-side top USB D– connection to port multiplexer. NO. NAME H8 J10 J11 J2 DESCRIPTION J3 J4 J5 J6 J7 J8 J9 Tie pin to C_CC2 when configured to receive power in dead-battery or no-power condition. Tie pin to GND otherwise. Ground. Connect all balls to ground plane. Output to Type-C CC or VCONN pin. Filter noise with capacitance CC_CC2 to GND. Populated ball that must remain unconnected. System side low speed TX from system to port. This pin is configurable Digital input to be an input to the digital core or the crossbar multiplexer to the port. Ground pin with between 1-kΩ and 5-MΩ resistance when unused. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 9 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Table 6-1. Pin Functions (continued) PIN 10 NO. NAME TYPE CATEGORY POR STATE DESCRIPTION L7 C_USB_BN Analog I/O Type-C port pins Hi-Z Port-side bottom USB D– connection to port multiplexer. L8 C_SBU2 Analog I/O Type-C port pins Hi-Z Port-side Sideband Use connection of port multiplexer. L9 C_CC1 Analog I/O Type-C port pins Hi-Z Output to Type-C CC or VCONN pin. Filter noise with capacitance CC_CC1 to GND. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 7 Specifications 7.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) MIN Input voltage(2) VI Output voltage (2) VIO MAX PP_CABLE, PP_5V0 –0.3 6 VIN_3V3 –0.3 3.6 SENSEP(3), SENSEN(3) –0.3 24 VDDIO, UART_RX –0.3 LDO_3V3 + 0.3 LDO_1V8A, LDO_1V8D, LDO_BMC, SS –0.3 2 LDO_3V3 –0.3 3.45 VOUT_3V3, RESETZ, I2C _IRQ1Z, I2C_IRQ2Z, SPI_PICO, SPI_CLK, SPI_CSZ, LSX_P2R, SWD_CLK, UART_TX –0.3 LDO_3V3 + 0.3 HV_GATE1, HV_GATE2 –0.3 30 HV_GATE1 (relative to SENSEP), –0.3 6 PP_HV, VBUS(3) –0.3 24 I2C_SDA1, I2C_SCL1, SWD_DATA, SPI_POCI, I2C_SDA2, I2C_SCL2, LSX_R2P, USB_RP_P, USB_RP_N, AUX_N, AUX_P, DEBUG1, DEBUG2, DEBUG3, DEBUG4, DEBUG_CTL1, DEBUG_CTL2, GPIOn, MRESET, BUSPOWERZ, GPIO0-8 –0.3 LDO_3V3 + 0.3 R_OSC, I2C_ADDR –0.3 2 –0.3 LDO_1V8D + 0.3 UNIT V V HV_GATE2 (relative to VBUS) I/O voltage (2) VIO HRESET C_USB_TP, C_USB_TN, C_USB_BP, C_USB_BN, C_SBU2, C_SBU1 (switches open) –2 6 C_USB_TP, C_USB_TN, C_USB_BP, C_USB_BN, C_SBU2, C_SBU1 (switches closed) –0.3 6 C_CC1, C_CC2, RPD_G1, RPD_G2 V –0.3 6 TJ Operating junction temperature –10 125 °C Tstg Storage temperature –55 150 °C (1) (2) (3) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to network GND. All GND pins must be connected directly to the GND plane of the board. The 24-V maximum is based on keeping HV_GATE1/2 at or below 30 V. Fast voltage transitions (< 100 ns) may occur up to 30 V. 7.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±1500 Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 11 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 7.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) VI Input voltage range(1) MIN MAX VIN_3V3 2.85 3.45 PP_5V0 4.75 5.5 PP_CABLE 2.95 5.5 PP_HV 4.5 22 VDDIO 1.7 3.45 4 22 –2 5.5 0 5.5 VBUS VIO I/O voltage range(1) C_USB_PT, C_USB_NT, C_USB_PB, C_USB_NB, C_SBU1, C_SBU2 C_CC1, C_CC2 UNIT V V TA Ambient operating temperature range –10 85 °C TB Operating board temperature range –10 100 °C TJ Operating junction temperature range –10 125 °C (1) All voltage values are with respect to network GND. All GND pins must be connected directly to the GND plane of the board. 7.4 Thermal Information TPS65982 THERMAL METRIC(1) ZQZ (BGA) ZBH (NFBGA) UNIT 96 BALLS 96 BALLS RθJA Junction-to-ambient thermal resistance 42.4 42.4 °C/W RθJC(top) Junction-to-case (top) thermal resistance 12.4 12.4 °C/W RθJB Junction-to-board thermal resistance 13 13 °C/W ψJT Junction-to-top characterization parameter 0.3 0.3 °C/W ψJB Junction-to-board characterization parameter 13 13 °C/W (1) 12 For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 7.5 Power Supply Requirements and Characteristics Recommended operating conditions; TA = –10 to 85°C unless otherwise noted PARAMETER TEST CONDITIONS MIN TYP MAX UNIT EXTERNAL VIN_3V3 Input 3.3-V supply 2.85 3.3 3.45 V PP_CABLE Input voltage to power C_CC pins. This input is also available to power core circuitry and the VOUT_3V3 output 2.95 5 5.5 V VBUS Bi-direction DC bus voltage. Output from the TPS65982 or input to the TPS65982 4 5 22 V PP_5V0 5V supply input to power VBUS. This supply does not power the TPS65982 4.75 5 5.5 V VDDIO(1) Optional supply for I/O cells 1.7 3.45 V VLDO_3V3 DC 3.3V generated internally by either a switch from VIN_3V3, an LDO from PP_CABLE, or an LDO from VBUS 2.7 3.3 3.45 V VDO_LDO3V3 Drop Out Voltage of LDO_3V3 from PP_CABLE 250 mV Drop Out Voltage of LDO_3V3 from VBUS 250 500 750 mV VLDO_1V8D DC 1.8V generated for internal digital circuitry 1.7 1.8 1.9 V VLDO_1V8A DC 1.8V generated for internal analog circuitry 1.7 1.8 1.9 V VLDO_BMC DC voltage generated on LDO_BMC. Setting for USB-PD 1.05 1.125 1.2 V ILDO_3V3 DC current supplied by the 3.3V LDOs. This includes internal core power and external load on LDO_3V3 70 mA ILDO_3V3EX External DC current supplied by LDO_3V3 30 mA IOUT_3V3 External DC current supplied by VOUT_3V3 100 mA ILDO_1V8D DC current supplied by LDO_1V8D. This is intended for internal loads only but small external loads may be added 50 mA ILDO_1V8DEX External DC current supplied by LDO_1V8D 5 mA ILDO_1V8A DC current supplied by LDO_1V8A. This is intended for internal loads only but small external loads may be added 20 mA ILDO_1V8AEX External DC current supplied by LDO_1V8A 5 mA ILDO_BMC DC current supplied by LDO_BMC. This is intended for internal loads only 5 mA ILDO_BMCEX External DC current supplied by LDO_BMC 0 mA VFWD_DROP Forward voltage drop across VIN_3V3 to LDO_3V3 switch ILOAD = 50 mA 25 60 90 mV RIN_3V3 Input switch resistance from VIN_3V3 to LDO_3V3 VVIN_3V3 – VLDO_3V3 > 50 mV 0.5 1.1 1.75 Ω ROUT_3V3 Output switch resistance from VIN_3V3 to VOUT_3V3 0.35 0.7 Ω TR_OUT3V3 10-90% rise time on VOUT_3V3 from switch enable 120 µs INTERNAL (1) ILOAD = 50 mA CVOUT_3V3 = 1 μF 35 I/O buffers are not fail-safe to LDO_3V3. Therefore, VDDIO may power-up before LDO_3V3. When VDDIO powers up before LDO_3V3, the I/Os shall not be driven high. When VDDIO is low and LDO_3V3 is high, the I/Os may be driven high. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 13 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 7.6 Power Supervisor Characteristics Recommended operating conditions; TA = –10 to 85°C unless otherwise noted PARAMETER TEST CONDITIONS MIN TYP MAX UNIT LDO_3V3 rising 2.2 2.325 2.45 V Undervoltage hysteresis for LDO_3V3 LDO_3V3 falling 20 80 150 mV UV_VBUS_LDO Undervoltage threshold for VBUS to enable LDO VBUS rising 3.35 3.75 3.95 V UVH_VBUS_LDO Undervoltage hysteresis for VBUS to enable LDO VBUS falling 20 80 150 mV UV_PCBL Undervoltage threshold for PP_CABLE PP_CABLE rising 2.5 2.625 2.75 UVH_PCBL Undervoltage hysteresis for PP_PCABLE PP_CABLE falling 20 50 80 UV_5V0 Undervoltage threshold for PP_5V0 PP_5V0 rising 3.5 3.725 3.95 V UVH_5V0 Undervoltage hysteresis for PP_P5V0 PP_5V0 falling 20 80 150 mV OV_VBUS Overvoltage threshold for VBUS. This value is a 6-bit programmable threshold VBUS rising 24 V OVLSB_VBUS Overvoltage threshold step for VBUS. This value is the LSB of the programmable threshold VBUS rising OVH_VBUS Overvoltage hysteresis for VBUS VBUS falling, % of OV_VBUS UV_VBUS Undervoltage threshold for VBUS. This value is a 6-bit programmable threshold VBUS falling UVLSB_VBUS Undervoltage threshold step for VBUS. This value is the LSB of the programmable threshold VBUS falling UVH_VBUS Undervoltage hysteresis for VBUS VBUS rising, % of UV_VBUS 0.9% 1.3% 1.7% Setting 0 2.019 2.125 2.231 Setting 1 2.138 2.25 2.363 Setting 2 2.256 2.375 2.494 Setting 3 2.375 2.5 2.625 Setting 4 2.494 2.625 2.756 Setting 5 2.613 2.75 2.888 Setting 6 2.731 2.875 3.019 Setting 7 2.85 3 3.15 30 50 mV 75 μs 161.3 ms UV_LDO3V3 Undervoltage threshold for LDO_3V3. Locks out 1.8-V LDOs UVH_LDO3V3 UVR_OUT3V3 Configurable undervoltage threshold for VOUT_3V3 rising. Deasserts RESETZ UVRH_OUT3V3 Undervoltage hysteresis for VOUT_3V3 falling TUVRASSERT Delay from falling VOUT_3V3 or MRESET assertion to RESETZ asserting low TUVRDELAY Configurable delay from VOUT_3V3 to RESETZ deassertion 5 328 0.9% 1.3% 2.5 mV 1.7% 18.21 249 OUT_3V3 falling 0 V mV V mV V 7.7 Power Consumption Characteristics(4) Recommended operating conditions; TA = 25°C (Room temperature) unless otherwise noted PARAMETER IVIN_3V3 (1) (2) (3) (4) 14 TEST CONDITIONS Sleep(1) VIN_3V3 = VDDIO = 3.45 V, VBUS = 0, PPCABLE = 0; 100-kHz oscillator running Idle (2) Active(3) MIN TYP MAX UNIT 58 µA VIN_3V3 = VDDIO = 3.45 V, VBUS=0, PPCABLE = 0; 100-kHz oscillator running, 48-MHz oscillator running 1.66 mA VIN_3V3 = VDDIO = 3.45 V, VBUS = 0, PPCABLE = 0; 100-kHz Oscillator running, 48-MHz oscillator running 5.64 mA Sleep is defined as Type-C cable detect activated as DFP or UFP, internal power management and supervisory functions active. Idle is defined as Type-C cable detect activated as DFP or UFP, internal power management and supervisory functions active, and a selectable clock to the digital core of 3 MHz or 4 MHz. Active is defined as Type-C cable detect activated as DFP or UFP, internal power management and supervisory functions active, all core functionality active, and the digital core is clocked at 12 MHz. Application code can result in other power consumption measurements by adjusting enabled circuitry and clock rates. Application code also provisions the wake=up mechanisms (for example, I2C activity and GPIO activity). Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 7.8 Cable Detection Characteristics Recommended operating conditions; TA = -10 to 85°C unless otherwise noted MIN TYP MAX UNIT IH_CC_USB Source Current through each C_CC pin when in a disconnected state and Configured as a DFP advertising Default USB current to a peripheral device PARAMETER TEST CONDITIONS 73.6 80 86.4 μA IH_CC_1P5 Source Current through each C_CC pin when in a disconnected state when Configured as a DFP advertising 1.5 A to a UFP 169 180 191 μA IH_CC_3P0 Source Current through each C_CC pin when in a disconnected state and Configured as a DFP advertising 3.0 A to a UFP. 303 330 356 μA VD_CCH_USB Voltage Threshold for detecting a DFP attach when configured as a UFP and the DFP is advertising Default USB current source capability 0.15 0.2 0.25 V VD_CCH_1P5 Voltage Threshold for detecting a DFP advertising 1.5 A source capability when configured as a UFP 0.61 0.66 0.7 V VD_CCH_3P0 Voltage Threshold for detecting a DFP advertising 3 A source capability when configured as a UFP 1.169 1.23 1.29 V VH_CCD_USB Voltage Threshold for detecting a UFP attach when configured as IH_CC = IH_CC_USB a DFP and advertising Default USB current source capability 1.473 1.55 1.627 V VH_CCD_1P5 Voltage Threshold for detecting a UFP attach when configured as IH_CC = IH_CC_1P5 a DFP and advertising 1.5 A source capability 1.473 1.55 1.627 V VH_CCD_3P0 Voltage Threshold for detecting a UFP attach when configured as IH_CC = IH_CC_3P0 a DFP and advertising 3 A source capability VIN_3V3 ≥ 3.135 V 2.423 2.55 2.67 V VH_CCA_USB Voltage Threshold for detecting an active cable attach when configured as a DFP and advertising Default USB current capability 0.15 0.2 0.25 V VH_CCA_1P5 Voltage Threshold for detecting active cables attach when configured as a DFP and advertising 1.5 A capability 0.35 0.4 0.45 V VH_CCA_3P0 Voltage Threshold for detecting active cables attach when configured as a DFP and advertising 3 A capability 0.76 0.8 0.84 V RD_CC Pulldown resistance through each C_CC pin when in a disconnect state and configured as a UFP. LDO_3V3 powered V = 1 V, 1.5 V 4.85 5.1 5.35 kΩ RD_CC_OPEN Pulldown resistance through each C_CC pin when in a disconnect state and configured as a UFP. LDO_3V3 powered V = 0 V to LDO_3V3 500 RD_DB Pulldown resistance through each C_CC pin when in a disconnect state and configured as a UFP when configured for dead battery (RPD_Gn tied to C_CCn). LDO_3V3 unpowered V = 1.5 V, 2.0 V RPD_Gn tied to C_CCn 4.08 RD_DB_OPEN Pulldown resistance through each C_CC pin when in a disconnect state and configured as a UFP when not configured for dead battery (RPD_Gn tied to GND). LDO_3V3 unpowered V = 1.5 V, 2.0 V RPD_Gn tied to GND 500 VTH_DB Threshold Voltage of the pulldown FET in series with RD during dead battery I_CC = 80 μA 0.5 0.9 1.2 V R_RPD Resistance between RPD_Gn and the gate of the pulldown FET 25 50 85 MΩ VIN_3V3 ≥ 3.135 V kΩ 5.1 6.12 kΩ kΩ Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 15 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 7.9 USB-PD Baseband Signal Requirements and Characteristics Recommended operating conditions; TA = –10 to 85°C unless otherwise noted PARAMETER TEST CONDITIONS MIN TYP MAX UNIT COMMON PD_BITRATE PD data bit rate 270 300 330 Kbps UI(1) Unit interval (1/PD_BITRATE) 3.03 3.33 3.7 μs CCBLPLUG(2) Capacitance for a cable plug (each plug on a cable may have up to this value) 25 pF ZCABLE Cable characteristic impedance 32 65 Ω CRECEIVER(3) Receiver capacitance. Capacitance looking into C_CCn pin when in receiver mode 70 120 pF ZDRIVER TX output impedance. Source output impedance at the Nyquist frequency of USB2.0 low speed (750kHz) while the source is driving the C_CCn line 33 75 Ω TRISE Rise Time. 10% to 90% amplitude points, minimum is under an unloaded condition. Maximum set by TX mask 300 ns TFALL Fall Time. 90% to 10% amplitude points, minimum is under an unloaded condition. Maximum set by TX mask 300 ns VRXTR Rx Receive Rising Input threshold 605 630 655 mV VRXTF Rx Receive Falling Input threshold 450 470 490 mV NCOUNT(4) Number of transitions for signal detection (number to count to detect non-idle bus) TTRANWIN(4) Time window for detecting non-idle bus 20 μs ZBMCRX Receiver input impedance TRXFILTER(5) Rx bandwidth limiting filter. Time constant of a single pole filter to limit broadband noise ingression TRANSMITTER RECEIVER (1) (2) (3) (4) (5) 3 12 Does not include pullup or pulldown resistance from cable detect. Transmitter is Hi-Z. 10 MΩ 100 ns UI denotes the time to transmit an un-encoded data bit not the shortest high or low times on the wire after encoding with BMC. A single data bit cell has duration of 1 UI, but a data bit cell with value 1 will contain a centrally place 01 or 10 transition in addition to the transition at the start of the cell. The capacitance of the bulk cable is not included in the CCBLPLUG definition. It is modeled as a transmission line. CRECEIVER includes only the internal capacitance on a C_CCn pin when the pin is configured to be receiving BMC data. External capacitance is needed to meet the required minimum capacitance per the USB-PD Specifications. TI recommends to add capacitance to bring the total pin capacitance to 300 pF for improved TX behavior. BMC packet collision is avoided by the detection of signal transitions at the receiver. Detection is active when a minimum of NCOUNT transitions occur at the receiver within a time window of TTRANWIN. After waiting TTRANWIN without detecting NCOUNT transitions, the bus is declared idle. Broadband noise ingression is because of coupling in the cable interconnect. 7.10 USB-PD TX Driver Voltage Adjustment Parameter Recommended operating conditions; TA = –10 to 85°C unless otherwise noted(1) PARAMETER TEST CONDITIONS MIN NOM MAX UNIT VTXP0 TX transmit peak voltage 1.615 1.7 1.785 V VTXP1 TX transmit peak voltage 1.52 1.6 1.68 V VTXP2 TX transmit peak voltage 1.425 1.5 1.575 V VTXP3 TX transmit peak voltage 1.33 1.4 1.47 V VTXP4 TX transmit peak voltage 1.235 1.3 1.365 V VTXP5 TX transmit peak voltage 1.188 1.25 1.312 V VTXP6 TX transmit peak voltage 1.14 1.2 1.26 V VTXP7 TX transmit peak voltage 1.116 1.175 1.233 V VTXP8 TX transmit peak voltage 1.092 1.15 1.208 V VTXP9 TX transmit peak voltage 1.068 1.125 1.181 V 16 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 7.10 USB-PD TX Driver Voltage Adjustment Parameter (continued) Recommended operating conditions; TA = –10 to 85°C unless otherwise noted(1) MIN NOM MAX UNIT VTXP10 TX transmit peak voltage PARAMETER 1.045 1.1 1.155 V VTXP11 TX transmit peak voltage 1.021 1.075 1.128 V VTXP12 TX transmit peak voltage 0.998 1.05 1.102 V VTXP13 TX transmit peak voltage 0.974 1.025 1.076 V VTXP14 TX transmit peak voltage 0.95 1 1.05 V VTXP15 TX transmit peak voltage 0.903 0.95 0.997 V (1) TEST CONDITIONS VTXP voltage settings are determined by application code and the setting used must meet the needs of the application and adhere to the USB-PD Specifications. 7.11 Port Power Switch Characteristics Recommended operating conditions; TA = –10 to 85°C unless otherwise noted TEST CONDITIONS(3) PARAMETER RPPCC PP_CABLE to C_CCn power switch resistance RPP5V PP_5V0 to VBUS power switch resistance RPPHV PP_HV to VBUS power switch resistance IHVACT Active quiescent current from PP_HV pin, EN_HV = 1 IHVSD Shutdown quiescent current from PP_HV pin, EN_HV = 0 IHVEXTACT Active quiescent current from VBUS pin, EN_HV = 1 Configured as sink IPP5VACT Active quiescent current from PP_5V0 IPP5VSD Shutdown quiescent current from PP_5V0 ILIMHV(5) MAX UNIT 312 mΩ 50 60 mΩ 95 135 mΩ 100 Configured as source Shutdown quiescent current from SENSEP pin, EN_HV = 0 TYP 1 Active quiescent current from SENSEP pin, EN_HV = 1 IHVEXTSD MIN 1 3.5 40 mA μA mA mA μA 1 mA 100 μA PP_HV current limit, setting 0 1.007 1.118 1.330 A PP_HV current limit, setting 1 1.258 1.398 1.638 A PP_HV current limit, setting 2 1.51 1.678 1.945 A PP_HV current limit, setting 3 1.761 1.957 2.153 A PP_HV current limit, setting 4 2.013 2.237 2.46 A PP_HV current limit, setting 5 2.265 2.516 2.768 A PP_HV current limit, setting 6 2.516 2.796 3.076 A PP_HV current limit, setting 7 2.768 3.076 3.383 A PP_HV current limit, setting 8 3.02 3.355 3.691 A PP_HV current limit, setting 9 3.271 3.635 3.998 A PP_HV current limit, setting 10 3.523 3.914 4.306 A PP_HV current limit, setting 11 3.775 4.194 4.613 A PP_HV current limit, setting 12 4.026 4.474 4.921 A PP_HV current limit, setting 13 4.278 4.753 5.228 A PP_HV current limit, setting 14 4.529 5.033 5.536 A PP_HV current limit, setting 15 5.033 5.592 6.151 A Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 17 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 7.11 Port Power Switch Characteristics (continued) Recommended operating conditions; TA = –10 to 85°C unless otherwise noted TEST CONDITIONS(3) PARAMETER ILIMHVEXT(4) (5) ILIMPP5V(5) ILIMPPCC MIN TYP MAX UNIT PP_EXT current limit, setting 0 0.986 1.12 1.254 A PP_EXT current limit, setting 1 1.231 1.399 1.567 A PP_EXT current limit, setting 2 1.477 1.678 1.879 A PP_EXT current limit, setting 3 1.761 1.957 2.153 A PP_EXT current limit, setting 4 2.012 2.236 2.46 A PP_EXT current limit, setting 5 2.263 2.515 2.767 A PP_EXT current limit, setting 6 2.514 2.794 3.074 A PP_EXT current limit, setting 7 2.765 3.073 3.381 A PP_EXT current limit, setting 8 3.016 3.352 3.688 A PP_EXT current limit, setting 9 3.267 3.631 3.995 A PP_EXT current limit, setting 10 3.519 3.91 4.301 A PP_EXT current limit, setting 11 3.77 4.189 4.608 A PP_EXT current limit, setting 12 4.021 4.468 4.915 A PP_EXT current limit, setting 13 4.272 4.747 5.222 A PP_EXT current limit, setting 14 4.523 5.026 5.529 A PP_EXT current limit, setting 15 5.025 5.584 6.143 A PP_5V0 current limit, setting 0 1.006 1.118 1.330 A PP_5V0 current limit, setting 1 1.132 1.258 1.484 A PP_5V0 current limit, setting 2 1.258 1.398 1.638 A PP_5V0 current limit, setting 3 1.384 1.538 1.691 A PP_5V0 current limit, setting 4 1.51 1.677 1.845 A PP_5V0 current limit, setting 5 1.636 1.817 1.999 A PP_5V0 current limit, setting 6 1.761 1.957 2.153 A PP_5V0 current limit, setting 7 1.887 2.097 2.307 A PP_5V0 current limit, setting 8 2.013 2.237 2.46 A PP_5V0 current limit, setting 9 2.139 2.376 2.614 A PP_5V0 current limit, setting 10 2.265 2.516 2.768 A PP_5V0 current limit, setting 11 2.39 2.656 2.922 A PP_5V0 current limit, setting 12 2.516 2.796 3.075 A PP_5V0 current limit, setting 13 2.642 2.936 3.229 A PP_5V0 current limit, setting 14 2.768 3.075 3.383 A PP_5V0 current limit, setting 15 3.019 3.355 3.69 A PP_CABLE current limit (highest setting) 0.6 0.75 0.9 A PP_CABLE current limit (lowest setting) 0.35 0.45 0.55 I = 100 mA Reverse current blocking disabled IHV_ACC(1) IHVEXT_ACC IPP5V_ACC(1) PP_HV current sense accuracy PP_EXT current sense accuracy (excluding RSENSE accuracy) PP_5V0 current sense accuracy 3.25 5 6.75 I = 200 mA 4 5 6 A/V I = 500 mA 4.4 5 5.6 A/V I≥1A 4.5 5 5.5 A/V I = 100 mA , RSENSE = 10 mΩ Reverse current blocking disabled 3.5 5 6.5 I = 200 mA, RSENSE = 10 mΩ 4 5 6 A/V I = 500 mA, RSENSE = 10 mΩ 4.4 5 5.6 A/V I ≥ 1 A, RSENSE = 10 mΩ 4.5 5 5.5 A/V I = 100 mA Reverse current blocking disabled 1.95 3 4.05 I = 200 mA 2.4 3 3.6 A/V I = 500 mA 2.64 3 3.36 A/V 2.7 3 3.3 A/V I≥1A 18 A A/V Submit Document Feedback A/V A/V Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 7.11 Port Power Switch Characteristics (continued) Recommended operating conditions; TA = –10 to 85°C unless otherwise noted TEST CONDITIONS(3) PARAMETER IPPCBL_ACC PP_CABLE current sense accuracy IGATEEXT(2) External Gate Drive Current on HV_GATE1 and HV_GATE2 VGSEXT VGS voltage driving external FETs MIN TYP MAX UNIT I = 100 mA 1 A/V I = 200 mA 1 A/V I = 500 mA 1 A/V 4 5 4.5 6 7.5 Configured as a source or as a sink with soft start disabled. PP_HV = 20 V, CVBUS = 10 μF, ILOAD = 100 mA μA V ms TON_HV PP_HV path turn on time from enable to VBUS = 95% of PP_HV voltage TON_5V Configured as a source or as a sink PP_5V0 path turn on time from enable to VBUS with soft start disabled. PP_5V0 = = 95% of PP_5V0 voltage 5 V, CVBUS = 10 μF, ILOAD = 100 mA TON_CC PP_CABLE path turn on time from enable to C_CCn = 95% of the PP_CABLE voltage ISS Soft start charging current 5.5 7 8.5 μA RSS_DIS Soft start discharge resistance 0.6 1 1.4 kΩ VTHSS Soft start complete threshold 1.35 1.5 1.65 V TSSDONE Soft start complete time 31.9 46.2 60.5 ms VREVPHV Reverse current blocking voltage threshold for PP_HV switch 2 6 10 VREVPEXT Reverse Current Blocking voltage Threshold for PP_EXT external switches 2 6 10 VREV5V0 Reverse current blocking voltage threshold for PP_5V0 switches 2 6 10 VHVDISPD Voltage threshold above VIN at which the pulldown RHVDISPD on VBUS will disable during a transition from PHV to 5V0 45 200 250 VSAFE0V Voltage that is a safe 0 V per USB-PD Specifications TSAFE0V Voltage transition time to VSAFE0V VSO_HV Voltage on PP_HV or PP_HVEXT above which the PP_HV or PP_EXT to PP_5V0 transition on VBUS will meet transition requirements SRPOS Maximum slew rate for positive voltage transitions SRNEG Maximum slew rate for negative voltage transitions TSTABLE EN to stable time for both positive and negative voltage transitions VSRCVALID Supply output tolerance beyond VSRCNEW during time TSTABLE VSRCNEW Supply output tolerance (1) (2) (3) (4) (5) 8 ms 2.5 PP_CABLE = 5 V, C_CCn = 500 nF, ILOAD = 100 mA CSS = 220 nF 2 ms mV mV mV mV 0 0.8 650 V ms V 9.9 0.03 V/μs V/μs –0.03 275 –0.5 0.5 –5 5 ms V % The current sense in the ADC will not accurately read below the current VREV5V0/RPP5V or VREVHV/RPPHV because of the reverse blocking behavior. When reverse blocking is disabled, the values given for accuracy are valid. Limit the resistance from the HV_GATE1/2 pins to the external FET gate pins to < 1Ω to provide adequate response time to short circuit events. Maximum capacitance on VBUS when configured as a source must not exceed 12 µF. Specified for a 10-mΩ RSENSE resistor and 10-mΩ RSENSE application code setting. Values will scale with a different RSENSE resistance and application code setting. Settings selected automatically by application code for the current limit needed in the application. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 19 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 7.12 Port Data Multiplexer Switching Characteristics Recommended operating conditions; TA = –10 to 85°C unless otherwise noted PARAMETER TEST CONDITIONS MIN TYP MAX Vi = 3.3 V, IO = 20 mA 35 55 Vi = 1 V, IO = 20 mA 30 46 UNIT SWD MULTIPLEXER PATH(1) SWD_RON_U On resistance of SWD_DATA/CLK to C_USB_TP/TN/BP/BN SWD_ROND_U On resistance difference between P and N paths of SWD_DATA/CLK to C_USB_ TP/TN/BP/BN SWD_RON_S On resistance of SWD_DATA/CLK to C_SBU1/2 SWD_ROND_S On resistance difference between P and N paths of SWD_DATA/CLK to C_SBU1/2 SWD_TON Switch on time from enable of SWD path Vi = 1 V to 3.3 V, IO = 20 mA –2.5 Vi = 3.3 V, IO = 20 mA 26 42 Vi = = 1 V, IO = 20 mA 24 37 Vi = 1V to 3.3 V, IO = 20 mA –1.5 500 SWD_BW 3 dB bandwidth of SWD path CL = 10 pF Ω Ω μs 10 Time from disable bit at charge pump steady state Ω 150 Time from enable bit at charge pump steady state Switch off time from disable of SWD path 200 ns MHz PATH(1) DB1_RON_U On resistance DEBUG1/2 to C_USB_TP/TN/BP/BN DB1_ROND_U On resistance difference between P and N paths of DEBUG1/2 to C_USB_TP/TN/BP/BN DB1_RON_S On resistance of DEBUG1/2 to C_SBU1/2 DB1_ROND_S On resistance difference between P and N paths of Debug path DEBUG1/2 to C_SBU1/2 DB1_TON 1.5 Time from enable bit with charge pump off SWD_TOFF DEBUG1/2 MULTIPLEXER 2.5 Ω Switch on time from enable of DEBUG path Vi = 3.3 V, IO = 20 mA 14 26 Vi = 1 V, IO = 20 mA 10 17 Vi = 1 V to 3.3 V, IO = 20 mA –2.5 2.5 Vi = 3.3 V, IO = 20 mA 9.5 17 Vi = 1 V, IO = 20 mA 6.5 12 Vi = 1 V to 3.3 V, IO = 20 mA –0.5 0.5 Time from enable bit with charge pump off 500 Time from disable bit at charge pump steady state DB1_BW 3dB bandwidth of DEBUG path CL = 10 pF Ω Ω μs 10 Switch off time from disable of DEBUG path Ω 150 Time from enable bit at charge pump steady state DB1_TOFF Ω 200 ns MHz DEBUG3/4 MULTIPLEXER PATH(1) DB3_RON_U On resistance of DEBUG3/4 to C_USB_TP/TN/BP/BN DB3_ROND_U On resistance difference between P and N paths of DEBUG3/4 to C_USB_ TP/TN/BP/BN DB3_RON_S On resistance of DEBUG3/4 to C_SBU1/2 DB3_ROND_S On resistance difference between P and N paths of DEBUG3/4 to C_SBU1/2 DB3_TON Switch on time from enable of DEBUG3/4 path Vi = 3.3 V, IO = 20 mA Vi = 1 V, IO = 20 mA Vi = 1 V to 3.3V, IO = 20 mA 24 9 17 –1.5 1.5 Vi = 3.3 V, IO = 20 mA 9.5 18 Vi = 1 V, IO = 20 mA 6.5 12 Vi = 1 V to 3.3 V, IO = 20 mA –0.15 Time from enable bit with charge pump off 0.15 500 Time from disable bit at charge pump steady state DB3_BW 3dB bandwidth of DEBUG3/4 path CL = 10 pF Submit Document Feedback Ω Ω Ω μs 10 Switch off time from disable of DEBUG3/4 path Ω 150 Time from enable bit at charge pump steady state DB3_TOFF 20 14 200 ns MHz Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 7.12 Port Data Multiplexer Switching Characteristics (continued) Recommended operating conditions; TA = –10 to 85°C unless otherwise noted PARAMETER TEST CONDITIONS MIN TYP MAX Vi = 3.3 V, IO = 20 mA 8.5 17 Vi = 1 V, IO = 20 mA 5.5 11 UNIT LSX_R2P/P2R MULTIPLEXER PATH(1) LSX_RON On resistance of LSX_P2R/R2P to C_SBU1/2 LSX_ROND On resistance difference between P and N paths of LSX path LSX_TON Switch on time from enable of LSX path Vi = 1 V to 3.3 V, IO = 20 mA –0.3 0.3 Time from enable bit with charge pump off μs 10 500 Switch off time from disable of LSX path Time from disable bit at charge pump steady state LSX_BW 3dB bandwidth of LSX path CL = 10 pF Ω 150 Time from enable bit at charge pump steady state LSX_TOFF Ω 200 ns MHz AUX MULTIPLEXER PATH(1) AUX_RON On resistance of AUX_P/N to C_SBU1/2 AUX_ROND On resistance difference between P and N paths of AUX_P/N to C_SBU1/2 AUX_TON Switch on time from enable of AUX_P/N to C_SBU1/2 Vi = 3.3 V, IO = 20 mA 3.5 7 Vi = 1 V, IO = 20 mA 2.5 5 Vi = 1 V to 3.3 V, IO = 20 mA 500 AUX_BW 3dB bandwidth of AUX_P/N to C_SBU1/2 path CL = 10 pF STAGE μs 15 Time from disable bit at charge pump steady state Ω 150 Time from enable bit at charge pump steady state Switch off time from disable of AUX_P/N to C_SBU1/2 UART MULTIPLEXER PATH 0.25 Time from enable bit with charge pump off AUX_TOFF (2nd –0.25 Ω 200 ns MHz ONLY)(1) (2) UART_RON On resistance of UART buffers to C_USB_TP/TN/BP/BN or Vi = 3.3 V, IO = 20 mA C_SBU1/2 UART_TON Switch on time from enable of UART buffer C_USB_TP/TN/BP/BN or C_SBU1/2 path 3.1 Time from enable bit with charge pump off 12 150 µs Time from enable bit at charge pump steady state 10 500 UART_TOFF Switch off time from disable of UART buffer path Time from disable bit at charge pump steady state UART_BW 3dB bandwidth of UART buffer path CL = 10 pF Ω 200 ns MHz USB_RP MULTIPLEXER PATH(1) (3) USB_RON On resistance of USB_RP to C_USB_TP/TN/BP/BN USB_ROND On resistance difference between P and N paths of USB_RP to C_USB_TP/TN/BP/BN USB_TON Switch on time from enable of USB USB_RP path Vi = 3 V, IO = 20 mA Vi = 400 mV, IO = 20 mA Vi = 0.4 V to 3 V, IO = 20 mA –0.15 Time from enable bit with charge pump off 4.5 10 3 7 0.15 Ω Ω 150 µs Time from enable bit at charge pump steady state 15 500 USB_TOFF Switch off time from disable of USB_RP path Time from disable bit at charge pump steady state USB_BW 3dB bandwidth of USB_RP path CL = 10 pF USB_ISO Off Isolation of USB_RP path RL = 50 Ω, VI = 800 mV, f = 240 MHz –19 dB USB_XTLK Channel to Channel crosstalk of USB_RP path RL = 50 Ω, f = 240 MHz –26 dB R_SBU_OPEN Resistance of the open C_SBU1/2 paths Vi = 0 V to LDO_3V3 1 MΩ R_USB_OPEN Resistance of the open C_USB_T/B/P/N paths Vi = 0 V to LDO_3V3 1 MΩ 850 ns MHz C_SBU1/2 OUTPUT (1) All RON specified maximums are the maximum of either of the switches in a pair. All ROND specified maximums are the maximum difference between the two switches in a pair. ROND does not add to RON. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 21 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 (2) (3) The UART switch path connects from the UART buffers to the port pins. See Section 7.19 for buffer specifications. See Section 7.16 for the USB_EP specifications. 7.13 Port Data Multiplexer Clamp Characteristics Recommended operating conditions; TA = –10 to 85°C unless otherwise noted PARAMETER TEST CONDITIONS MIN TYP 3.95 MAX UNIT VCLMP_IND Clamp voltage triggering indicator to digital core 3.8 4.1 V ICLMP_IND Clamp current at VCLMP_IND 10 250 μA TCLMP_PRT(1) Time from clamp current crossing ICLMP_IND to interrupt signal assertion 0 4 μs ICLMP USB_EP and USB_RP port clamp current 250 nA 15 mA (1) I ≥ ICLMP_IND rising V = LDO_3V3 V = VCLMP_IND + 500 mV 3.5 The TCLMP_PRT time includes the time through the digital synchronizers. When the clock speed is reduced, the signal assertion time may be longer. 7.14 Port Data Multiplexer SBU Detection Characteristics Recommended operating conditions; TA = –10 to 85°C unless otherwise noted PARAMETER TEST CONDITIONS VIH_PORT Port switch detect input high voltage LDO_3V3 = 3.3 V VIL_PORT Port switch detect input low voltage LDO_3V3 = 3.3 V MIN TYP MAX 2 UNIT v 0.8 V 7.15 Port Data Multiplexer Signal Monitoring Pullup and Pulldown Characteristics Recommended operating conditions; TA = –10 to 85°C unless otherwise noted PARAMETER TEST CONDITIONS MIN TYP MAX UNIT RPU05 500-Ω pullup and pulldown resistance LDO_3V3 = 3.3 V 350 500 650 Ω RTPU5 5-kΩ pullup and pulldown resistance LDO_3V3 = 3.3 V 3.5 5 6.5 kΩ RPU100 100-kΩ pullup and pulldown resistance LDO_3V3 = 3.3 V 70 100 130 kΩ 7.16 Port Data Multiplexer USB Endpoint Characteristics Recommended operating conditions; TA = –10 to 85°C unless otherwise noted PARAMETER TEST CONDITIONS MIN TYP MAX UNIT TRANSMITTER(1) T_RISE_EP Rising transition time Low-speed (1.5 Mbps) data rate only 75 300 ns T_FALL_EP Falling transition time Low-speed (1.5 Mbps) data rate only 75 300 ns T_RRM_EP Rise/fall time matching Low-speed (1.5 Mbps) data rate only –20% 25% V_XOVER_EP Output crossover voltage 1.3 2 RS_EP Source resistance of driver including 2nd stage port data multiplexer V Ω 34 DIFFERENTIAL RECEIVER (1) VOS_DIFF_EP Input offset VIN_CM_EP Common mode range RPU_EP D– Bias Resistance –100 Receiving 100 mV 0.8 2.5 V 1.425 1.575 kΩ SINGLE ENDED RECEIVER(1) VTH_SE_EP Single ended threshold Signal rising and falling VHYS_SE_EP Single ended threshold hysteresis Signal falling (1) 22 0.8 2 200 V mV The USB Endpoint PHY is functional across the entire VIN_3V3 operating range, but parameter values are only verified by design for VIN_3V3 ≥ 3.135 V Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 7.17 Port Data Multiplexer BC1.2 Detection Characteristics Recommended operating conditions; TA = –10 to 85°C unless otherwise noted PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 7 10 13 μA 14.25 20 24.8 kΩ DATA CONTACT DETECT IDP_SRC DCD source current RDM_DWN DCD pulldown resistance LDO_3V3 = 3.3 V VLGC_HI VLGC_LO Threshold for no connection VC_USB_TP/BP ≥ VLGC_HILDO_3V3 = 3.3 V LDO_3V3 = 3.3 V Threshold for connection VC_USB_TP/BP ≤ VLGC_LO LDO_3V3 = 3.3 V V 2 0.8 V PRIMARY AND SECONDARY DETECT VDX_SRC Source voltage VDX_RSRC Total series resistance because of port data multiplexer 0.55 VDX_ILIM VDX_SRC current limit IDX_SNK Sink current 0.6 VDX_SRC = 0.65 V 65 250 VC_USB_TN/BN ≥ 250 mV 0.65 25 75 MIN TYP V Ω 400 μA 125 μA 7.18 Analog-to-Digital Converter (ADC) Characteristics Recommended operating conditions; TA = –10 to 85°C unless otherwise noted PARAMETER TEST CONDITIONS MAX ADC resolution F_ADC ADC clock frequency 1.477 1.5 1.523 MHz T_ENA ADC enable time 42.14 43 43.86 μs T_SAMPLEA ADC input sample time 10.5 10.67 10.9 μs T_CONVERTA ADC conversion time 7.88 8 8.12 μs T_INTA ADC interrupt time 1.31 1.33 1.35 μs LSB Least significant bit 1.152 1.17 1.188 mV DNL Differential non-linearity –0.65 0.65 LSB INL Integral non-linearity –1.2 1.2 LSB –1.5% 1.5% GAIN_ERR 10 UNIT RES_ADC Gain error (divider) Gain error (no divider) bits –1 1 –10 10 VOS_ERR Buffer offset error THERM_ACC Thermal sense accuracy THERM_GAIN Thermal slope 3.095 mV/°C THERM_V0 Zero degree voltage 0.823 V –8 8 mV °C Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 23 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 7.19 Input/Output (I/O) Characteristics Recommended operating conditions; TA = –10 to 85°C unless otherwise noted PARAMETER TEST CONDITIONS MIN TYP MAX UNIT SPI SPI_VIH High-level input voltage LDO_3V3 = 3.3 V SPI_VIL Low-level input voltage LDO_3V3 = 3.3 V SPI_HYS Input hysteresis voltage LDO_3V3 = 3.3 V 0.2 SPI_ILKG Leakage current Output is Hi-Z, VIN = 0 to LDO_3V3 –1 SPI_VOH SPI output high voltage IO = –8 mA, LDO_3V3=3.3 V 2.9 IO = –15 mA, LDO_3V3=3.3 V 2.5 SPI_VOL SPI output low voltage 24 2 V 0.8 V 1 μA V V IO = 10 mA 0.4 IO = 20 mA 0.8 Submit Document Feedback V Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 7.19 Input/Output (I/O) Characteristics (continued) Recommended operating conditions; TA = –10 to 85°C unless otherwise noted PARAMETER TEST CONDITIONS MIN TYP MAX UNIT SWDIO SWDIO_VIH High-level input voltage LDO_3V3 = 3.3 V SWDIO_VIL Low-level input voltage LDO_3V3 = 3.3 V 2 SWDIO_HYS Input hysteresis voltage LDO_3V3 = 3.3 V SWDIO_ILKG Leakage current Output is Hi-Z, VIN = 0 V to LDO_3V3 –1 IO = –8 mA, LDO_3V3 = 3.3 V 2.9 IO = –15 mA, LDO_3V3 = 3.3 V 2.5 V 0.8 0.2 V V 1 μA V SWDIO_VOH Output high voltage SWDIO_VOL Output low voltage SWDIO_RPU Pullup resistance 2.8 SWDIO_TOS SWDIO output skew to falling edge SWDCLK –5 SWDIO_TIS Input setup time required between SWDIO and rising edge of SWCLK 6 ns SWDIO_TIH Input hold time required between SWDIO and rising edge of SWCLK 1 ns IO = 10 mA 0.4 IO = 20 mA 0.8 4 V 5.2 kΩ 5 ns SWDCLK SWDCL_VIH High-level input voltage LDO_3V3 = 3.3 V SWDCL_VIL Low-level input voltage LDO_3V3 = 3.3 V SWDCL_THI SWDIOCLK HIGH period SWDCL_TLO SWDIOCLK LOW period SWDCL_HYS Input hysteresis voltage SWDCL_RPU Pullup resistance LDO_3V3 = 3.3 V 2 V 0.8 V 0.05 500 μs 0.05 500 μs 0.2 2.8 V 4 5.2 kΩ GPIO (GPIO0-8, DEBUG1-4, DEBUG_CTL1/2, MRESET, RESETZ, BUSPOWERZ) LDO_3V3 = 3.3 V 2 V GPIO_VIH High-level input voltage GPIO_VIL Low-level input voltage GPIO_HYS Input hysteresis voltage GPIO_ILKG Leakage current Pin is Hi-Z; VIN = 0 V to VDD (VDDIO or LDO_3V3) –1 GPIO_RPU Pullup resistance (GPIO0-8, DEBUG1-4, MRESET, RESETZ, BUSPOWERZ) Pullup enabled 50 100 150 Pullup resistance (DEBUG_CTL1/2) Pullup enabled 2.5 5 7.5 GPIO_RPD Pulldown resistance (GPIO0-8, DEBUG1-4, MRESET, RESETZ, BUSPOWERZ)(1) Pulldown enabled 50 100 150 GPIO_DG Digital input path deglitch IO = –2 mA, LDO_3V3 = 3.3 V 2.9 GPIO_VOH Output high voltage GPIO_VOL Output low voltage VDDDIO = 1.8 V 1.25 LDO_3V3 = 3.3 V 0.8 VDDIO = 1.8 V LDO_3V3 = 3.3 V VDDIO = 1.8 V 0.63 0.2 V 0.09 1 20 IO = –2 mA, VDDIO = 1.8 V kΩ kΩ V 0.4 IO = 2 mA, VDDIO = 1.8 V μA ns 1.35 IO = 2 mA, LDO_3V3 = 3.3 V V 0.45 V HRESET HRESET_VIH High-level input voltage HRESET_VIL Low-level input voltage 1.25 HRESET_HYS Input hysteresis Voltage HRESET_ILKG I/O leakage current HRESET_THIGH HRESET minimum high time to assert a reset condition 2.0 HRESET_TLOW HRESET minimum low time to deassert a reset condition 2.0 V 0.63 V 1 μA 0.09 VIN = 0 V to LDO_1V8D –1 V ms UART_RX/TX, LSX_P2R/R2P Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 25 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 7.19 Input/Output (I/O) Characteristics (continued) Recommended operating conditions; TA = –10 to 85°C unless otherwise noted PARAMETER TEST CONDITIONS MIN LDO_3V3 = 3.3 V UARTRX_VIH High-level input voltage UARTRX_VIL Low-level input voltage UARTRX_HYS Input hysteresis voltage UARTTX_VOH GPIO output high voltage UARTTX_VOL GPIO output low voltage UARTTX_RO Output impedance, TX channel LDO_3V3 = 3.3 V UARTTX_TRTF Rise and fall time, TX channel 10%–90%, CL = 20 pF UART_FMAX Maximum UART baud rate TYP MAX 2 VDDDIO = 1.8 V V 1.25 LDO_3V3 = 3.3 V 0.8 VDDIO = 1.8 V 0.63 LDO_3V3 = 3.3 V 0.2 VDDIO = 1.8 V 2.9 IO = –2 mA, VDDIO = 1.8 V V 1.35 IO = 2 mA, LDO_3V3 = 3.3 V 0.4 IO = 2 mA, VDDIO = 1.8 V 0.45 35 V V 0.09 IO = –2 mA, LDO_3V3 = 3.3 V UNIT 70 1 V 115 Ω 40 ns 1.1 Mbps 0.4 V 1 μA I2C_IRQ1Z, I2C_IRQ2Z OD_VOL Low level output voltage IOL = 2 mA OD_LKG Leakage current Output is Hi-Z, VIN = 0 to LDO_3V3 SBU_VIH High-level input voltage LDO_3V3 = 3.3 V SBU_VIL Low-level input voltage LDO_3V3 = 3.3 V SBU_HYS Input hysteresis voltage LDO_3V3 = 3.3 V –1 SBU (1) 2 V 0.8 0.2 V V DEBUG_CTL1/2 do not have an internal pulldown resistance path. 7.20 I2C Slave Characteristics Recommended operating conditions; TA = –10 to 85°C unless otherwise noted PARAMETER TEST CONDITIONS MIN TYP MAX UNIT SDA and SCL COMMON CHARACTERISTICS ILEAK Input leakage current Voltage on Pin = LDO_3V3 –3 IOL = 3mA, LDO_3V3 = 3.3 V 3 0.4 μA VOL SDA output low voltage IOL SDA max output low current VIL Input low signal VIH Input high signal VHYS Input Hysteresis TSP I2C pulse width suppressed 50 ns CI Pin Capacitance 10 pF 100 kHz IOL = 3mA, VDDIO = 1.8 V 0.36 VOL = 0.4 V 3 VOL = 0.6 V 6 mA LDO_3V3 = 3.3 V 0.99 VDDIO = 1.8 V 0.54 LDO_3V3 = 3.3 V 2.31 VDDIO = 1.8 V 1.26 LDO_3V3 = 3.3 V 0.17 VDDIO = 1.8 V 0.09 V V V V SDA and SCL STANDARD MODE CHARACTERISTICS FSCL I2C clock frequency 0 THIGH I2C clock high time 4 μs TLOW I2C 4.7 μs TSUDAT I2C serial data setup time 250 ns THDDAT I2C serial data hold time TVDDAT I2C Valid data time SCL low to SDA output valid 3.4 μs TVDACK I2C Valid data time of ACK condition ACK signal from SCL low to SDA (out) low 3.4 μs 26 clock low time 0 Submit Document Feedback ns Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 7.20 I2C Slave Characteristics (continued) Recommended operating conditions; TA = –10 to 85°C unless otherwise noted PARAMETER TEST CONDITIONS MIN TYP MAX UNIT TOCF I2C output fall time TBUF I2C bus free time between stop and start 4.7 μs TSTS I2C start or repeated Start condition setup time 4.7 μs TSTH I2C Start or repeated Start condition hold time 4 μs TSPS I2C 4 μs 10 pF to 400 pF bus Stop condition setup time 250 ns SDA and SCL FAST MODE CHARACTERISTICS FSCL I2C clock frequency THIGH I2C clock high time 0.6 μs TLOW I2C clock low time 1.3 μs TSUDAT I2C 100 ns THDDAT I2C serial data hold time TVDDAT I2C valid data time SCL low to SDA output valid 0.9 μs TVDACK I2C valid data time of ACK condition ACK signal from SCL low to SDA (out) low 0.9 μs TOCF I2C output fall time TBUF I2C bus free time between stop and start 1.3 μs TSTS I2Cstart or repeated Start condition setup time 0.6 μs TSTH I2C Start or repeated Start condition hold time 0.6 μs TSPS I2C Stop condition setup time 0.6 μs 0 serial data setup time 400 0 kHz ns 10 pF to 400 pF bus, VDD = 3.3 V 12 250 10 pF to 400 pF bus, VDD = 1.8 V 6.5 250 ns 7.21 SPI Controller Characteristics Recommended operating conditions; TA = –10 to 85°C unless otherwise noted PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 11.82 12 12.18 MHz 82.1 83.33 84.6 ns FSPI Frequency of SPI_CLK TPER Period of SPI_CLK (1/F_SPI) TWHI SPI_CLK High Width 30 ns TWLO SPI_CLK Low Width 30 ns TDACT SPI_SZZ falling to SPI_CLK rising delay time 30 50 ns TDINACT SPI_CLK falling to SPI_CSZ rising delay time 160 180 ns TDPICO SPI_CLK falling to SPI_PICO Valid delay time –5 5 ns TSUPOCI SPI_POCI valid to SPI_CLK falling setup time 21 ns THDPOCI SPI_CLK falling to SPI_POCI invalid hold time 0 ns TRSPI SPI_CSZ/CLK/PICO rise time 10% to 90%, CL = 5 pF to 50 pF, LDO_3V3 = 3.3 V TFSPI SPI_CSZ/CLK/PICO fall time 90% to 10%, CL = 5 pF to 50 pF, LDO_3V3 = 3.3 V 0.1 8 ns 0.1 8 ns 7.22 BUSPOWERZ Configuration Characteristics Recommended operating conditions; TA = –10 to 85°C unless otherwise noted PARAMETER TEST CONDITIONS MIN VBPZ_EXT BUSPOWERZ Voltage for receiving VBUS Power through the PP_EXT path VBPZ_HV BUSPOWERZ Voltage for receiving VBUS Power through the PP_HV path 0.8 VBPZ_DIS BUSPOWERZ Voltage for disabling system power from VBUS 2.4 TYP MAX 0.8 2.4 UNIT V V V Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 27 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 7.23 Thermal Shutdown Characteristics Recommended operating conditions; TA = –10 to 85°C unless otherwise noted PARAMETER TEST CONDITIONS TSD_MAIN Thermal shutdown temperature of the main thermal shutdown Temperature rising TSDH_MAIN Thermal shutdown hysteresis of the main thermal shutdown Temperature falling TSD_PWR Thermal shutdown temperature of the power path block Temperature rising TSDH_PWR Thermal shutdown hysteresis of the power path block Temperature falling TSD_DG Programmable thermal shutdown detection deglitch time MIN TYP MAX 145 160 175 20 135 150 UNIT °C °C 165 37 °C °C 0.1 ms 7.24 Oscillator Characteristics Recommended operating conditions; TA = –10 to 85°C unless otherwise noted PARAMETER TEST CONDITIONS FOSC_48M 48-MHz oscillator FOSC_100K 100-kHz oscillator RR_OSC External oscillator set resistance (0.2%) MIN TYP MAX UNIT 47.28 48 48.72 MHz 95 100 105 kHz 15 15.015 kΩ 14.985 7.25 Single-Wire Debugger (SWD) Timing Requirements Recommended operating conditions; TA = –10 to 85°C unless otherwise noted MIN NOM MAX UNIT 10 MHz FSWD Frequency of SWD_CLK TPER Period of SWD_CLK (1 / FSWD) TWHI TWLO TDOUT SWD_CLK rising to SWD_DATA valid delay time 2 TSUIN SWD_DATA valid to SWD_CLK rising setup time 9 ns THDIN SWD_DATA hold time from SWD_CLK rising 3 ns 100 ns SWD_CLK high width 35 ns SWD_CLK low width 35 ns TRSWD SWD output rise time 10% to 90%, CL = 5 pF to 50 pF, LDO_3V3 = 3.3 V TFSWD SWD output fall time 90% to 10%, CL = 5 pF to 50 pF, LDO_3V3 = 3.3 V 25 0.1 8 0.1 8 ns ns ns 7.26 HPD Timing Requirements Recommended operating conditions; TA = -10 to 85°C unless otherwise noted PARAMETER MIN NOM MAX UNIT DP SOURCE SIDE (HPD TX) T_IRQ_MIN HPD IRQ minimum assert time 675 750 825 μs 3 3.33 3.67 ms HPD_HDB_SEL = 0 300 375 450 μs HPD_HDB_SEL = 1 T_3MS_MIN HPD assert 3 ms minimum time DP SINK SIDE (HPD RX) T_HPD_HDB HPD high debounce time 100 111 122 ms T_HPD_LDB HPD low debounce time 300 375 450 μs T_HPD_IRQ HPD IRQ limit time 1.35 1.5 1.65 ms 28 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 41 88 40 86 39 84 Resistance (m:) Resistance (m:) 7.27 Typical Characteristics 38 37 36 35 82 80 78 76 74 34 72 33 70 32 -10 0 10 20 30 40 50 60 Temperature (qC) 70 80 90 100 68 -10 0 10 20 D001 Figure 7-1. PP_5V0 Switch On-Resistance vs. Temperature 30 40 50 60 Temperature (qC) 70 80 90 100 D002 Figure 7-2. PP_HV Switch On-Resistance vs. Temperature 220 Resistance (m:) 215 210 205 200 195 190 185 -10 0 10 20 30 40 50 60 Temperature (qC) 70 80 90 100 D003 Figure 7-3. PP_CABLE Switch On-Resistance vs Temperature Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 29 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 8 Parameter Measurement Information UVR_OUT3V3 - UVRH_OUT3V3 UVR_OUT3V3 VOUT_3V3 MRESET TUVRDELAY TUVRASSERT TUVRDELAY TUVRASSERT RESETZ Figure 8-1. RESETZ Assertion Timing T_ENA T_SAMPLEA T_CONVERTA T_INTA ADC Clock ADC Enable ADC Sample ADC Interrupt New Valid Output Previous or Invalid Output ADC Output Figure 8-2. ADC Enable and Conversion Timing T_SAMPA T_CONVERTA T_INTA T_SAMPLE T_CONVERTA ADC Clock ADC Sample ADC Interrupt ADC Output New Valid Output New Valid Output Figure 8-3. ADC Repeated Conversion Timing 30 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 tf SDA tr tSU;DAT 70 % 30 % 70 % 30 % cont. tHD;DAT tf tVD;DAT tHIGH tr 70 % 30 % SCL 70 % 30 % 70 % 30 % tHD;STA 70 % 30 % cont. tLOW 9th clock 1 / fSCL S 1st clock cycle tBUF SDA tSU;STA tHD;STA tVD;ACK tSP tSU;STO 70 % 30 % SCL Sr P S 9th clock Figure 8-4. tper SPI_CSZ I2C 002aac938 Slave Interface Timing twhigh twlow tdact tdinact SPI_CLK tdpico tdpico SPI_PICO Valid Data tsupoci SPI_POCI Valid Data thdpoci Figure 8-5. SPI Controller Timing twhigh tper t wlow SWD_CLK t dout SWD_DATA (Output) t dout Valid Data t hdin tsuin SWD_DATA (Input) Valid Data Figure 8-6. SWD Timing Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 31 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 9 Detailed Description 9.1 Overview The TPS65982 is a fully-integrated USB Power Delivery (USB-PD) management device providing cable plug and orientation detection for a USB Type-C and PD plug or receptacle. The TPS65982 communicates with the cable and another USB Type-C and PD device at the opposite end of the cable, enables integrated port power switches, controls an external high current port power switch, and multiplexes high-speed data to the port for USB2.0 and supported Alternate Mode sideband information. The TPS65982 also controls an attached super-speed multiplexer to simultaneously support USB3.0/3.1 data rates and DisplayPort video. The TPS65982 is divided into six main sections: the USB-PD controller, the cable plug and orientation detection circuitry, the port power switches, the port data multiplexer, the power management circuitry, and the digital core. The USB-PD controller provides the physical layer (PHY) functionality of the USB-PD protocol. The USB-PD data is output through either the C_CC1 pin or the C_CC2 pin, depending on the orientation of the reversible USB Type-C cable. For a high-level block diagram of the USB-PD physical layer, a description of its features and more detailed circuitry, refer to the USB-PD Physical Layer section. The cable plug and orientation detection analog circuitry automatically detects a USB Type-C cable plug insertion and also automatically detects the cable orientation. For a high-level block diagram of cable plug and orientation detection, a description of its features and more detailed circuitry, refer to the Cable Plug and Orientation Detection section. The port power switches provide power to the system port through the VBUS pin and also through the C_CC1 or C_CC2 pins based on the detected plug orientation. For a high-level block diagram of the port power switches, a description of its features and more detailed circuitry, refer to the Port Power Switches section. The port data multiplexer connects various input pairs to the system port through the C_USB_TP, C_USB_TN, C_USB_BP, C_USB_BN, C_SBU1 and C_SBU2 pins. For a high-level block diagram of the port data multiplexer, a description of its features and more detailed circuitry, refer to the USB Type-C Port Data Multiplexer section. The power management circuitry receives and provides power to the TPS65982 internal circuitry and to the VOUT_3V3 and LDO_3V3 outputs. For a high-level block diagram of the power management circuitry, a description of its features and more detailed circuitry, refer to the Power Management section. The digital core provides the engine for receiving, processing, and sending all USB-PD packets as well as handling control of all other TPS65982 functionality. A small portion of the digital core contains non-volatile memory, called boot code, which is capable of initializing the TPS65982 and loading a larger, configurable portion of application code into volatile memory in the digital core. For a high-level block diagram of the digital core, a description of its features and more detailed circuitry, refer to the Digital Core section. The digital core of the TPS65982 also interprets and uses information provided by the analog-to-digital converter ADC (see the ADC section), is configurable to read the status of general purpose inputs and trigger events accordingly, and controls general outputs which are configurable as push-pull or open-drain types with integrated pullup or pulldown resistors and can operate tied to a 1.8 V or 3.3 V rail. The TPS65982 is an I2C slave to be controlled by a host processor (see the I2C Slave Interface section), an SPI controller to write to and read from an external flash memory (see the SPI Controller Interface section), and is programmed by a single-wire debugger (SWD) connection (see the Single-Wire Debugger Interface section). The TPS65982 also integrates a thermal shutdown mechanism (see Thermal Shutdown section) and runs off of accurate clocks provided by the integrated oscillators (see the Oscillators section). 32 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 9.2 Functional Block Diagram NMOS PP_EXT SENSEP SENSEN HV_GATE1 HV_GATE2 External FET Control and Sense PP_HV VBUS 3A PP_5V0 600 mA PP_CABLE VDDIO VIN_3V3 VOUT_3V3 RESETZ MRESET HRESET BUSPOWERZ R_OSC I2C_ADDR GPIO1-9 I2C_SDA/SCL/IRQ1Z I2C_SDA/SCL/IRQ2Z SPI_PICO/POCI/CSZ/CLK SWD_DATA/CLK DEBUG_CTL1/2 UART_RX/TX LSX_R2P/P2R AUX_P/N USB_RP_P/N DEBUG1/2 DEBUG3/4 3A LDO_3V3 LDO_1V8A LDO_1V8D LDO_BMC Power Management and Supervisors Cable/Device 9 3 3 4 2 2 2 2 2 2 2 2 Detect, Digital Core C_CC1 RPD_G1 C_CC2 RPD_G2 Cable Power, and USB-PD Phy Port Data Multiplexer 2 2 2 C_USB_TP/TN C_USB_BP/BN C_SBU1/2 GND 9.3 Feature Description 9.3.1 USB-PD Physical Layer Figure 9-1 shows the USB PD physical layer block surrounded by a simplified version of the analog plug and orientation detection block. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 33 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Fast current limit PP_CABLE C_CC1/2 Gate Control and Current Limit C_CC1 Gate Control LDO_3V3 C_CC1 USB-PD Phy Digital Core C_CC2 LDO_3V3 C_CC2 Gate Control Figure 9-1. USB-PD Physical Layer and Simplified Plug and Orientation Detection Circuitry USB-PD messages are transmitted in a USB Type-C system using a BMC signaling. The BMC signal is output on the same pin (C_CC1 or C_CC2) that is DC biased because of the DFP (or UFP) cable attach mechanism discussed in the Cable Plug and Orientation Detection section. 9.3.1.1 USB-PD Encoding and Signaling Figure 9-2 shows the high-level block diagram of the baseband USB-PD transmitter. Figure 9-3 shows the high-level block diagram of the baseband USB-PD receiver. 4b5b Encoder Data BMC Encoder to PD_TX CRC Figure 9-2. USB-PD Baseband Transmitter Block Diagram from PD_RX BMC Decoder SOP Detect Data 4b5b Decoder CRC Figure 9-3. USB-PD Baseband Receiver Block Diagram 34 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 The USB-PD baseband signal is driven on the C_CCn pins with a tri-state driver. The tri-state driver is slew rate limited to reduce the high frequency components imparted on the cable and to avoid interference with frequencies used for communication. 9.3.1.2 USB-PD Bi-Phase Marked Coding The USBP-PD physical layer implemented in the TPS65982 is compliant to the USB-PD Specifications. The encoding scheme used for the baseband PD signal is a version of Manchester coding called Biphase Mark Coding (BMC). In this code, there is a transition at the start of every bit time and there is a second transition in the middle of the bit cell when a 1 is transmitted. This coding scheme is nearly DC balanced with limited disparity (limited to 1/2 bit over an arbitrary packet, so a very low DC level). Figure 9-4 shows Biphase Mark Coding. 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 1 Data in BMC Figure 9-4. Biphase Mark Coding Example The USB PD baseband signal is driven onto the C_CC1 or C_CC2 pins with a tri-state driver. The tri-state driver is slew rate to limit coupling to D+/D– and to other signal lines in the Type-C fully featured cables. When sending the USB-PD preamble, the transmitter will start by transmitting a low level. The receiver at the other end will tolerate the loss of the first edge. The transmitter will terminate the final bit by an edge to ensure the receiver clocks the final bit of EOP. 9.3.1.3 USB-PD Transmit (TX) and Receive (Rx) Masks The USB-PD driver meets the defined USB-PD BMC TX masks. Since a BMC coded 1 contains a signal edge at the beginning and middle of the UI, and the BMC coded 0 contains only an edge at the beginning, the masks are different for each. The USB-PD receiver meets the defined USB-PD BMC Rx masks. The boundaries of the Rx outer mask are specified to accommodate a change in signal amplitude because of the ground offset through the cable. The Rx masks are therefore larger than the boundaries of the TX outer mask. Similarly, the boundaries of the Rx inner mask are smaller than the boundaries of the TX inner mask. Triangular time masks are superimposed on the TX outer masks and defined at the signal transitions to require a minimum edge rate that will have minimal impact on adjacent higher speed lanes. The TX inner mask enforces the maximum limits on the rise and fall times. Refer to the USB-PD Specifications for more details. 9.3.1.4 USB-PD BMC Transmitter The TPS65982 transmits and receives USB-PD data over one of the C_CCn pins. The C_CCn pin is also used to determine the cable orientation (see the Cable Plug and Orientation Detection section) and maintain cable/device attach detection. Thus, a DC bias will exist on the C_CCn. The transmitter driver will overdrive the C_CCn DC bias while transmitting, but will return to a Hi-Z state allowing the DC voltage to return to the C_CCn pin when not transmitting. Figure 9-5 shows the USB-PD BMC TX/Rx driver block diagram. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 35 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Digitally Adjustable VREF LDO_BMC Level Shifter PD_TX Driver C_CC1 Level Shifter PD_RX C_CC2 USB-PD Modem Digitally Adjustable VREF Figure 9-5. USB-PD BMC TX/Rx Block Diagram Figure 9-6 shows the transmission of the BMC data on top of the DC bias. Note, The DC bias can be anywhere between the minimum threshold for detecting a UFP attach (VD_CCH_USB) and the maximum threshold for detecting a UFP attach to a DFP (VD_CCH_3P0) defined in the Cable Plugand Orientation Detection section. This means that the DC bias can be below VOH of the transmitter driver or above VOH. VOH DC Bias DC Bias VOL VOH DC Bias DC Bias VOL Figure 9-6. TX Driver Transmission with DC Bias The transmitter drives a digital signal onto the C_CCn lines. The signal peak VTXP is adjustable by application code and sets the VOH/VOL for the BMC data that is transmitted, and is defined in USB-PD TX Driver Voltage Adjustment Parameter. Keep in mind that the settings in a final system must meet the TX masks defined in the USB-PD Specifications. When driving the line, the transmitter driver has an output impedance of ZDRIVER. ZDRIVER is determined by the driver resistance and the shunt capacitance of the source and is frequency dependent. ZDRIVER impacts the noise ingression in the cable. Figure 9-7 shows the simplified circuit determining ZDRIVER. It is specified such that noise at the receiver is bounded. ZDRVER is defined by Equation 1. ZDRIVER = 36 RDRIVER 1 + s ´ RDRIVER ´ CDRIVER (1) Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 RDRIVER ZDRIVER Driver CDRIVER Figure 9-7. ZDRIVER Circuit 9.3.1.5 USB-PD BMC Receiver The receiver block of the TPS65982 receives a signal that falls within the allowed Rx masks defined in the USB PD specification. The receive thresholds and hysteresis come from this mask. The values for VRXTR and VRXTF are listed in USB-PD Baseband Signal Requirements and Characteristics. Figure 9-8 shows an example of a multi-drop USB-PD connection. This connection has the typical UFP (device) to DFP (host) connection, but also includes cable USB-PD TX/Rx blocks. Only one system can be transmitting at a time. All other systems are Hi-Z (ZBMCRX). The USB-PD Specification also specifies the capacitance that can exist on the wire as well as a typical DC bias setting circuit for attach detection. DFP System Tx Pullup for Attach Detection UFP System Cable Connector Connector Tx CRECEIVER CRECEIVER CCBLPLUG CCBLPLUG Rx RD for Attach Detection Rx Rx Tx Tx Rx Figure 9-8. Example USB-PD Multi-Drop Configuration 9.3.2 Cable Plug and Orientation Detection Figure 9-9 shows the plug and orientation detection block at each C_CC pin (C_CC1 and C_CC2). Each pin has identical detection circuitry. LDO_3V3 IH_CC_0P9 IH_CC_1P5 VREF1 IH_CC_3P0 C_CCn VREF2 RD_CC VREF3 Figure 9-9. Plug and Orientation Detection Block 9.3.2.1 Configured as a DFP When configured as a DFP, the TPS65982 detects when a cable or a UFP is attached using the C_CC1 and C_CC2 pins. When in a disconnected state, the TPS65982 monitors the voltages on these pins to determine what, if anything, is connected. See the USB Type-C Specification for more information. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 37 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Table 9-1 shows the high-level detection results. Refer to the USB Type-C Specification for more information. Table 9-1. Cable Detect States for a DFP C_CC1 C_CC2 CONNECTION STATE RESULTING ACTION Open Open Nothing attached Continue monitoring both C_CC pins for attach. Power is not applied to VBUS or VCONN until a UFP connect is detected. Rd Open UFP attached Monitor C_CC1 for detach. Power is applied to VBUS but not to VCONN (C_CC2). Open Rd UFP attached Monitor C_CC2 for detach. Power is applied to VBUS but not to VCONN (C_CC1). Ra Open Powered Cable/No UFP attached Monitor C_CC2 for a UFP attach and C_CC1 for cable detach. Power is not applied to VBUS or VCONN (C_CC1) until a UFP attach is detected. Open Ra Powered Cable/No UFP attached Monitor C_CC1 for a UFP attach and C_CC2 for cable detach. Power is not applied to VBUS or VCONN (C_CC1) until a UFP attach is detected. Ra Rd Powered Cable/UFP Attached Provide power on VBUS and VCONN (C_CC1) then monitor C_CC2 for a UFP detach. C_CC1 is not monitored for a detach. Rd Ra Powered Cable/UFP attached Provide power on VBUS and VCONN (C_CC2) then monitor C_CC1 for a UFP detach. C_CC2 is not monitored for a detach. Rd Rd Debug Accessory Mode attached Sense either C_CC pin for detach. Ra Ra Audio Adapter Accessory Mode attached Sense either C_CC pin for detach. When the TPS65982 is configured as a DFP, a current IH_CC is driven out each C_CCn pin and each pin is monitored for different states. When a UFP is attached to the pin, a pulldown resistance of Rd to GND will exist. The current IH_CC is then forced across the resistance Rd generating a voltage at the C_CCn pin. When configured as a DFP advertising Default USB current sourcing capability, the TPS65982 applies IH_CC_USB to each C_CCn pin. When a UFP with a pulldown resistance Rd is attached, the voltage on the C_CCn pin will pull below VH_CCD_USB. The TPS65982 can also be configured as a DFP to advertise default (500 mA), 1.5 A and 3 A sourcing capabilities. When the C_CCn pin is connected to an active cable VCONN (power to the active cable), the pulldown resistance will be different (Ra). In this case, the voltage on the C_CCn pin will pull below VH_CCA_USB/1P5/3P0 and the system will recognize the active cable. The VH_CCD_USB/1P5/3P0 thresholds are monitored to detect a disconnection from each of these cases respectively. When a connection has been recognized and the voltage on the C_CCn pin rises above the VH_CCD_USB/1P5/3P0 threshold, the system will register a disconnection. 9.3.2.2 Configured as a UFP When the TPS65982 is configured as a UFP, the TPS65982 presents a pulldown resistance RD_CC on each C_CCn pin and waits for a DFP to attach and pullup the voltage on the pin. The DFP will pullup the C_CC pin by applying either a resistance or a current. The UFP detects an attachment by the presence of VBUS. The UFP determines the advertised current from the DFP by the pullup applied to the C_CCn pin. 9.3.2.3 Dead-Battery or No-Battery Support Type-C USB ports require a sink to present Rd on the CC pin before a USB Type-C source will provide a voltage on VBUS. The TPS65982 is hardware-configurable to present this Rd during a dead-battery or no-battery condition. Additional circuitry provides a mechanism to turn off this Rd when the port is acting as a source. Figure 9-10 shows the RPD_Gn pin used to configure the behavior of the C_CCn pins, and elaborates on the basic cable plug and orientation detection block shown in Figure 9-9. RPD_G1 and RPD_G2 configure C_CC1 and C_CC2 respectively. A resistance R_RPD is connected to the gate of the pulldown FET on each C_CCn pin. This resistance must be pin-strapped externally to configure the C_CCn pin to behave in one of two ways: present an Rd pulldown resistance or present a Hi-Z when the TPS65982 is unpowered. During normal operation, RD will be RD_CC; however, while dead-battery or no-battery conditions exist, the resistance is un-trimmed and will be RD_DB. When RD_DB is presented during dead-battery or no-battery, application code will switch to RD_CC. 38 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 RPD_Gn C_CCn R_RPD RD_DB RD_DB_EN RD_CC RD_CC_EN Figure 9-10. C_CCn and RPD_Gn pins When C_CC1 is shorted to RPD_G1 and C_CC2 is shorted to RPD_G2 in an application of the TPS65982, booting from dead-battery or no-battery conditions will be supported. In this case, the gate driver for the pulldown FET is Hi-Z at its output. When an external connection pulls up on C_CCn (the case when connected to a DFP advertising with a pullup resistance Rp or pullup current), the connection through R_RPD will pull up on the FET gate turning on the pulldown through RD_DB. In this condition, the C_CCn pin will act as a clamp VTH_DB in series with the resistance RD_DB. When RPD_G1 and RPD_G2 are shorted to GND in an application and not electrically connected to C_C1 and C_CC2, booting from dead-battery or no-battery conditions is not possible. In this case, the TPS65982 will present a Hi-Z on the C_CC1 and C_CC2 pins and a USB Type-C source will never provide a voltage on VBUS. 9.3.3 Port Power Switches Figure 9-11 shows the TPS65982 port power path including all internal and external paths. The port power path provides to VBUS from PP_5V0, provides power to or from VBUS from or to PP_HV, provides power to or from an external port power node (shown and refered to as PP_EXT) from or to VBUS, and provides power from PP_CABLE to C_CC1 or C_CC2. The PP_CABLE to C_CCn switches shown in Figure 9-11 are the same as in Figure 9-1, but are now shown without the analog USB Type-C cable plug and orientation detection circuitry. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 39 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 NMOS 5A RSENSE 10 mΩ ± 1% HV_GATE2 HV_GATE1 SENSEP SENSEN PP_EXT PP_HV Gate Control and Current Limit PP_HV Fast current limit 3A HV Gate Control and Sense PP_5V0 Gate Control and Current Limit PP_5V0 VBUS Fast current limit 3A C_CC1/2 Gate Control and Current Limit C_CC1 Gate Control PP_CABLE C_CC1 Fast current600mA limit C_CC2 Gate Control C_CC2 Figure 9-11. Port Power Paths 9.3.3.1 5V Power Delivery The TPS65982 provides port power to VBUS from PP_5V0 when a low voltage output is needed. The switch path provides 5 V at up to 3 A to from PP_5V0 to VBUS. Figure 9-11 shows a simplified circuit for the switch from PP_5V0 to VBUS. 9.3.3.2 5V Power Switch as a Source The PP_5V0 path is unidirectional, sourcing power from PP_5V0 to VBUS only. When the switch is on, the protection circuitry limits reverse current from VBUS to PP_5V0. Figure 9-12 shows the I-V characteristics of the reverse current protection feature. Figure 9-12 and the reverse current limit can be approximated using Equation 2. IREV5V0 = VREV5V0/RPP5V 40 (2) Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 I 1/RPP5V VREV5V0 V IREV5V0 Figure 9-12. 5V Switch I-V Curve 9.3.3.3 PP_5V0 Current Sense The current from PP_5V0 to VBUS is sensed through the switch and is available to be read digitally through the ADC. 9.3.3.4 PP_5V0 Current Limit The current through PP_5V0 to VBUS is limited to ILIMPP5V and is controlled automatically by the digital core. When the current exceeds ILIMPP5V, the current-limit circuit activates. Depending on the severity of the over-current condition, the transient response will react in one of two ways: Figure 9-13 and Figure 9-14 show the approximate response time and clamping characteristics of the circuit for a hard short while Figure 9-15 shows the shows the approximate response time and clamping characteristics for a soft short with a load of 2 Ω. 12 6 10 5 8 4 6 3 4 2 2 1 0 0 -2 Voltage (V) Current (A) I VBUS VBUS -1 Time (5 Ps/div) D004 Figure 9-13. PP_5V0 Current Limit with a Hard Short Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 41 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 12 6 10 5 8 4 6 3 4 2 2 1 0 0 -2 Voltage (V) Current (A) I VBUS VBUS -1 Time (200 Ps/div) D005 Figure 9-14. PP_5V0 Current Limit with a Hard Short (Extended Time Base) 6 6 5 5 4 4 3 3 2 2 1 1 0 Voltage (V) Current (A) I VBUS VBUS 0 Time (200 Ps/div) D006 Figure 9-15. PP_5V0 Current Limit with a Soft Short (2 Ω) 9.3.3.5 Internal HV Power Delivery The TPS65982 has an integrated, bi-directional high-voltage switch that is rated for up to 3 Amps of current. The TPS65982 is capable of sourcing or sinking high-voltage power through an internal switch path designed to support USB-PD power up to 20 V at 3 A of current. VBUS and PP_HV are both rated for up to 22 V as determined by Recommended Operating Conditions, and operate down to 0 V as determined by Absolute Maximum Ratings. In addition, VBUS is tolerant to voltages up to 22 V even when PP_HV is at 0 V. Similarly, PP_HV is tolerant up to 22 V while VBUS is at 0 V. The switch structure is designed to tolerate a constant operating voltage differential at either of these conditions. Figure 9-11 shows a simplified circuit for the switch from PP_HV to VBUS. 9.3.3.6 Internal HV Power Switch as a Source The TPS65982 provides power from PP_HV to VBUS at the USB Type-C port as an output when operating as a source. When the switch is on as a source, the path behaves resistively until the current reaches the amount 42 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 calculated by Equation 3 and then blocks reverse current from VBUS to PP_HV. Figure 9-16 shows the diode behavior of the switch as a source. IREVHV = VREVHV/RPPHV (3) I 1/RPPHV VREVHV V IREVHV Figure 9-16. Internal HV Switch I-V Curve as a Source 9.3.3.7 Internal HV Power Switch as a Sink The TPS65982 can also receive power from VBUS to PP_HV when operating as a sink. When the switch is on as a sink the path behaves as an ideal diode and blocks reverse current from PP_HV to VBUS. Figure 9-17 shows the diode behavior of the switch as a sink. I 1/RPPHV VREVHV/RPPHV VBUS-PP_HV VREVHV Figure 9-17. Internal HV Switch I-V Curve as a Sink 9.3.3.8 Internal HV Power Switch Current Sense The current from PP_HV to VBUS is sensed through the switch and is available to be read digitally through the ADC only when the switch is sourcing power. When sinking power, the readout from the ADC will not reflect the current. 9.3.3.9 Internal HV Power Switch Current Limit The current through PP_HV to VBUS is current limited to ILIMPPHV (only when operating as a source) and is controlled automatically by the digital core. When the current exceeds ILIMPPHV, the current-limit circuit activates. Depending on the severity of the over-current condition, the transient response will react in one of two ways: Figure 9-18 shows the approximate response time and clamping characteristics of the circuit for a hard short while Figure 9-19 shows the approximate response time and clamping characteristics for a soft short of 7 Ω. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 43 TPS65982 Current (A) 30 25 30 I VBUS VBUS PP_HV 25 20 20 15 15 10 10 5 5 0 0 -5 Voltage (V) www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 -5 Time (10 Ps/div) D007 Figure 9-18. PP_HV Current Limit Response with a Hard Short 5 25 4 20 3 15 2 10 1 5 0 0 -1 Voltage (V) Current (A) I VBUS VBUS PP_HV -5 Time (200 Ps/div) D008 Figure 9-19. PP_HV Current Limit Response with a Soft Short (7 Ω) 9.3.3.10 External HV Power Delivery The TPS65982 is capable of controlling an external high-voltage, common-drain back-to-back NMOS FET switch path to source or sink power up to the maximum limit of the USB PD specification: 20 V at 5 A of current. The TPS65982 provides external control and sense to external NMOS power switches for currents greater than 3 A. This path is bi-directional for either sourcing current to VBUS or sinking current from VBUS. The external NMOS switches are back-to-back to protect the system from large voltage differential across the FETs as well as blocking reverse current flow. Each NFET has a separate gate control. HV_GATE2 is always connected to the VBUS side and HV_GATE1 is always connected to the opposite side, referred to as PP_EXT. Two sense pins, SENSEP and SENSEN, are used to implement reverse current blocking, over-current protection, and current sensing. The external path may be used in conjunction with the internal path. For example, the internal path may be used to source current from PP_HV to VBUS when the TPS65982 is acting as a power source and the external path may be used to sink current from VBUS to PP_EXT to charge a battery when the TPS65982 is acting as a sink. The internal and external paths must never be used in parallel to source current at the same 44 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 time or sink current at the same time. The current limiting function will not function properly in this case and may become unstable. 9.3.3.11 External HV Power Switch as a Source with RSENSE Figure 9-11 shows the configuration when the TPS65982 is acting as a source for the external switch path. The external FETs must be connected in a common-drain configuration and will not work in a common source configuration. In this mode, current is sourced to VBUS. RSENSE provides an accurate current measurement and is used to initiate the current limiting feature of the external power path. The voltage between SENSEP (PP_EXT) and SENSEN (VBUS) is sensed to block reverse current flow. This measurement is also digitally readable via the ADC. 9.3.3.12 External HV Power Switch as a Sink with RSENSE Figure 9-20 shows the configuration when the TPS65982 is acting as a sink for the external switch path with RSENSE used to sense current. Acting as a sink, the voltage between SENSEP (VBUS) and SENSEN (PP_EXT) is sensed to provide an accurate current measurement and initiate the current limiting feature of the external power path. This measurement is also digitally readable via the ADC. NMOS 5A RSENSE 10 mΩ ± 1% VBUS HV_GATE2 HV_GATE1 SENSEN SENSEP PP_EXT HV Gate Control and Sense Figure 9-20. External HV Switch as a Sink with RSENSE 9.3.3.13 External HV Power Switch as a Sink without RSENSE Figure 9-21 shows the configuration when the TPS65982 is acting as a sink for the external switch path without an RSENSE resistor. In this mode, current is sunk from VBUS to an internal system power node, referred to as PP_EXT. This is used for charging a battery or for providing a supply voltage for a bus-powered device. To block reverse current, the VBUS and SENSEP pins monitor the voltage across the NFETs. To ensure that SENSEN does not float, tie SENSEP to SENSEN in this configuration. When configured in this mode, the digital readout from current from the ADC will be approximately zero. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 45 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 NMOS 5A VBUS HV_GATE2 HV_GATE1 SENSEN SENSEP PP_EXT HV Gate Control and Sense Figure 9-21. External HV Switch as a Sink without RSENSE 9.3.3.14 External Current Sense The current through the external NFETs to VBUS is sensed through the RSENSE resistor and is available to be read digitally through the ADC. When acting as a source, the readout from the ADC will only accurately reflect the current through the external NFETs when the connection of SENSEP and SENSEN adheres to Figure 9-11. When acting as a sink, the readout from the ADC will only accurately reflect the current through the external NFETs when the connection of SENSEP and SENSEN adheres to Figure 9-20. 9.3.3.15 External Current Limit The current through the external NFETs to VBUS is current limited when acting as a source or a sink. The current is sensed across the external RSENSE resistance. The current limit is set by a combination of the RSENSE magnitude and configuration settings for the voltage across the resistance. When the voltage across the RSENSE resistance exceeds the automatically set voltage limit, the current-limit circuit is activated. 9.3.3.16 Soft Start When configured as a sink, the SS pin provides a soft start function for each of the high-voltage power path supplies (P_HV and external PP_EXT path) up to 5.5 V. The SS circuitry is shared for each path and only one path will turn on as a sink at a time. The soft start is enabled by application code or via the host processor. The SS pin is initially discharged through a resistance RSS_DIS. When the switch is turned on, a current ISS is sourced from the pin to a capacitance CSS. This current into the capacitance generates a slow ramping voltage. This voltage is sensed and the power path FETs turn on and the voltage follows this ramp. When the voltage reaches the threshold VTHSS, the power path FET will be near being fully turned on, the output voltage will be fully charged. At time TSSDONE, a signal to the digital core indicates that the soft start function has completed. The ramp rate of the supply is given by Equation 4: Ramp Rate = 9 ´ ISS CSS (4) The maximum ramp voltage for the supply is approximately 16.2 V. For any input voltage higher than this, the ramp will stop at 16.2 V until the firmware disables the soft start. At this point, the voltage will step to the input voltage at a ramp rate defined by approximately 7 μA into the gate capacitance of the switch. The TSSDONE time is independent of the actual final ramp voltage. 9.3.3.17 BUSPOWERZ At power-up, when VIN_3V3 is not present and a dead-battery condition is supported as described in DeadBattery or No-Battery Support, the TPS65982 will appear as a USB Type-C sink (device) causing a connected USB Type-C source (host) to provide 5 V on VBUS. The TPS65982 will power itself from the 5-V VBUS rail (see Power Management) and execute boot code (see Boot Code). The boot code will observe the BUSPOWERZ voltage, which will fall into one of three voltage ranges: VBPZ_DIS, VBPZ_HV, and VBPZ_EXT (defined in 46 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 BUSPOWERZ Configuration Characteristics). These three voltage ranges configure how the TPS65982 routes the 5 V present on VBUS to the system in a dead-battery or no-battery scenario. When the voltage on BUSPOWERZ is in the VBPZ_DIS range (when BUSPOWERZ is tied to LDO_3V3 as in Figure 9-22), this indicates that the TPS65982 will not route the 5 V present on VBUS to the entire system. In this case, the TPS65982 will load SPI-connected flash memory and execute this application code. This configuration will disable both the PP_HV and PP_EXT high voltage switches and only use VBUS to power the TPS65982. LDO_3V3 LDO_1V8D BUSPOWERZ ADC Figure 9-22. BUSPOWERZ Configured to Disable Power from VBUS The BUSPOWERZ pin can alternately configure the TPS65982 to power the entire system through the PP_HV internal load switch when the voltage on BUSPOWERZ is in the VBPZ_HV range (when BUSPOWERZ is tied to LDO_1V8D as in Figure 9-23). LDO_3V3 LDO_1V8D BUSPOWERZ ADC Figure 9-23. BUSPOWERZ Configured with PP_HV as Input Power Path The BUSPOWERZ pin can also alternately configure the TPS65982 to power the entire system through the PP_EXT external load switch when the voltage on BUSPOWERZ is in the VBPZ_EXT range (when BUSPOWERZ is tied to GND as in Figure 9-24). LDO_3V3 LDO_1V8D BUSPOWERZ ADC Figure 9-24. BUSPOWERZ Configured with PP_EXT as Input Power Path 9.3.3.18 Voltage Transitions on VBUS through Port Power Switches Figure 9-25 shows the waveform for a positive voltage transition. The timing and voltages apply to both a transition from 0 V to PP_5V0 and a transition from PP_5V0 to PP_HV as well as a transition from PP_5V0 to an PP_EXT. A transition from PP_HV to PP_EXT is possible and vice versa, but does not necessarily follow the constraints in Figure 9-25. When a switch is closed to transition the voltage, a maximum slew-rate of SRPOS occurs on the transition. The voltage ramp will remain monotonic until the voltage reaches VSRCVALID within the final voltage. The voltage may overshoot the new voltage by VSRCVALID. After time TSTABLE from the Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 47 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 start of the transition, the voltage will fall to within VSRCNEW of the new voltage. During the time TSTABLE, the voltage may fall below the new voltage, but will remain within VSRCNEW of this voltage. VSRCVALID (max) VSRCNEW (max) New Voltage Voltage VSRCNEW (min) VSRCVALID (min) SRPOS Old Voltage TSTABLE Time Figure 9-25. Positive Voltage Transition on VBUS Figure 9-26 shows the waveform for a negative voltage transition. The timing and voltages apply to both a transition from PP_HV to PP_5V0 and a transition from PP_5V0 to 0V as well as a transition from PP_EXT to PP_5V0. A transition from PP_HV to PP_EXT is possible and vice versa, but does not necessarily follow the constraints in Figure 9-26. When a switch is closed to transition the voltage, a maximum slew-rate of SRNEG occurs on the transition. The voltage ramp will remain monotonic until the voltage reaches TOLTRANUN within the final voltage. The voltage may overshoot the new voltage by TOLTRANLN. After time TSTABLE from the start of the transition, the voltage will fall to within VSRCNEW of the new voltage. During the time TSTABLE, the voltage may fall below the new voltage, but will remain within VSRCNEW of this voltage. TSTABLE Old Voltage Voltage SRNEG VSRCVALID (max) VSRCNEW (max) New Voltage VSRCNEW (min) VSRCVALID (min) Time Figure 9-26. Negative Voltage Transition on VBUS 9.3.3.19 HV Transition to PP_RV0 Pull-Down on VBUS The TPS65982 has an integrated active pulldown on VBUS when transitioning from PP_HV to PP_5V0, shown in Figure 9-27. When the PP_HV switch is disabled and VBUS > PP_5V0 + VHVDISPD, amplifier turns on a current source and pulls down on VBUS. The amplifier implements active slew rate control by adjusting the pulldown current to prevent the slew rate from exceeding specification. When VBUS falls to within VHVDISPD of 48 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 PP_5V0, the pulldown is turned off. The load on VBUS will then continue to pull VBUS down until the ideal diode switch structure turns on connecting it to PP_5V0. When switching from PP_HV or PP_EXT to PP_5V0, PP_HV or PP_EXT must be above VSO_HV to follow the switch-over shown in Figure 9-26. PP_5V0 Gate Control and Current Limit PP_5V0 VBUS Fast current limit VHVDISPD Slew Rate Controlled Pulldown Figure 9-27. PP_5V0 Slew Rate Control 9.3.3.20 VBUS Transition to VSAFE0V When VBUS transitions to near 0 V (VSAFE0V), the pulldown circuit in Figure 9-27 is turned on until VBUS reaches VSAFE0V. This transition will occur within time TSAFE0V. 9.3.3.21 C_CC1 and C_CC2 Power Configuration and Power Delivery The C_CC1 and C_CC2 pins are used to deliver power to active circuitry inside a connected cable and output USB-PD data to the cable and connected device. Figure 9-11 shows the C_CC1, and C_CC2 outputs to the port. Only one of these pins will be used to deliver power at a time depending on the cable orientation. The other pin will be used to transmit USB-PD data through the cable to a connected device. Figure 9-28 shows a high-level flow of connecting these pins based on the cable orientation. See the Section 9.3.2 section for more detailed information on plug and orientation detection. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 49 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Firmware Loaded Wait for Plug no Plug Detected? yes Detect Type and Orientation Connect C_CC1 to USB-PD Phy no C_CC2 Powered? yes C_CC1 = Data line? yes Connect C_CC2 to PP_CABLE C_CC2 Open Connect C_CC2 to USB-PD Phy no yes no C_CC1 Powered? Connect C_CC1 to PP_CABLE C_CC1 Open Figure 9-28. Port C_CC and VCONN Connection Flow Figure 9-29 and Figure 9-30 show the two paths from PP_CABLE to the C_CCn pins. When one C_CCn pin is powered from PP_CABLE, the other is connected to the USB-PD BMC modem. The red line shows the power path and the green line shows the data path. Fast current limit PP_CABLE C_CC1/2 Gate Control and Current Limit C_CC1 Gate Control LDO_3V3 USB-PD Data USB-PD Phy Digital Core LDO_3V3 C_CC1 CC C_CC2 VCONN Power Active Cable Circuitry Cable Plug C_CC2 Gate Control Figure 9-29. Port C_CC1 and C_CC2 Normal Orientation Power from PP_CABLE 50 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Fast current limit PP_CABLE C_CC1/2 Gate Control and Current Limit C_CC1 Gate Control LDO_3V3 Cable Plug Active Cable Circuitry Digital Core USB-PD Phy LDO_3V3 C_CC1 VCONN C_CC2 CC Power USB-PD Data C_CC2 Gate Control Figure 9-30. Port C_CC1 and C_CC2 Reverse Orientation Power from PP_CABLE 9.3.3.22 PP_CABLE to C_CC1 and C_CC2 Switch Architecture Figure 9-11 shows the switch architecture for the PP_CABLE switch path to the C_CCc pins. Each path provides a unidirectional current from PP_CABLE to C_CC1 and C_CC2. The switch structure blocks reverse current from C_CC1 or C_CC2 to PP_CABLE. 9.3.3.23 PP_CABLE to C_CC1 and C_CC2 Current Limit The PP_CABLE to C_CC1 and C_CC2 share current limiting through a single FET on the PP_CABLE side of the switch. The current limit ILIMPPCC is adjustable between two levels. When the current exceeds ILIMPPCC, the current-limit circuit activates. Depending on the severity of the over-current condition, the transient response will react in one of two ways: Figure 9-31 and Figure 9-32 show the approximate response time and clamping characteristics of the circuit for a hard short while Figure 9-33 shows the approximate response time and clamping characteristics for a soft short. The switch does not have reverse current blocking when the switch is enabled and current is flowing to either C_CC1 or C_CC2. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 51 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 10 I CC2 C_CC2 PP_CABLE 8 Current (A) 6 5 6 4 4 3 2 2 0 1 -2 0 Voltage (V) 7 -4 Time (10 Ps/div) D009 Current (A) 6 5 6 I CC2 C_CC2 PP_CABLE 5 4 4 3 3 2 2 1 1 0 0 -1 Voltage (V) Figure 9-31. PP_CABLE to C_CCn Current Limit with a Hard Short -1 Time (500 Ps/div) D010 Figure 9-32. PP_CABLE to C_CCn Current Limit with a Hard Short (Extended Time Base) 52 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com Current (A) 3 2.5 6 I CC2 C_CC2 PP_CABLE 5 2 4 1.5 3 1 2 0.5 1 0 0 -0.5 Voltage (V) SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 -1 Time (50 Ps/div) D011 Figure 9-33. PP_CABLE to C_CCn Current Limit Response with a Soft Short (2 Ω) 9.3.4 USB Type-C Port Data Multiplexer The USB Type-C receptacle pin configuration is show in Figure 9-34. Not all signals shown are required for all platforms or devices. The basic functionality of the pins deliver USB 2.0 (D+ and D–) and USB 3.1 (TX and RX pairs) data buses, USB power (VBUS) and ground (GND). Configuration Channel signals (CC1 and CC2), and two Reserved for Future Use (SBU) signal pins. The data bus pins (Top and Bottom D+/D– and the SBU pins) are available to be used in non-USB applications as an Alternate Mode (i.e., DisplayPort, Thunderbolt™, etc.). Figure 9-34. USB Type-C Receptacle Pin Configuration A1 A2 A3 A4 A5 A6 A7 A8 A9 A11 A11 A12 GND TX1+ TX1– VBUS CC1 D+ D– SBU1 VBUS RX2– RX2+ GND GND RX1+ RX1– VBUS SBU2 D– D+ CC2 VBUS TX2– TX2+ GND B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 The TPS65982 USB Type-C interface multiplexers are shown in Table 9-2. The outputs are determined based on detected cable orientation as well as the identified interface that is connected to the port. There are two USB output ports that may or may not be passing USB data. When an Alternate Mode is connected, these same ports may also pass that data (e.g. DisplayPort, Thunderbolt). Note, the TPS65982 pin to receptacle mapping is shown in Table 9-2. The high-speed RX and TX pairs are not mapped through the TPS65982 as this would place extra resistance and stubs on the high-speed lines and degrade signal performance. Table 9-2. TPS65982 to USB Type-C Receptacle Mapping DEVICE PIN Type-C RECEPTACLE PIN VBUS VBUS (A4, A9, B4, B9) C_CC1 CC1 (A5) C_CC2 CC2 (B5) C_USB_TP D+ (A6) C_USB_TN D– (A7) C_USB_BP D+ (B6) C_USB_BN D– (B7) C_SBU1 SBU1 (A8) Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 53 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Table 9-2. TPS65982 to USB Type-C Receptacle Mapping (continued) DEVICE PIN Type-C RECEPTACLE PIN C_SBU2 SBU2 (B8) SWD_DATA SWD_CLK GPIO0 GPIO1 GPIO UART0 1st Stage Digital Cross-Bar Mux UART1 UART0 CORE_ UART0 UART1 CORE_ UART1 2nd Stage SWD CORE_ UART2 Digital Core SWD_CLK/DATA C_USB_TP USB_EP_P/N USB_RP_P/N C_USB_TN DEBUG1/2 DEBUG3/4 UART_TX UART_RX Charger ID LSX_P2R To ADC SBU_INT1 SBU_INT2 LSX_R2P SWD_CLK/DATA USB_RP_P USB_RP USB_RP_N DEBUG1 DEBUG1/2 C_USB_BP USB_RP_P/N USB_EP_P/N DEBUG1/2 DEBUG3/4 C_USB_BN DEBUG2 DEBUG3 DEBUG3/4 DEBUG4 SWD_CLK/DATA SBU_INT1 AUX_P AUX_P/N C_SBU1 SBU_INT2 C_SBU2 AUX_N DEBUG1/2 DEBUG3/4 AUX_P/N Figure 9-35. Port Data Multiplexers Table 9-3 shows the typical signal types through the switch path. The UART_RX/TX and LSX_P2R/R2P paths are digitally buffered to allow tri-state control for these paths. All other switches are analog pass switches. The LSX_P2R/R2P pair is also configurable to be analog pass switches as well. These switch paths are not limited to the specified signal type. For the signals that interface with the digital core, the maximum data rate is dictated by the clock rate at which the core is running. Table 9-3. Typical Signals through Analog Switch Path INPUT PATH SWD_DATA/CLK SIGNAL TYPE SIGNAL FUNCTION Single Ended Data, Clock UART_RX/TX Single Ended TX/Rx UART LSX_P2R/R2P Single Ended TX/Rx UART DEBUG1/2/3/4 Single Ended Debug AUX_P/N Differential DisplayPort and Thunderbolt AUX channel USB_EP_P/N Differential USB 2.0 Low Speed Endpoint USB_RP_P/N Differential USB 2.0 High Speed Data Root Port 54 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 9.3.4.1 USB Top and Bottom Ports The Top (C_USB_TP and C_USB_TN) and Bottom (C_USB_BP and C_USB_BN) ports that correspond to the Type-C top and bottom USB D+/D– pairs are swapped based on the detected cable orientation. The symmetric pin order shown in Figure 9-34 from the A-side to the B-side allows the pins to connect to equivalent pins on the opposite side when the cable orientation is reversed. 9.3.4.2 Multiplexer Connection Orientation Table 9-4 shows the multiplexer connection orientation. For the USB D+/D– pair top and bottom port connections, these connections are fixed. For the SBU port connections, the SBU crossbar multiplexer enables flipping of the signal pair and the connections shown are for the upside-up orientation. The CORE_UARTn connections come from a digital crossbar multiplexer that allows the UART_RX/TX, LSX_P2R/R2P, and GPIO0/1 to be mapped to any of the 1st stage multiplexers. Table 9-4. Data Multiplexer Connections SYSTEM PIN USB TOP PIN USB BOTTOM PIN SBU MULTIPLEXER PIN USB_RP_P C_USB_TP C_USB_BP USB_RP_N C_USB_TN C_USB_BN USB_EP_P C_USB_TP C_USB_BP USB_EP_N C_USB_TN C_USB_BN SWD_CLK C_USB_TP C_USB_BP SBU1 SWD_DATA C_USB_TN C_USB_BN SBU2 DEBUG1 C_USB_TP C_USB_BP SBU1 DEBUG2 C_USB_TN C_USB_BN SBU2 DEBUG3 C_USB_TP C_USB_BP SBU1 DEBUG4 C_USB_TN C_USB_BN SBU2 AUX_P C_USB_TP C_USB_BP SBU1 AUX_N C_USB_TN C_USB_BN SBU2 LSX_R2P SBU1 LSX_P2R SBU2 CORE_UART0_TX C_USB_TP CORE_UART0_RX C_USB_TN CORE_UART1_TX C_USB_BP CORE_UART1_RX C_USB_BN CORE_UART2_TX SBU1 CORE_UART2_RX SBU2 9.3.4.3 Digital Crossbar Multiplexer The TPS65982 UART paths (UART_RX/TX and LSX_P2R/R2P) and GPIO0/1 all have digital inputs that pass through a cross-bar multiplexer inside the digital core. Each of these pins is configurable as an input or output of the cross-bar multiplexer. The digital cross-bar multiplexer then connects to the port data multiplexers as shown in Figure 9-35. The connections are configurable via firmware. The default state at power-up is to connect a buffered version of UART_RX to UART_TX providing a bypass through the TPS65982 for daisy chaining during power on reset. 9.3.4.4 SBU Crossbar Multiplexer The SBU Crossbar Multiplexer provides pins (C_SBU1 and C_SBU2) for future USB functionality as well as Alternate Modes. The multiplexer swaps the output pair orientation based on the cable orientation. For more information on Alternate Modes, refer to the USB PD Specification. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 55 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 9.3.4.5 Signal Monitoring and Pullup/Pulldown The TPS65982 has comparators that may be enabled to interrupt the core when a switching event occurs on any of the port inputs. The input parameters for the detection are listed in the Port Data Multiplexer Signal Monitoring Pullup and Pulldown Characteristics table. These comparators are disconnected by application code when these pins are not digital signals but an analog voltage. The TPS65982 has pullups and pulldowns between the first and second stage multiplexers of the port switch for each port output: C_SBU1/2, C_USB_TP/N, C_USB_BP/N. The configurable pullup and pulldown resistances between each multiplexer are shown in Figure 9-36. LDO_3V3 LDO_3V3 RP100 RP5 To Digital Core 1st Stage Mux 2nd Stage Mux RPD1 LDO_3V3 RP5 RP100 LDO_3V3 RP100 RP5 To Digital Core RPD1 RP5 RP100 Figure 9-36. Port Detect and Pullup/Pulldown 9.3.4.6 Port Multiplexer Clamp Each input to the 2nd stage multiplexer is clamped to prevent voltages on the port from exceeding the safe operating voltage of circuits attached to the system side of the Port Data Multiplexer. Figure 9-37 shows the simplified clamping circuit. When a path through the 2nd stage multiplexer is closed, the clamp is connected to the one of the port pins (C_USB_TP/N, C_USB_BP/N, C_SBU1/2). When a path through the 2nd stage multiplexer is not closed, then the port pin is not clamped. As the pin voltage rises above the VCLMP_IND voltage, the clamping circuit activates, and sinks current to ground, preventing the voltage from rising further. 56 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 2nd Stage Mux Input VREF Figure 9-37. Port Mux Clamp 9.3.4.7 USB2.0 Low-Speed Endpoint The USB low-speed Endpoint is a USB 2.0 low-speed (1.5 Mbps) interface used to support HID class based accesses. The TPS65982 supports control of endpoint EP0. This endpoint enumerates to a USB 2.0 bus to provide USB-Billboard information to a host system as defined in the USB Type-C standard. EP0 is used for advertising the Billboard Class. When a host is connected to a device that provides Alternate Modes which cannot be supported by the host, the Billboard class allows a means for the host to report back to the user without any silent failures. Figure 9-38 shows the USB Endpoint physical layer. The physical layer consists of the analog transceiver, the Serial Interface Engine, and the Endpoint FIFOs and supports low speed operation. USB_EP LDO_3V3 RPU_EP To Digital Core Digital Core Interrupts and Control 32 EP0 (EP1) TX/RX FIFO RX/TX Status Control Serial Interface Engine EP_TX_DP RS_EP EP_TX_DN RS_EP C_USB_TP USB_RP C_USB_TN 1st Stage Mux 2nd Stage Mux USB_EP EP_RX_RCV C_USB_BP USB_RP C_USB_BN 1st Stage Mux EP_RX_DP 2nd Stage Mux EP_RX_DN Transceiver Figure 9-38. USB Endpoint Phy The transceiver is made up of a fully differential output driver, a differential to single-ended receive buffer and two single-ended receive buffers on the D+/D– independently. The output driver drives the D+/D– of the selected output of the Port Multiplexer. The signals pass through the 2nd Stage Port Data Multiplexer to the port pins. When driving, the signal is driven through a source resistance RS_EP. RS_EP is shown as a single resistor in USB Endpoint Phy but this resistance also includes the resistance of the 2nd Stage Port Data Multiplexer defined Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 57 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 in Port Data Multiplexer Requirements and Characteristics. RPU_EP is disconnected during transmit mode of the transceiver. When the endpoint is in receive mode, the resistance RPU_EP is connected to the D– pin of the top or bottom port (C_USB_TN or C_USB_BN) depending on the detected orientation of the cable. The RPU_EP resistance advertises low speed mode only. 9.3.4.8 Battery Charger (BC1.2) Detection Block The battery charger (BC1.2) detection block integrates circuitry to detect when the connected entity on the USB D+/D– pins is a charger. To enable the required detection mechanisms, the block integrates various voltage sources, currents, and resistances to the Port Data Multiplexers. Figure 9-39 shows the connections of these elements to the Port Data Multiplexers. VLGC_HI IDP_SRC C_USB_TP USB_RP To ADC USB_EP To ADC USB_RP USB_EP VDX_SRC C_USB_TN C_USB_BP C_USB_BN IDX_SNK RDM_DWN Figure 9-39. BC1.2 Detection Circuitry 9.3.4.9 BC1.2 Data Contact Detect Data Contact Detect follows the definition in the USB BC1.2 specification. The detection scheme sources a current IDP_SRC into the D+ pin of the USB connection. The current is sourced into either the C_USB_TP (top) or C_USB_BP (bottom) D+ pin based on the determined cable/device orientation. A resistance RDM_DWN is connected between the D– pin and GND. Again, this resistance is connected to either the C_USB_TN (top) or C_USB_BN (bottom) D– pin based on the determined cable/device orientation. The middle section of Figure 9-39, the current source IDP_SRC and the pulldown resistance RDM_DWN, is activated during data contact detection. 9.3.4.10 BC1.2 Primary and Secondary Detection The Primary and Secondary Detection follow the USB BC1.2 specification. This detection scheme looks for a resistance between D+ and D– lines by forcing a known voltage on the first line, forcing a current sink on the second line and then reading the voltage on the second line using the general purpose ADC integrated in the TPS65982. To provide complete flexibility, 12 independent switches are connected to allow firmware to force voltage, sink current, and read voltage on any of the C_USB_TP, C_USB_TN, C_USB_BP, and C_USB_BN. The left and right sections of Figure 9-39, the voltage source VDX_SRC and the current source IDX_SNK, are activated during primary and secondary detection. 58 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 9.3.5 Power Management The TPS65982 Power Management block receives power and generates voltages to provide power to the TPS65982 internal circuitry. These generated power rails are LDO_3V3, LDO_1V8A, and LDO_1V8D. LDO_3V3 is also a low power output to load flash memory. VOUT_3V3 is a low power output that does not power internal circuitry that is controlled by application code and can be used to power other ICs in some applications. The power supply path is shown in Figure 9-40. S1 VIN_3V3 VBUS S2 VOUT_3V3 VREF LDO EN VREF LDO_3V3_VB_EN To Digital Core Digitally adjustable trip Point LDO_3V3 VREF LDO_1V8D LDO EN LDO_1V8A LDO_1V8A_EN LDO EN VREF LDO_1V8D_EN Figure 9-40. Power Supply Path The TPS65982 is powered from either VIN_3V3 or VBUS. The normal power supply input is VIN_3V3. In this mode, current flows from VIN_3V3 to LDO_3V3 to power the core 3.3 V circuitry and the 3.3 V I/Os. A second LDO steps the voltage down from LDO_3V3 to LDO_1V8D and LDO_1V8A to power the 1.8 V core digital circuitry and 1.8 V analog circuits. When VIN_3V3 power is unavailable and power is available on the VBUS, the TPS65982 will be powered from VBUS. In this mode, the voltage on VBUS is stepped down through an LDO to LDO_3V3. Switch S1 in Figure 9-40 is unidirectional and no current will flow from LDO_3V3 to VIN_3V3 or VOUT_3V3. When VIN_3V3 is unavailable, this is an indicator that there is a dead-battery or no-battery condition. 9.3.5.1 Power-On and Supervisory Functions A power-on-reset (POR) circuit monitors each supply. This POR allows active circuitry to turn on only when a good supply is present. In addition to the POR and supervisory circuits for the internal supplies, a separate programmable voltage supervisor monitors the VOUT_3V3 voltage. 9.3.5.2 Supply Switch-Over VIN_3V3 takes precedence over VBUS, meaning that when both supply voltages are present the TPS65982 will power from VIN_3V3. Refer to The Figure 9-40 for a diagram showing the power supply path block. There are two cases in with a power supply switch-over will occur. The first is when VBUS is present first and then VIN_3V3 becomes available. In this case, the supply will automatically switch-over to VIN_3V3 and brown-out prevention is verified by design. The other way a supply switch-over will occur is when both supplies are present and VIN_3V3 is removed and falls below 2.85 V. In this case, a hard reset of the TPS65982 occurs prompting a re-boot. 9.3.5.3 RESETZ and MRESET The VIN_3V3 voltage is connected to the VOUT_3V3 output by a single FET switch (S2 in Figure 9-40). Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 59 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 The enabling of the switch is controlled by the core digital circuitry and the conditions are programmable. A supervisor circuit monitors the voltage at VOUT_3V3 for an undervoltage condition and sets the external indicator RESETZ. The RESETZ pin is active low (low when an undervoltage condition occurs). The RESETZ output is also asserted when the MRESET input is asserted. The MRESET input is active-high by default, but is configurable to be active low. Figure 8-1 shows the RESETZ timing with MRESET set to active high. When VOUT_3V3 is disabled, a resistance of RPDOUT_3V3 pulls down on the pin. 9.3.6 Digital Core Figure 9-41 shows a simplified block diagram of the digital core. This diagram shows the interface between the digital and analog portions of the TPS65982. HRESET MRESET RESETZ GPIO0-8 BUSPOWERZ I2C_ADDR R_OSC OSC I2C Debug Port DEBUG_CTL1 DEBUG_CTL2 I2C_SDA1 I2C to System Control CBL_DET Bias CTL and USB-PD I2C Port 1 I2C_SCL1 USB PD Phy I2C_IRQ1Z I2C_SDA2 I2C to Auxiliary Control I2C Port 2 I2C_SCL2 Digital Core I2C_IRQ2Z SPI_CLK SPI to Flash SPI_PICO SPI SPI_POCI ADC Read SPI_CSZ ADC Temp Sense Signals into ADC SWD_DATA SWD SWD_CLK Thermal Shutdown UART_TX UART0 UART_RX USB EP LSX_P2R UART1 USB EP Phy LSX_R2P Figure 9-41. Digital Core Block Diagram 9.3.7 USB-PD BMC Modem Interface The USB-PD BMC modem interface is a fully USB-PD compliant Type-C interface. The modem contains the BMC encoder/decoder, the TX/Rx FIFOs, the packet engine for construction/deconstruction of the USB-PD packet. This module contains programmable SOP values and processes all SOP headers. 60 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 9.3.8 System Glue Logic The system glue logic module performs various system interface functions such as control of the system interface for RESETZ, MRESET, and VOUT_3V3. This module supports various hardware timers for digital control of analog circuits. 9.3.9 Power Reset Congrol Module (PRCM) The PRCM implements all clock management, reset control, and sleep mode control. 9.3.10 Interrupt Monitor The Interrupt Control module handles all interrupt from the external GPIO as well as interrupts from internal analog circuits. 9.3.11 ADC Sense The ADC Sense module is a digital interface to the SAR ADC. The ADC converts various voltages and currents from the analog circuits. The ADC converts up to 11 channels from analog levels to digital signals. The ADC can be programmed to convert a single sampled value. 9.3.12 UART Two digital UARTS are provided for serial communication. The inputs to the UART are selectable by a programmable digital crossbar multiplexer. The UART may act as pass-through between the system and the Type-C port or may filter through the digital core. The UART_RX/TX pins are typically used to daisy chain multiple TPS65982s in series to share application code at startup. 9.3.13 I2C Slave Two I2C interfaces provide interface to the digital core from the system. These interfaces are master/slave configurable and support low-speed and full-speed signaling. See the Section 9.5.2 section for more information. 9.3.14 SPI Controller The SPI controller provides a serial interface to an external flash memory. The recommended memory is the W25Q80DV 8 Mbit Serial Flash Memory. A memory of at least 2 Mbit is required when the TPS65982 is using the memory in an unshared manner. A memory of at least 8 Mbit is required when the TPS65982 is using the memory in an shared manner. See the Section 9.5.1 section for more information. 9.3.15 Single-Wire Debugger Interface The SWD interface provides a mechanism to directly master the digital core. 9.3.16 DisplayPort HPD Timers To enable DisplayPort HPD signaling through PD messaging, two GPIO pins (GPIO4, GPIO5) are used as the HPD input and output. When events occur on this pins during a DisplayPort connection through the Type-C connector (configured in firmware), hardware timers trigger and interrupt the digital core to indicated needed PD messaging. Table 9-5 shows each I/O function when GPIO4/5 are configured in HPD mode. When HPD is not enabled via firmware, both GPIO4 and GPIO5 remain generic GPIO and may be programmed for other functions. Figure 9-42 and Figure 9-43. Table 9-5. HPD GPIO Configuration HPD (Binary) Configuration GPIO4 GPIO5 00 HPD TX Generic GPIO 01 HPD RX Generic GPIO 10 HPD TX HPD RX 11 HPD TX/RX (bidirectional) Generic GPIO Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 61 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Enter DP Alternate Mode Firmware enables HPD RX S0: HPD Low Wait State HPD GPIO is low HPD GPIO is High Start HPD Timer HPD GPIO goes low before Timer reaches High_Debounce S1: HPD High Debounce State Timer passes High_Debounce Generate HPD_High interrupt, Stop HPD Timer S2: HPD High Wait State HPD GPIO is high HPD GPIO is low Start HPD Timer Generate HPD_LOW Interrupt, Stop HPD Timer HPD GPIO goes high before Timer reaches Low_Debounce S3: HPD Low Debounce State Timer passes Low_Debounce Timer Passes IRQ_Limit S4: HPD IRQ Detect State Generate HPD_IRQ Interrupt HPD GPIO goes high before Timer reaches IRQ_Limit Figure 9-42. HPD RX Flow 62 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Enter DP Alternate Mode Firmware enables HPD RX S0: HPD Low Wait State HPD GPIO is High HPD GPIO is low Start HPD Timer HPD GPIO goes low before Timer reaches High_Debounce S1: HPD High Debounce State Timer passes High_Debounce Generate HPD_High interrupt, Stop HPD Timer S2: HPD High Wait State HPD GPIO is high HPD GPIO is low Start HPD Timer Generate HPD_LOW Interrupt, Stop HPD Timer HPD GPIO goes high before Timer reaches Low_Debounce S3: HPD Low Debounce State Timer passes Low_Debounce Timer Passes IRQ_Limit S4: HPD IRQ Detect State Generate HPD_IRQ Interrupt HPD GPIO goes high before Timer reaches IRQ_Limit Figure 9-43. HPD TX Flow Diagram 9.3.17 ADC The TPS65982 ADC is shown in Figure 9-44. The ADC is a 10-bit successive approximation ADC. The input to the ADC is an analog input multiplexer that supports multiple inputs from various voltages and currents in the device. The output from the ADC is available to be read and used by application firmware. Each supply voltage into the TPS65982 is available to be converted including the port power path inputs and outputs. All GPIO, the C_CCn pins, the charger detection voltages are also available for conversion. To read the port power path current sourced to VBUS, the high-voltage and low-voltage power paths are sensed and converted to voltages to be read by the ADC. For the external FET path, the difference in the SENSEP and SENSEN voltages Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 63 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 is converted to detect the current (IPP_EXT) that is sourced through this path by dividing by the RSENSE resistance. GPIO5 GPIO0-8 C_CC1 C_CC2 BC_ID VBUS PP_HV PP_5V0 PP_CABLE VIN_3V3 VOUT_3V3 LDO_3V3 LDO_1V8A LDO_1V8D SENSEP SENSEP-SENSEN (IPP_EXT) I2C_ADDR Buffers Voltage Dividers 10 bits Input SAR ADC Mux Thermal Sense IPP_HV IPP_5V0 IPP_CABLE I-to-V Figure 9-44. SAR ADC 9.3.17.1 ADC Divider Ratios The ADC voltage inputs are each divided down to the full-scale input of 1.2 V. The ADC current sensing elements are not divided. Table 9-6 shows the divider ratios for each ADC input. The table also shows which inputs are auto-sequenced in the round robin automatic readout mode. The C_CC1 and C_CC2 pin voltages each have two conversions values. The divide-by-5 (CCn_BY5) conversion is intended for use when the C_CCn pin is configured as VCONN output and the divide-by-2 (CCn_BY2) conversion is intended for use when C_CCn pin is configured as the CC data pin. Table 9-6. ADC Divider Ratios CHANNEL # 64 SIGNAL TYPE AUTO-SEQUENCED DIVIDER RATIO BUFFERED 0 Thermal Sense Temperature Yes N/A No 1 VBUS Voltage Yes 25 No 2 SENSEP Voltage Yes 25 No 3 IPP_EXT Current Yes N/A No 4 PP_HV Voltage Yes 25 No 5 IPP_HV Current Yes N/A No 6 PP_5V0 Voltage Yes 5 No 7 IPP_5V0 Current Yes N/A No 8 CC1_BY5 Voltage Yes 5 Yes 9 IPP_CABLE Current Yes N/A No 10 CC2_BY5 Voltage Yes 5 Yes 11 GPIO5 Voltage No 1 No 12 CC1_BY2 Voltage No 2 Yes 13 CC2_BY2 Voltage No 2 Yes 14 PP_CABLE Voltage No 5 No 15 VIN_3V3 Voltage No 3 No 16 VOUT_3V3 Voltage No 3 No 17 BC_ID Voltage No 3 Yes 18 LDO_1V8A Voltage No 2 No 19 LDO_1V8D Voltage No 2 No Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Table 9-6. ADC Divider Ratios (continued) CHANNEL # SIGNAL TYPE AUTO-SEQUENCED DIVIDER RATIO BUFFERED 20 LDO_3V3 Voltage No 3 No 21 I2C_ADDR Voltage No 3 Yes 22 GPIO0 Voltage No 3 Yes 23 GPIO1 Voltage No 3 Yes 24 GPIO2 Voltage No 3 Yes 25 GPIO3 Voltage No 3 Yes 26 GPIO4 Voltage No 3 Yes 27 GPIO5 Voltage No 3 Yes 28 GPIO6 Voltage No 3 Yes 29 GPIO7 Voltage No 3 Yes 30 GPIO8 Voltage No 3 Yes 31 BUSPOWERZ Voltage No 3 Yes 9.3.17.2 ADC Operating Modes The ADC is configured into one of three modes: single channel readout, round robin automatic readout and one time automatic readout. 9.3.17.3 Single Channel Readout In Single Channel Readout mode, the ADC reads a single channel only. Once the channel is selected by firmware, a conversion takes place followed by an interrupt back to the digital core. Figure 8-2 shows the timing diagram for a conversion starting with an ADC enable. When the ADC is disabled and then enabled, there is an enable time T_ADC_EN (programmable) before sampling occurs. Sampling of the input signal then occurs for time T_SAMPLE (programmable) and the conversion process takes time T_CONVERT (12 clock cycles). After time T_CONVERT, the output data is available for read and an Interrupt is sent to the digital core for time T_INTA (2 clock cycles). In Single Channel Readout mode, the ADC can be configured to continuously convert that channel. Figure 8-3 shows the ADC repeated conversion process. In this case, once the interrupt time has passed after a conversion, a new sample and conversion occurs. 9.3.17.4 Round Robin Automatic Readout When this mode is enabled, the ADC state machine will read from channel 0 to channel 11 and place the converted data into registers. The host interface can request to read from the registers at any time. During Round Robin Automatic Readout, the channel averaging must be set to 1 sample. When the TPS65982 is running a Round Robin Readout, it will take approximately 696 μs (11 channels × 63.33 μs conversion) to fully convert all channels. Since the conversion is continuous, when a channel is converted, it will overwrite the previous result. Therefore, when all channels are read, any given value may be 649 μs out of sync with any other value. 9.3.17.5 One Time Automatic Readout The One Time Automatic Readout mode is identical to the Round Robin Automatic Readout except the conversion process halts after the final channel is converted. Once all 11 channels are converted, an interrupt occurs to the digital core. 9.3.18 I/O Buffers Table 9-7 lists the I/O buffer types and descriptions. Table 9-8 lists the pin to I/O buffer mapping for crossreferencing a pin’s particular I/O structure. The following sections show a simplified version of the architecture of each I/O buffer type. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 65 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Table 9-7. I/O Buffer Type Description BUFFER TYPE DESCRIPTION IOBUF_GPIOHSSWD General Purpose High-Speed I/O IOBUF_GPIOHSSPI General Purpose High-Speed I/O IOBUF_GPIOLS General Purpose Low-Speed I/O IOBUF_GPIOLSI2C General Purpose Low-Speed I/O with I2C deglitch time IOBUF_I2C I2C Compliant Clock/Data Buffers IOBUF_OD Open-Drain Output IOBUF_UTX Push-Pull output buffer for UART IOBUF_URX Input buffer for UART IOBUF_PORT Input buffer between 1st/2nd stage Port Data Mux Table 9-8. Pin to I/O Buffer Mapping I/O GROUP/PIN BUFFER TYPE SUPPLY CONNECTION (DEFAULT FIRST) DEBUG1/2/3/4 IOBUF_GPIOLS LDO_3V3, VDDIO DEBUG_CTL1/2 IOBUF_GPIOLSI2C LDO_3V3, VDDIO BUSPOWERZ IOBUF_GPIOLS LDO_3V3, VDDIO GPIO0-8 IOBUF_GPIOLS LDO_3V3, VDDIO I2C_IRQ1/2Z IOBUF_OD LDO_3V3, VDDIO I2C_SDA1/2/SCL/1/2 IOBUF_I2C LDO_3V3, VDDIO LSX_P2R IOBUF_UTX LDO_3V3, VDDIO LSX_R2P IOBUF_URX LDO_3V3, VDDIO MRESET IOBUF_GPIOLS LDO_3V3, VDDIO RESETZ IOBUF_GPIOLS LDO_3V3, VDDIO UART_RX IOBUF_URX LDO_3V3, VDDIO UART_TX IOBUF_UTX LDO_3V3, VDDIO PORT_INT IOBUF_PORT LDO_3V3 SPI_PICO/POCI/CLK/CSZ IOBUF_GPIOHSSPI LDO_3V3 SWD_CLK/DATA IOBUF_GPIOHSSWD LDO_3V3 9.3.18.1 IOBUF_GPIOLS and IOBUF_GPIOLSI2C Figure 9-45 shows the GPIO I/O buffer for all GPIOn pins listed GPIO0-GPIO17 in Pin Configuration and Functions. GPIOn pins can be mapped to USB Type-C, USB PD, and application-specific events to control other ICs, interrupt a host processor, or receive input from another IC. This buffer is configurable to be a push-pull output, a weak push-pull, or open drain output. When configured as an input, the signal can be a deglitched digital input or an analog input to the ADC. The push-pull output is a simple CMOS output with independent pulldown control allowing open-drain connections. The weak push-pull is also a CMOS output, but with GPIO_RPU resistance in series with the drain. The supply voltage to this buffer is configurable to be LDO_3V3 by default or VDDIO. For simplicity, the connection to VDDIO is not shown in Figure 9-45, but the connection to VDDIO is fail-safe and a diode will not be present from GPIOn to VDDIO in this configuration. The pullup and pulldown output drivers are independently controlled from the input and are enabled or disabled via application code in the digital core. 66 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 LDO_3V3 GPIO_OD_EN GPIO_OE GPIO_DO GPIO_PU_EN GPIO_RPU GPIO_RPD GPIO_PD_EN 20 ns Deglitch GPIO GPIO_DI GPIO_AI_EN To ADC Figure 9-45. IOBUF_GPIOLS (General GPIO) I/O Figure 9-46 shows the IOBUF_GPIOLSI2C that is identical to IOBUF_GPIOLS with an extended deglitch time. LDO_3V3 GPIO_OD_EN GPIO_OE GPIO_DO GPIO_PU_EN GPIO_RPU GPIO_RPD GPIO_PD_EN 50 ns Deglitch DEBUG_CTL1/2 GPIO_DI GPIO_AI_EN To ADC Figure 9-46. IOBUF_GPIOLSI2C (General GPIO) I/O with I2C De-glitch 9.3.18.2 IOBUF_OD The open-drain output driver is shown in Figure 9-47 and is the same push-pull CMOS output driver as the GPIO buffer. The output has independent pulldown control allowing open-drain connections. OD OD_DO Figure 9-47. IOBUF_OD Output Buffer Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 67 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 9.3.18.3 IOBUF_UTX The push-pull output driver is shown in Figure 9-48. The output buffer has a UARTTX_RO source resistance. The supply voltage to the system side buffer is configurable to be LDO_3V3 by default or VDDIO. This is not shown in Figure 9-48. The supply voltage to the port side buffers remains LDO_3V3. UARTTX_RO UART_TX CMOS Output UART_TXout Figure 9-48. IOBUF_UTX Output Buffer 9.3.18.4 IOBUF_URX The input buffer is shown in Figure 9-49. The supply voltage to the system side buffer is configurable to be LDO_3V3 by default or VDDIO. This is not shown in Figure 9-49. The supply voltage to the port side buffers remains LDO_3V3. UART_RX UART_RXin Figure 9-49. IOBUF_URX Input 9.3.18.5 IOBUF_PORT The input buffer is shown in Figure 9-50. This input buffer is connected to the intermediate nodes between the 1st stage switch and the 2nd stage switch for each port output (C_SBU1/2, C_USB_TP/N, C_USB_BN/P). The input buffer is enabled via firmware when monitoring digital signals and disabled when an analog signal is desired. See theFigure 9-36 section for more detail on the pullup and pulldown resistors of the intermediate node. PORT_intx PORT_DETx EN Figure 9-50. IOBUF_PORT Input Buffer 9.3.18.6 IOBUF_I2C The I2C I/O driver is shown in Figure 9-51. This I/O consists of an open-drain output and an input comparator with deglitching. The supply voltage to this buffer is configurable to be LDO_3V3 by default or VDDIO. This is not shown in Figure 9-51. Parameters for the I2C clock and data I/Os are found in Section 7.20. 50 ns Deglitch I2C_DI I2C_IRQnZ I2C_DO Figure 9-51. IOBUF_I2C I/O 9.3.18.7 IOBUF_GPIOHSPI Figure 9-52 shows the I/O buffers for the SPI interface. 68 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 SPIin SPI_x CMOS Output SPIout SPI_OE Figure 9-52. IOBUF_GPIOHSSPI 9.3.18.8 IOBUF_GPIOHSSWD Figure 9-53 shows the I/O buffers for the SWD interface. The CLK input path is a comparator with a pullup SWD_RPU on the pin. The data I/O consists of an identical input structure as the CLK input but with a tri-state CMOS output driver. LDO_3V3 SWD_RPU SWD_CLK SWDCLKin LDO_3V3 SWD_RPU SWD_DATA SWDIOin CMOS Output SWDIOout SWD_OE Figure 9-53. IOBUF_GPIOHSSWD 9.3.19 Thermal Shutdown The TPS65982 has both a central thermal shutdown to the chip and a local thermal shutdown for the power path block. The central thermal shutdown monitors the temperature of the center of the die and disables all functions except for supervisory circuitry and halts digital core when die temperature goes above a rising temperature of TSD_MAIN. The temperature shutdown has a hysteresis of TSDH_MAIN and when the temperature falls back below this value, the device resumes normal operation. The power path block has an local thermal shutdown circuit to detect an overtemperature condition because of overcurrent and quickly turn off the power switches. The power path thermal shutdown values are TSD_PWR and TSDH_PWR. The output of the thermal shutdown circuit is deglitched by TSD_DG before triggering. The thermal shutdown circuits interrupt to the digital core. 9.3.20 Oscillators The TPS65982 has two independent oscillators for generating internal clock domains. A 48-MHz oscillator generates clocks for the core during normal operation and clocks for the USB 2.0 endpoint physical layer. An external resistance is placed on the R_OSC pin to set the oscillator accuracy. A 100-kHz oscillator generates clocks for various timers and clocking the core during low-power states. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 69 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 9.4 Device Functional Modes 9.4.1 Boot Code The TPS65982 has a Power-on-Reset (POR) circuit that monitors LDO_3V3 and issues an internal reset signal. The digital core, memory banks, and peripherals receive clock and RESET interrupt is issued to the digital core and the boot code starts executing. Figure 9-54 provides the TPS65982 boot code sequence. The TPS65982 boot code is loaded from OTP on POR, and begins initializing TPS65982 settings. This initialization includes enabling and resetting internal registers, loading trim values, waiting for the trim values to settle, and configuring the device I2C addresses. The unique I2C address is based on the customer programmable OTP, DEBUG_CTLX pins, and resistor configuration on the I2C_ADDR pin. Once initial device configuration is complete the boot code determines if the TPS65982 is booting under dead battery condition (VIN_3V3 invalid, VBUS valid). If the boot code determines the TPS65982 is booting under dead battery condition, the BUSPOWERZ pin is sampled to determine the appropriate path for routing VBUS power to the system. VIN_3V3 or VBUS Application Initialize Configure I2C Dead Battery Check SPI_POCI High Load Appcode SPI_POCI Low Load from SPI Download from Flash UART Figure 9-54. Flow Diagram for Boot Code Sequence 9.4.2 Initialization During initialization the TPS65982 enables device internal hardware and loads default configurations. The 48-MHz clock is enabled and the TPS65982 persistence counters begin monitoring VBUS and VIN_3V3. These counters ensure the supply powering the TPS65982 is stable before continuing the initialization process. The 70 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 initialization concludes by enabling the thermal monitoring blocks and thermal shutdown protection, along with the ADC, CRC, GPIO and NVIC blocks. 9.4.3 I2C Configuration The TPS65982 features dual I2C busses with configurable addresses. The I2C addresses are determined according to the flow depicted in Figure 9-55. The address is configured by reading device GPIO states at boot (refer to the I2C Pin Address Setting section for details). Once the I2C addresses are established the TPS65982 enables a limited host interface to allow for communication with the device during the boot process. Initialization Complete Read state of DEBUG_CTL1 DEBUG_CTL2 I2C_ADDR Configure I2C Address Initialize Host Interface Figure 9-55. I2C Address Configuration 9.4.4 Dead-Battery Condition After I2C configuration concludes the TPS65982 checks VIN_3V3 to determine the cause of device boot. If the device is booting from a source other than VIN_3V3, the dead battery flow is followed to allow for the rest of the system to receive power. The state of the BUSPOWERZ pin is read to determine power path configuration for dead battery operation. After the power path is configured, the TPS65982 will continue through the boot process. Figure 9-56 shows the full dead battery process. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 71 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 I2C Initiated Yes VIN_3V3 Valid No >2.4 V Check BUSPOWERZ ≤2.4 V VBUS Present No Yes Configure for VBUS Power Check ≤0.8 V BUSPOWERZ > 0.8 V Enable PP_HV as Enable PP_EXT as SINK SINK Load App Code Figure 9-56. Dead-Battery Condition Flow Diagram 9.4.5 Application Code The TPS65982 application code is stored in an external flash memory. The flash memory used for storing the TPS65982 application code may be shared with other devices in the system. The flash memory organization shown in Figure 9-57 supports the sharing of the flash as well as the TPS65982 using the flash without sharing. The flash is divided into two separate regions, the Low Region and the High Region. The size of this region is flexible and only depends on the size of the flash memory used. The two regions are used to allow updating the application code in the memory without over-writing the previous code. This ensures that the new updated code is valid before switching to the new code. For example, if a power loss occurred while writing new code, the original code is still in place and used at the next boot. 72 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 0x000000 Region Pointer (RPTR) 0x000004 Low Header 4 kB 0x000FFC App Code Offset (AOFF) 0x001000 Region Pointer (RPTR) 0x001004 High Header 4 kB 0x001FFC App Code Offset (AOFF) 0x002000 RPTR+AOFF ID, Header, & Configuration Data (max. 4 kB) RPTR+AOFF+CSIZE Application Code (max. 64 kB) Figure 9-57. Flash Memory Organization There are two 4 kB header blocks starting at address 0x000000h. The Low Header 4 kB block is at address 0x000000h and the High Header 4 kB block is at 0x001000h. Each header contains a Region Pointer (RPTR) that holds the address of the physical location in memory where the low region application code resides. Each also contains an Application Code Offset (AOFF) that contains the physical offset inside the region where the TPS65982 application code resides. The TPS65982 firmware physical location in memory is RPTR + AOFF. The first sections of the TPS65982 application code contain device configuration settings where CSIZE is maximum of 4 kB. This configuration determines the devices default behavior after power-up and can be customized using the TPS65982 Configuration Tool. These pointers may be valid or invalid. The Flash Read flow handles reading and determining whether a region is valid and contains good application code. 9.4.6 Flash Memory Read The TPS65982 first attempts to load application code from the low region of the attached flash memory. If any part of the read process yields invalid data, the TPS65982 will abort the low region read and attempt to read from the high region. If both regions contain invalid data the device carries out the Invalid Memory flow. Figure 9-58 shows the flash memory read flow. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 73 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Enter Flash Read Read Low Header Read High Header Region Pointer Region Pointer and Application and Application Code Offset Code Offset Invalid Config Read Config Read Config Area Area Invalid Config Valid Config Invalid App Code Read App Code and Check CRC Read App Code and Check CRC Valid App Code Valid App Code Invalid App Code Reset Core and Run App Code Memory Invalid Figure 9-58. Flash Read Flow 9.4.7 Invalid Flash Memory If the flash memory read fails because of invalid data, the TPS65982 carries out the memory invalid flow and presents the SWD interface on the USB Type-C SBU pins. Figure 9-59 shows the invalid memory process. 74 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Memory Invalid Enable VOUT_3V3 Release RESETZ VBUS Invalid Check VBUS VBUS Good Present Rp/Rp Rd/Rd Not Attached Check for Rd/Rd Rd/Rd Attached Present SWD Monitor VBUS Figure 9-59. Memory Invalid Flow 9.4.8 UART Download the secondary TPS65982 downloads the needed application code from the primary TPS65982 via UART. Figure 9-60 shows the UART download process. Currently the TPS65982 firmware only supports 2 device (1 primary + 1 secondary) systems. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 75 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 SPI_POCI Low App Code Loaded Send “Request Data” Packet Receive “Request Data” Packet Receive “Send Data” Packet & Save Data Block map complete Yes No No Receive “Send CRC” packet Send “Send Data” packet Saved Data valid Send “Send CRC” Packet Yes Boot Fail Run App Code Secondary Primary Figure 9-60. UART Download Process 9.5 Programming 9.5.1 SPI Controller Interface The TPS65982 loads flash memory during the Boot Code sequence. The SPI Controller electrical characteristics are defined in SPI Controller Characteristics and timing characteristics are defined in Figure 8-5. The TPS65982 is designed to power the flash from LDO_3V3 to support dead-battery or no-battery conditions, and therefore pullup resistors used for the flash memory must be tied to LDO_3V3. The flash memory IC must support 12 MHz SPI clock frequency. The size of the flash must be at least 1 Mbyte (equivalent to 8 Mbit) to hold the standard application code outlined in Application Code. The SPI Controller of the TPS65982 supports SPI Mode 0. For Mode 0, data delay is defined such that data is output on the same cycle as chip select (SPI_CSZ pin) becomes active. The chip select polarity is active-low. The clock phase is defined such that data (on the SPI_POCI and SPI_PICO pins) is shifted out on the falling edge of the clock (SPI_CLK pin) and data is sampled on the rising edge of the clock. The clock polarity for chip select is defined such that when data is not being transferred the SPI_CLK pin is held (or idling) low. The minimum erasable sector size of the flash must be 4 kB. The W25Q80 flash memory IC is recommended. Refer to TPS65982 I2C Host Interface Specification for instructions for interacting with the attached flash memory over SPI using the host interface of the TPS65982. 9.5.2 I2C Slave Interface The TPS65982 has three I2C interface ports. I2C Port 1 is comprised of the I2C_SDA1, I2C_SCL1, and I2C_IRQ1Z pins. I2C Port 2 is comprised of the I2C_SDA2, I2C_SCL2, and I2C_IRQ2Z pins. These interfaces provide general status information about the TPS65982, as well as the ability to control the TPS65982 behavior, as well as providing information about connections detected at the USB-C receptacle and supporting communications to and from a connected device, cable supporting BMC USB-PD, or both. The third port is 76 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 comprised of the DEBUG_CTL1 and DEBUG_CTL2 pins. This third port is a firmware emulated I2C master. The pins are generic GPIO and do not contain any dedicated hardware for I2C such as detecting starts, stops, acks, or other protocol normally associated with I2C. This third port is always a master and has no interrupt. This port is intended to master another device that has simple control based on mode and multiplexer orientation. DEBUG_CTL1 is the serial clock and DEBUG_CTL2 is serial data. The first two ports can be a master or a slave, but the default behavior is to be a slave. Port 1 and Port 2 are interchangeable. Each port operates the same way and has the same access in and out of the core. An interrupt mask is set for each that determines what events are interrupted on that given port. 9.5.2.1 I2C Interface Description The TPS65982 support Standard and Fast mode I2C interface. The bidirectional I2C bus consists of the serial clock (SCL) and serial data (SDA) lines. Both lines must be connected to a supply through a pullup resistor. Data transfer may be initiated only when the bus is not busy. A master sending a Start condition, a high-to-low transition on the SDA input/output, while the SCL input is high initiates I2C communication. After the Start condition, the device address byte is sent, most significant bit (MSB) first, including the data direction bit (R/W). After receiving the valid address byte, this device responds with an acknowledge (ACK), a low on the SDA input/output during the high of the ACK-related clock pulse. On the I2C bus, only one data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the high pulse of the clock period as changes in the data line at this time are interpreted as control commands (Start or Stop). The master sends a Stop condition, a low-to-high transition on the SDA input/output while the SCL input is high. Any number of data bytes can be transferred from the transmitter to receiver between the Start and the Stop conditions. Each byte of eight bits is followed by one ACK bit. The transmitter must release the SDA line before the receiver can send an ACK bit. The device that acknowledges must pull down the SDA line during the ACK clock pulse, so that the SDA line is stable low during the high pulse of the ACK-related clock period. When a slave receiver is addressed, it must generate an ACK after each byte is received. Similarly, the master must generate an ACK after each byte that it receives from the slave transmitter. Setup and hold times must be met to ensure proper operation A master receiver signals an end of data to the slave transmitter by not generating an acknowledge (NACK) after the last byte has been clocked out of the slave. The master receiver holding the SDA line high does this. In this event, the transmitter must release the data line to enable the master to generate a Stop condition. Figure 9-61 shows the start and stop conditions of the transfer. Figure 9-62 shows the SDA and SCL signals for transferring a bit. Figure 9-63 shows a data transfer sequence with the ACK or NACK at the last clock pulse. SDA SCL S P Start Condition Stop Condition Figure 9-61. I2C Definition of Start and Stop Conditions SDA SCL Data Line Change Figure 9-62. I2C Bit Transfer Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 77 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Data Output by Transmitter Nack Data Output by Receiver SCL From Master Ack 1 2 8 9 S Clock Pulse for Acknowledgement Start Condition Figure 9-63. I2C Acknowledgment 9.5.2.2 I2C Clock Stretching The TPS65982 features clock stretching for the I2C protocol. The TPS65982 slave I2C port may hold the clock line (SCL) low after receiving (or sending) a byte, indicating that it is not yet ready to process more data. The master communicating with the slave must not finish the transmission of the current bit and must wait until the clock line actually goes high. When the slave is clock stretching, the clock line will remain low. The master must wait until it observes the clock line transitioning high plus an additional minimum time (4 μs for standard 100 kbps I2C) before pulling the clock low again. Any clock pulse may be stretched but typically it is the interval before or after the acknowledgment bit. 9.5.2.3 I2C Address Setting The boot code sets the hardware configurable unique I2C address of the TPS65982 before the port is enabled to respond to I2C transactions. The unique I2C address is determined by a combination of the digital level on the DEBUG_CTL1/DEBUG_CTL2 pins (two bits) and the analog level set by the analog I2C_ADDR strap pin (three bits) as shown in Table 9-9. Table 9-9. I2C Default Unique Address Default I2C Unique Address for Each Port (1) Port Number Bit 7 Bit 6 Bit 5 Bit 4 I2C Port 1(1) 0 1 1 1 I2C Port 2 0 1 Bit 3 DEBUG_CTL2 DEBUG_CTL1 Bit 2 Bit 1 Bit 0 I2C_ADDR_DECODE[2:0] R/ W I2C_ADDR_DECODE[2:0] R/ W I2C Port 1 ignores the hardware setting of the DEBUG_CTL1 and DEBUG_CTL2 pins and automatically sets these bits to 1 in Bit 4 and Bit 5 of the address 9.5.2.4 Unique Address Interface The Unique Address Interface allows for complex interaction between an I2C master and a single TPS65982. The I 2C Slave sub-address is used to receive or respond to Host Interface protocol commands. Figure 9-64 and Figure 9-65 show the write and read protocol for the I2C slave interface, and a key is included in Figure 9-66 to explain the terminology used. The key to the protocol diagrams is in the SMBus Specification and is repeated here in part. 1 7 1 1 8 1 8 1 8 1 S Unique Address Wr A Register Number A Byte Count = N A Data Byte 1 A 8 Data Byte 2 1 8 1 A Data Byte N A P Figure 9-64. I2C Unique Address Write Register Protocol 78 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 1 7 1 1 8 1 1 7 1 1 8 1 S Unique Address Wr A Register Number A Sr Unique Address Rd A Byte Count = N A 8 1 8 1 8 1 Data Byte 1 A Data Byte 2 A Data Byte N A P 1 Figure 9-65. I2C Unique Address Read Register Protocol 1 7 1 1 8 1 1 S Slave Address Wr A Data Byte A P x x S Start Condition SR Repeated Start Condition Rd Read (bit value of 1) Wr Write (bit value of 0) x Field is required to have the value x A Acknowledge (this bit position may be 0 for an ACK or 1 for a NACK) P Stop Condition Master-to-Slave Slave-to-Master Continuation of protocol Figure 9-66. I2C Read/Write Protocol Key 9.5.2.5 I2C Pin Address Setting To enable the setting of multiple I2C addresses using a single TPS65982 pin, a resistance is placed externally on the I2C_ADDR pin. The internal ADC then decodes the address from this resistance value. Figure 9-67 shows the decoding. DEBUG_CTL1/2 are checked at the same time for the DC condition on this pin (high or low) for setting other bits of the address described previously. Note, DEBUG_CTL1/2 are GPIO and the address decoding is done by firmware in the digital core. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 79 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 5 µA I2C_ADDR ADC R_I2C To Address Decoder DEBUG_CTL1 Tristate DEBUG_CTL2 Debug Data To Address Decoder Figure 9-67. I2C Address Decode Table 9-10 lists the external resistance needed to set bits [3:1] of the I2C Unique Address. For the Primary TPS65982 (UART Master), the I2C_ADDR pin is grounded and this TPS65982 is connected to the SPI Flash. In a two Type-C port system sharing one SPI Flash, I2C_ADDR is left as an open-circuit (UART Slave 1) and this TPS65982 is referred to as the Secondary. Table 9-10. I2C Address Resistance 80 TPS65982 DEVICE EXTERNAL RESISTANCE (1%) I2C UNIQUE ADDRESS [3:1] SPI Owner, UART Master 0 (Primary) 0Ω 0x00 UART Slave 7 38.3 kΩ 0x01 UART Slave 6 84.5 kΩ 0x02 UART Slave 5 140 kΩ 0x03 UART Slave 4 205 kΩ 0x04 UART Slave 3 280 kΩ 0x05 UART Slave 2 374 kΩ 0x06 UART Slave 1 (Secondary) Open 0x07 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 10 Application and Implementation Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. 10.1 Application Information The typical applications of the TPS65982 include chargers, notebooks, tablets, ultrabooks, docking systems, dongles, and any other product supporting USB Type-C, USB-PD as a power source, power sink, data DFP, data UFP, or dual-role port (DRP), or supporting both USB Type-C andUSB-PD. The typical applications outlined in the following sections detail a Fully-Featured USB Type-C and PD Charger Application and a Dual-Port Notebook Application Supporting USB PD Charging and DisplayPort. 10.2 Typical Applications 10.2.1 Fully-Featured USB Type-C and PD Charger Application The TPS65982 controls three separate power paths making it a flexible option for Type C PD charger applications. In addition, the TPS65982 supports VCONN power for e-marked cables which are required for applications which require greater than 3 A of current on VBUS. Figure 10-1 below shows the high level block diagram of a Type C PD charger that is capable of supporting 5 V at 3 A, 12 V at 3 A, and 20 V at 5 A. The 5 V and 12 V outputs are supported by the TPS65982 internal FETs and the 20-V output uses the external FET path controlled by the TPS65982 NFET drive. This Type-C PD charger uses a receptacle for flexibility on cable choice. CC1/2 CC1/2 USB2.0 TPS65982 (Charger Application) SENSEP VBUS SENSEN VBUS HV_GATE1 Type C Receptacle HV_GATE2 Supply 20 V, 5 A PP_HV Supply 12 V, 3 A PP_5V0 Supply 5 V, 3.5 A PP_CABLE USB2.0 SBU1/2 VIN_3V3 Supply 3.3 V, 50 mA SSTX/RX Copyright © 2016, Texas Instruments Incorporated Figure 10-1. Type-C and PD Charger Application 10.2.1.1 Design Requirements For a USB Type-C and PD Charger application, Table 10-1 lists the input voltage requirements and expected current capabilities. Table 10-1. Charging Application Design Parameters DESIGN PARAMETER EXAMPLE VALUE DIRECTION OF CURRENT PP_5V0 Input Voltage and Current Capabilities 5 V, 3 A Sourcing to VBUS Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 81 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Table 10-1. Charging Application Design Parameters (continued) DESIGN PARAMETER EXAMPLE VALUE DIRECTION OF CURRENT PP_CABLE Input Voltage and Current Capabilities 5 V, 500 mA Sourcing to VCONN PP_HV Input Voltage and Current Capabilities 12 V, 3 A Sourcing to VBUS EXT FET Path Input Voltage and Current Capabilities 20 V, 5 A Sourcing to VBUS VIN_3V3 Voltage and Current Requirements 2.85 - 3.45 V, 50 mA Internal TPS65982 Circuitry 10.2.1.1.1 External FET Path Components (PP_EXT and RSENSE) The external FET path allows for the maximum PD power profile (20 V at 5 A) and design considerations must be taken into account for choosing the appropriate components to optimize performance. Although a Type C PD charger will be providing power there could be a condition where a non-compliant device can be connected to the charger and force voltage back into the charger. To protect against this the external FET path detects reverse current in both directions of the current path. The TPS65982 uses two back-to-back NFETs to protect both sides of the system. Another design consideration is to rate the external NFETs above the Type C and PD specification maximum which is 20 V. In this specific design example, 30-V NFETs are used that have an average RDS,ON of 5 mΩ to reduce losses. The TPS65982 supports either a 10-mΩ or a 5-mΩ sense resistor on the external FET path. This RSENSE resistor is used for current limiting and is used for the reverse current protection of the power path. A 5 mΩ sense resistor is used in the design to minimize losses and I-R voltage drop. Recommended NFET Capabilities summarizes the recommended parameters for the external NFET used. The total voltage drop seen across RSENSE and the external NFET could be determined by Equation 5 below. It is important to consider the drop in the entire system and regulate accordingly to ensure that the output voltage is within its specification. Equation 6 will calculate the power lost through the external FET path. Table 10-2. Recommended NFET Capabilities Voltage Rating Current Rating RDS,ON 30 V (minimum) 10 A (peak current) < 10 mΩ Voltage Drop = DC Current × (RSENSE + NFET1 RDS,ON + NFET2 RDS,ON) (5) Power Loss = Voltage Drop × DC Current (6) 10.2.1.2 Detailed Design Procedure 10.2.1.2.1 TPS65982 External Flash The external flash contains the TPS65982 application firmware and must be sized to 256kB minimum when the flash is not shared with another IC, but a recommended minimum of 1 MB is needed when the flash memory of the TPS65982 is shared with another IC. This size will allow for pointers and two copies of the firmware image to reside on the flash along with the needed headers. The flash used is the W25Q80 which is a 3.3-V flash and is powered from the LDO_3V3 output from the TPS65982. 10.2.1.2.2 I2C (I2C), Debug Control (DEBUG_CTL), and Single-Wire De-bugger (SWD) Resistors I2C_ADDR, DEBUG_CTL1/2 pins must be tied to GND through a 0-Ω resistor tied to GND directly if needed to reduce solution size. Pullups on the I2C_CLK, I2C_SDA, and I2C_IRQ are used for debugging purposes. In most simple charger designs, I2C communication may not be needed. A 3.83-kΩ pullup resistor from SWD_DATA to LDO_3V3 and a 100-kΩ pulldown resistor from SWD_CLK to GND must also be used for debugging purposes. 10.2.1.2.3 Oscillator (R_OSC) Resistor A 15-kΩ 0.1% resistor is needed for key PD BMC communication timing and the USB2.0 endpoint. A 1% 15-kΩ resistor is not recommended to be used because the internal oscillators will not be controlled well enough by this loose resistor tolerance. 82 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 10.2.1.2.4 VBUS Capacitor and Ferrite Bead A 1-µF ceramic capacitor is placed close to the TPS65982 VBUS pins. A 6 A ferrite bead is used in this design along with four high frequency noise 10-nF capacitors placed close to the Type-C connector to minimize noise. 10.2.1.2.5 Soft Start (SS) Capacitor The recommended 0.22 µF is placed on the TPS65982 SS pin. 10.2.1.2.6 USB Top (C_USB_T), USB Bottom (C_USB_B), and Sideband-Use (SBU) Connections Although the charger is configured to be only a power source, SBU1/2, USB Top and Bottom must be routed to the Type C connector. This allows for debugging or for any specific alternate modes for power to be configured if needed. ESD protection is used in the design on all of these nets as good design practice. 10.2.1.2.7 Port Power Switch (PP_EXT, PP_HV, PP_5V0, and PP_CABLE) Capacitors The design assumes that a DC-DC converter is connected to the paths where there is significant output capacitance on the DC-DCs to provide the additional capacitance for load steps. TI recommends to for the DC-DC converters for to be capable of supporting current spikes which can occur with certain PD configurations. The PP_EXT path is capable of supporting up to 5 A which will require additional capacitance to support system loading by the device connected to the charger. A ceramic 10-µF (X7R/X5R) capacitor is used in this design. This capacitor must at least have a 25 V rating and it is recommended to have 30 V or greater rated capacitor. The PP_HV path is capable of supporting up to 3 A which will require additional capacitance to support system loading by the device connected to the charger. A ceramic 10-µF (X7R/X5R) capacitor coupled with a 0.1 µF high frequency capacitor is placed close to the TPS65982. The PP_5V0 and PP_CABLE supplies are connected together therefore a ceramic 22-µF (X7R/X5R) capacitor coupled with a 0.1-µF high-frequency capacitor is placed close to the TPS65982. The PP_5V0 path can support 3 A and the PP_CABLE path supports 600 mA for active Type C PD cables. The design assumes that a DC-DC converter is connected to the paths where there is significant output capacitance on the DC-DCs to provide the additional capacitance. It is recommended to for the DC-DC converters to be capable of supporting current spikes which can occur with certain PD configurations. 10.2.1.2.8 Cable Connection (CCn) Capacitors and RPD_Gn Connections This charger application is designed to only be a source of power and does not support Dead Battery. RPD_G1 and RPD_G2 must be tied to GND and not connected to the CC1 and CC2 respectively. For CC1 and CC2 lines, they require a 220 pF capacitor to GND. 10.2.1.2.9 LDO_3V3, LDO_1V8A, LDO_1V8D, LDO_BMC, VOUT_3V3, VIN_3V3, and VDDIO For all capacitances it is important to factor in DC voltage de-rating of ceramic capacitors. Generally the effective capacitance is halved with voltage applied. VIN_3V3 is connected to VDDIO which ensures that the I/Os of the TPS65982’s will be configured to 3.3 V. A 1 µF capacitor is used and is shared between VDDIO and VIN_3V3. LDO_1V8D, LDO_1V8A, and LDO_BMC each have their own 1 µF capacitor. In this design LDO_3V3 powers the TPS65982’s external flash and various pull ups. A 10 µF capacitor was chosen to support these additional connections. VOUT_3V3 is not used in this design and capacitor is not needed. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 83 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 10.2.1.3 Application Curve 1000 PP_EXT Power Loss (mW) 900 800 700 600 500 400 300 200 100 0 3 3.2 3.4 3.6 3.8 4 4.2 DC Current (A) 4.4 4.6 4.8 5 D012 Figure 10-2. PP_EXT Power Loss (RNFETS + RSENSE = 30 mΩ) 10.2.2 Dual-Port Notebook Application Supporting USB PD Charging and DisplayPort The TPS65982 features support for DisplayPort over Type-C alternate mode and manages sinking and sourcing of power in Power Delivery. The block diagram, shown in Figure 10-3, shows a two port system that is capable of charging from either Type C port over PD, DisplayPort Alternate Mode, and delivering Battery Power to a bus-powered device. With the DisplayPort support, the TPS65982 controls an external SuperSpeed multiplexer, HD3SS460, to route the appropriate super-speed signals to the Type-C connector. The HD3SS460 is controlled through GPIOs configured by the TPS65982 application code and the HD3SS460 is designed to meet the timing requirements defined by the DisplayPort over Type-C specification. A system controller is also necessary to handle some of the dynamic aspects of Power Delivery such as reducing power capabilities when system battery power is low. Audio accessory device is supported by the design as well. Although USB_RP_P and USB_RP_N are not shown in the block diagram, they must be connected to the system-side IC that will receive and send USB2.0 high-speed data through the integrated multiplexer of the TPS65982. 84 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 DC Barrel Jack CC1/2 PP_5V0 TPS65982 PP_CABLE (Notebook Application) SBU1/2 VIN_3V3 DC Barrel Jack Sense Battery Voltage Supply 5 V, 3.5 A USB2.0 Supply 3.3 V, 50 mA 2 GPIO_3 I C AUX_N/P VIN EN AMSEL GPIO_0 SSTX/RX DEBUG_2 SBU1/2 PP_HV POL USB2.0 SENSEP CC1/2 SENSEN VBUS HV_GATE2 VBUS HV_GATE1 PFET Control Type C Receptacle BAT BQ Battery Battery Voltage + Charger I2C HD3SS460 (SS MUX) CC1/2 CC1/2 DP Source USB3 Source SENSEP VBUS SENSEN VBUS HV_GATE2 Type C Receptacle HV_GATE1 ML0 – ML3 SSTX/RX USB3 SSTX/RX PP_HV System Battery Voltage Controller Supply 5 V, 3.5 A Supply 3.3 V, 50 mA AUX_N/P EN POL AMSEL GPIO_3 I2C DEBUG_2 SSTX/RX GPIO_0 SBU1/2 PP_5V0 TPS65982 PP_CABLE USB2.0 (Notebook Application) SBU1/2 VIN_3V3 USB2.0 I2C Master HD3SS460 (SS MUX) ML0 – ML3 SSTX/RX USB3 SSTX/RX DP Source USB3 Source Copyright © 2016, Texas Instruments Incorporated Figure 10-3. Dual-Port Notebook Application 10.2.2.1 Design Requirements For a dual-port notebook application, Table 10-3 lists the input voltage requirements and expected current capabilities. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 85 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Table 10-3. Dual-Port Notebook Application Design Parameters DESIGN PARAMETERS EXAMPLE VALUE DIRECTION OF CURRENT PP_5V0 Input Voltage and Current Capabilities 5 V, 3 A Sourcing to VBUS PP_CABLE Input Voltage and Current Capabilities 5 V, 500 mA Sourcing to VCONN PP_HV Input Voltage and Current Capabilities 10-13 V, 3 A Sourcing to VBUS (directly from Battery) EXT FET Path Voltage and Current Capabilities 20 V, 3 A Sourcing to VBUS or Sinking from VBUS VIN_3V3 Voltage and Current Requirements 2.85-3.45 V, 50 mA Internal TPS65982 Circuitry 10.2.2.1.1 Source Power Delivery Profiles for Type-C Ports Table 10-4 lists the summary of the source PD profiles that are supported for this specific design. PDO 1 and 2 will always be present in the system and will be able to be negotiated without any other system interaction. When DC barrel Jack voltage is sensed PDO 3 will become available for power delivery negotiation. The external sense resistor, RSENSE, is configured to only measure the current being sourced by the system. When operating as a sink of power the input current cannot be measured in this configuration. Table 10-4. Source USB PD Profiles PDO POD TYPE VOLTAGE CURRENT OR POWER EXTERNALLY DEPENDENT PDO1 Fixed Supply 5V 3A No PDO2 Battery Power 10 V - 13 V 30 W No PDO3 Fixed Supply 20 V 3A Yes 10.2.2.1.2 Sink Power Delivery Profile for Type-C Ports The two Type-C ports used in this design support Power Delivery and enable charging over a Type-C connection. Table 10-5 shows the sink profile supported by both of the ports. The reverse current blocking of the device allows both of the Type-C ports to negotiate a power contract, but it is good system practice for the System Controller to change the sink profile when a power contract is established. When the DC barrel jack is connected the TPS65982 is renegotiate the a PD contract to no longer charge of Type C and have the DC Barrel Jack take precedence when connected. Table 10-5. Sink USB PD Profile RDO RDO TYPE VOLTAGE EXTERNALLY DEPENDENT Fixed Supply 20 V 3A Yes 10.2.2.2 Detailed Design Procedure The same passive components used in the Fully-Featured USB Type-C and PD Charger Application are also applicable in this design to support all of the features of the TPS65982. Additional design information is provided below to explain the connections between the TPS65982 and the system controller and the TPS65982 and the HD3SS460 SuperSpeed multiplexer. 10.2.2.2.1 TPS65982 and System Controller Interaction The TPS65982 features two I2C slave ports that can be used simultaneously, where the system controller has the ability to write to either of the I2C slave ports. Each I2C port has an I2C interrupt that will inform the system controller that a change has happened in the system. This allows the system controller to dynamically budget power and reconfigures a port’s capabilities dependent on current state of the system. For example, if a battery power contract is established and the system is running low on battery power the system controller could notify the TPS65982 to re-negotiate a power contract. The system controller is also used for updating the TPS65982 firmware over I2C, where the Operating System loads the Firmware update to the system controller and then the system controller updates the firmware stored in the SPI Flash memory via I2C writes to the TPS65982. 86 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 10.2.2.2.2 HD3SS460 Control and DisplayPort Configuration The two Type-C ports in this design support DisplayPort simultaneously on both ports. When a system is not capable of supporting video on both ports the system controller will disable DisplayPort on the second Type-C port through I2C. Table 10-6 lists the DisplayPort configurations supported in the system. Table 10-7 lists the summary of the TPS65982 GPIO signals control for the HD3SS460. Although the HD3SS460 is able to multiplex the required AUX_N/P signals to the SBU_1/2 pins, they are connected through the TPS65982 for additional support of custom alternate mode configurations. Table 10-6. Supported DisplayPort Configurations CONFIGURATION DisplayPort ROLE DisplayPort PIN ASSIGNMENT DisplayPort LANES Configuration 1 DFP_D Pin Assignment C 4 Lane Configuration 2 DFP_D Pin Assignment D 2 Lane and USB 3.1 Configuration 3 DFP_D Pin Assignment E 4 Lane (Dongle Support) Table 10-7. TPS65982 and HD3SS460 GPIO Control TPS65982 GPIO HD3SS460 CONTROL PIN DESCRIPTION GPIO_0 AMSEL Alternate Mode Selection (DP/USB3) GPIO_3 EN Super Speed Mux Enable DEBUG2 POL Type-C Cable 10.2.2.2.3 9.3.2.3 DC Barrel Jack and Type-C PD Charging The system is design to either charge over Type-C or from the DC barrel jack. The TPS65982 detects that the DC barrel jack is connected to GPIOn. In the simplest form, a voltage divider could be set to the GPIO I/O level when the DC Barrel jack voltage is present, as shown in Figure 10-4. A comparator circuit is recommend and used in this design for design robustness, as shown in Figure 10-5. 20 V DC Barrel Jack 100 kΩ 1.81 V Barrel Jack Detect and PFET Enable 10 kΩ Figure 10-4. DC Barrel Jack Voltage Divider DC Barrel Jack Voltage 1.8 V 100 kΩ Barrel Jack Detect/ PFET Enable + 10 kΩ Figure 10-5. Barrel Jack Detect Comparator This detect signal is used to determine if the barrel jack is present to support the 20 V PD power contracts and to hand-off charging from barrel jack to Type-C or Type-C to barrel jack. When the DC barrel jack is detected the TPS65982 at each Type-C port will not request 20 V for charging and the system will be able to support a Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 87 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 20 V source power contract to another device. When the DC Barrel Jack is disconnected the TPS65982 will exit any 20 V source power contract and re-negotiate a power contract. When the DC Barrel Jack is connected the TPS65982 will send updated source capabilities and re-negotiate a power contract if needed. The PFET enable will be controlled by the DC barrel jack detect comparator depicted in Figure 10-5. This will allow the system to power up from dead battery through the barrel jack as well as the Type-C ports. Figure 10-7 shows the flow between changing from DC barrel jack charging and USB-PD charging. The example uses back-to-back PFETs for disabling and enabling the power path for the DC Barrel Jack. It is important to use PFETs that are rated above the specified parameters to ensure robustness of the system. The DC Barrel Jack voltage in this design is assumed to be 20 V at 5 A, so the PFETs are recommended to be rated at a minimum of 30 V and 10 A of current. The TPS65982 in this design also provides the GPIO control for the PFET gate drive that passes the DC Barrel Jack Voltage to the system. Figure 10-7 shows the flow between changing from DC Barrel Jack charging and Type-C PD charging. 10.2.2.2.4 Primary TPS65982 Flash Controller and Secondary Port A single flash can be used for two TPS65982’s in a system where the primary TPS65982 is connected to the flash and the seoncdary TPS65982 is connected to the primary through UART. UART data is used to pass the firmware from the primary TPS65982 to the secondary TPS65982 in the system. Figure 10-6 shows a simplified block diagram of how a primary and secondary TPS65982 are connected using a single flash. The primary TPS65982 must have its I2C_ADDR pin tied to GND with a 0Ω to denote it as the primary TPS65982. TPS65982 (Primary) UART TPS65982 (Secondary) SPI SPI Flash Figure 10-6. Primary and Secondary TPS65982 Sharing a Single Flash 10.2.2.2.5 TPS65982 Dead Battery Support Primary and Secondary Port The TP65982 supports dead battery functionality to be able to power up from the Type-C port. This design supports dead battery using the PP_EXT path, where RPD_G1/2 and CC1/2 are connected respectively, and BUSPOWERZ is connected to GND to path 5 V VBUS into the system through the PP_EXT path. The TPS65982 will soft-start the PP_EXT (or PP_HV) path to comply with USB2.0 inrush current requirements. To enable PD functionality the TPS65982 must boot the application firmware from the flash. For the primary TPS65982, once VBUS is detected at 5 V it will automatically start to load the application firmware from the flash. The TPS65982 will then be able communicate over PD and establish a power contract at the required 20 V. Figure 10-8 shows the boot up sequence of the primary TPS65982. When the TPS65982 that is not connected to the flash is connected in dead battery it will pass the 5 V from VBUS in to the battery charger where the battery would be able to generate the needed System 3.3 V rail to both of the TPS65982s. Once the primary TPS65982 has a valid 3.3 V supply (VBUS = 0 V on Primary TPS65982) it will load the application firmware from the flash and pass it to the secondary TPS65982 that is connected. Once the secondary TPS65982 has loaded the application firmware over UART it will be able to negotiate a 20-V power contract. Figure 10-9 shows the dead battery sequence of the secondary TPS65982. 10.2.2.2.6 Debugging Methods The TPS65982 has methods of debugging a Type-C and PD system. In addition to the resistances recommended in the I2C (I2C), Debug Control (DEBUG_CTL), and Single-Wire De-bugger (SWD Resistors section, additional series resistors are used for debugging. The two I2C channels allow a designer to check the system state through the Host Interface Specification. By attaching 0-Ω series resistors between the I2C master and the TPS65982 and additionally adding 0-Ω series resistors between the TPS65982 and test points, 88 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 a multi-master scenario can be avoided. This allows breaking the connection between the I2C channels and the system to allow I2C access to the TPS65982 from an external tool. A header is used to allow for connections without soldering; however, SMT test pads can be used to provide a place to solder blue-wires for testing. Exposing the SWD_DATA and SWD_CLK pins will allow for more advanced debugging if needed. A header or SMT test point is also used for the SWD_DATA and SWD_CLK pins. 10.2.2.3 Application Curves Barrel Jack Charging Barrel Jack Inserted Barrel Jack Charging Barrel Jack Removed 20 V PD Power Contract Type-C Cable Connected Barrel Jack Inserted 20 V DC Barrel Jack Attached DC Barrel Jack Detect/PFET Enable 5V Type-C Charging Enter 20 V Type-C PD Contract 0V VBUS Exit 20 V Type-C PD Contract PD Charging Figure 10-7. DC Barrel Jack and Type-C PD Charging Hand-Off Load Application FW Load Application Boot Active TPS65982 Code Flash FW Load Start PD Comm. Enabled Figure 10-8. Primary TPS65982 Dead Battery Sequence Type-C Cable Connected 20 V PD Power Contract 20 V 20 V 5V Secondary VBUS 0V Secondary PP_EXT 0V 5V 3.3 V BQ Charger 3.3 V Auxiliary (VIN_3V 3) Primary Application FW Load 0V SPI LOAD Secondary Application FW Load Primary Active TPS65982 Code Secondary Active TPS65982 Code UART LOAD Application Boot Boot Application Secondary TPS65982 Loads App. FW (UART) Primary Secondary PD TPS65982 Loads Communication App. FW (SPI) Enabled Figure 10-9. Secondary TPS65982 Dead Battery Sequence Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 89 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 11 Power Supply Recommendations 11.1 3.3-V Power 11.1.1 VIN_3V3 Input Switch The VIN_3V3 input is the main supply to the TPS65982. The VIN_3V3 switch (S1 in Figure 9-40) is a unidirectional switch from VIN_3V3 to LDO_3V3, not allowing current to flow backwards from LDO_3V3 to VIN_3V3. This switch is on when 3.3 V is available. See Table 11-1 for the recommended external capacitance on the VIN_3V3 pin. 11.1.2 VOUT_3V3 Output Switch The VOUT_3V3 output switch (S2 in Figure 9-40) enables a low-current auxiliary supply to an external element. This switch is controlled by and is off by default. The VOUT_3V3 output has a supervisory circuit that drives the RESETZ output as a POR signal to external elements. RESETZ is also asserted by the MRESET pin or a host controller. See RESETZ and MRESET for more details on RESETZ. See Table 11-1 for the recommended external capacitance on the VOUT_3V3 pin. 11.1.3 VBUS 3.3-V LDO The 3.3-V LDO from VBUS steps down voltage from VBUS to LDO_3V3. This allows the TPS65982 to be powered from VBUS when VIN_3V3 is not available. This LDO steps down any recommended voltage on the VBUS pin. When VBUS is 20 V, as is allowable by USB PD, the internal circuitry of the TPS65982 will operate without triggering thermal shutdown; however, a significant external load on the LDO_3V3 pin may increase temperature enough to trigger thermal shutdown. The VBUS 3.3-V LDO blocks reverse current from LDO_3V3 back to VBUS allowing VBUS to be unpowered when LDO_3V3 is driven from another source. See Table 11-1 for the recommended external capacitance on the VBUS and LDO_3V3 pins. 11.2 1.8 V Core Power Internal circuitry is powered from 1.8 V. There are two LDOs that step the voltage down from LDO_3V3 to 1.8 V. One LDO powers the internal digital circuits. The other LDO powers internal low voltage analog circuits. 11.2.1 1.8 V Digital LDO The 1.8 V Digital LDO provides power to all internal low voltage digital circuits. This includes the digital core, memory, and other digital circuits. See Table 11-1 for the recommended external capacitance on the LDO_1V8D pin. 11.2.2 1.8 V Analog LDO The 1.8 V Analog LDO provides power to all internal low voltage analog circuits. See Table 11-1 for the recommended external capacitance on the LDO_1V8A pin. 11.3 VDDIO The VDDIO pin provides a secondary input allowing some I/Os to be powered by a source other than LDO_3V3. The default state is power from LDO_3V3. The memory stored in the flash will configure the I/O’s to use LDO_3V3 or VDDIO as a source and application code will automatically scale the input and output voltage thresholds of the I/O buffer accordingly. See I/O Buffers for more information on the I/O buffer circuitry. See Table 11-1 for the recommended external capacitance on the VDDIO pin. 11.3.1 Recommended Supply Load Capacitance Table 11-1 lists the recommended board capacitances for the various supplies. The typical capacitance is the nominally rated capacitance that must be placed on the board as close to the pin as possible. The maximum capacitance must not be exceeded on pins for which it is specified. The minimum capacitance is minimum capacitance allowing for tolerances and voltage de-rating ensuring proper operation. 90 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Table 11-1. Recommended Supply Load Capacitance CAPACITANCE PARAMETER DESCRIPTION VOLTAGE RATING MIN (ABS MIN) TYP (TYP PLACED) MAX (ABS MAX) CVIN_3V3 Capacitance on VIN_3V3 6.3 V 5 µF 10 μF CLDO_3V3 Capacitance on LDO_3V3 6.3 V 5 µF 10 µF 25 µF CVOUT_3V3 Capacitance on VOUT_3V3 6.3 V 0.1 μF 1 μF 2.5 μF CLDO_1V8D Capacitance on LDO_1V8D 4V 500 nF 2.2 µF 12 µF CLDO_1V8A Capacitance on LDO_1V8A 4V 500 nF 2.2 µF 12 µF CLDO_BMC Capacitance on LDO_BMC 4V 1 µF 2.2 µF 4 µF CVDDIO Capacitance on VDDIO. When shorted to LDO_3V3, the CLDO_3V3 capacitance may be shared. 6.3 V 0.1 µF 1 µF CVBUS Capacitance on VBUS 1 25 V 0.5 µF 1 µF CPP_5V0 Capacitance on PP_5V0 10 V 2.5 µF 4.7 µF CPP_HV Capacitance on PP_HV (Source to VBUS) 25 V 2.5 µF 4.7 µF Capacitance on PP_HV (Sink from VBUS) 25 V CPP_CABLE Capacitance on PP_CABLE. When shorted to PP_5V0, the CPP_5V0 capacitance may be shared. 10 V 2.5 µF 4.7 µF 47 µF CPP_HVEXT Capacitance on external high voltage source to VBUS 25 V 2.5 µF 4.7 µF 12 µF 120 µF Capacitance on external high voltage sink from VBUS 25 V 47 µF CSS Capacitance on soft start pin 6.3 V 220 nF 120 µF CC_CC1 Capacitance on C_CC1 pin 25 V 220 pF 330 pF 470 pF CC_CC2 Capacitance on C_CC2 pin 25 V 220 pF 330 pF 470 pF 11.3.2 Schottky for Current Surge Protection To prevent the possibility of large ground currents into the TPS65982 during sudden disconnects because of inductive effects in a cable, it is recommended that a Schottky be placed from VBUS to GND as shown in Figure 11-1. The NSR20F30NXT5G is recommended. PP_HV Fast current limit HV_GATE2 PP_HV Gate Control and Current Limit HV_GATE1 SENSEN SENSEP PP_EXT HV Gate Control and Sense PP_5V0 Gate Control and Current Limit PP_5V0 VBUS Fast current limit AGND Figure 11-1. Schottky on VBUS for Current Surge Protection Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 91 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 12 Layout 12.1 Layout Guidelines Proper routing and placement will maintain signal integrity for high-speed signals and improve the thermal dissipation from the TPS65982 power path. The combination of power and high-speed data signals are easily routed if the following guidelines are followed. It is a best practice to consult with a printed circuit board (PCB) manufacturer to verify manufacturing capabilities. 12.1.1 TPS65982 Recommended Footprints 12.1.1.1 Standard TPS65982 Footprint (Circular Pads) Figure 12-1 shows the TPS65982 footprint using a 0.25mm pad diameter. This footprint is applicable to boards that will be using an HDI PCB process that uses smaller vias to fan-out into the inner layers of the PCB. This footprint requires via fill and tenting and is recommended for size-constrained applications. The circular footprint allows for easy fan-out into other layers of the PCB and better thermal dissipation into the GND planes. Figure 12-2 shows the recommended via sizing for use under the balls. The size is 5mil hole and 10mil diameter. This via size will allow for approximately 1.5A current rating at 3 mΩ of DC resistance with 1.6nH of inductance. It is recommended to verify these numbers with board manufacturing processes used in fabrication of the PCB. This footprint is available for download on the TPS65982 product folder on the TPS65982 product folder. Figure 12-1. Top View Standard TPS65982 Footprint (Circular Pads) 92 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Figure 12-2. Under Ball Recommended Via Size 12.1.2 Alternate TPS65982 Footprint (Oval Pads) Figure 12-3 shows the TPS65982 footprint using oval-shaped pads in specific locations. This allows the PCB designer to route the inner perimeter balls through the top layer. The balls around the perimeter have their pads in an oval shape with the exception of the corner balls. Figure 12-4 shows the sizing for the oval pads, 0.25 mm by 0.17 mm. All of the other non-oval shaped pads will have a 0.25 mm diameter. This footprint is recommended for MDI (Medium Density) PCB designs that are generally less expensive to build. The void under the TPS65982 allows for vias to route the inner signals and connect to the GND and power planes. Figure 12-5 shows the recommended minimum via size (8mil hole and 16 mil diameter). The recommended 8mil vias will be rated for approximately 1.8 A of DC current and 1.5 mΩ of resistance with 1.3 nH of inductance. Some board manufactures may offer 6mil hole and 12 mil diameter vias with a mechanical drill. This footprint is available for download on the TPS65982 product folder. Figure 12-3. Top View Alternate TPS65982 Footprint (Oval Pads) Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 93 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Figure 12-4. Oval Pad Sizing Figure 12-5. Recommended Minimum Via Sizing 12.1.3 Top TPS65982 Placement and Bottom Component Placement and Layout When the TPS65982 is placed on top and its components on bottom the solution size will be at its smallest. For systems that do not use the optional external FET path the solution size will average less than 64 mm2 (8 mm × 8 mm). Systems that implement the optional external FET path will average a solution size of less than 100 mm2 (10 mm × 10 mm). These averages will vary with component selection (NFETs, Passives, etc.). Selection of the oval pad TPS65982 footprint or standard TPS65982 footprint will allow for similar results. 12.1.4 Oval Pad Footprint Layout and Placement The oval pad footprint layout is generally more difficult to route than the standard footprint because of the top layer fan-out and void via placement needed; however, when the footprint with oval pads is used, Via on Pads, laser-drilled vias, and HDI board processes are not required. Therefore, a footprint with oval pads is ideal for cost-optimized applications and will be used for the following the layout example. This layout example follows the charger application example (see Typical Applications) and includes all necessary passive components needed for this application. This design uses both the internal and optional external FET paths for sourcing and sinking power respectively. Follow the differential impedances for High Speed signals defined by their specifications (DisplayPort - AUXN/P and USB2.0). All I/O will be fanned out to provide an example for routing out all pins, not all designs will use all of the I/O on the TPS65982. 12.1.5 Component Placement Placement of components on the top and bottom layers is used for this example to minimize solution size. The TPS65982 is placed on the top layer of the board and the majority of its components are placed on the bottom layer. When placing the components on the bottom layer, it is recommended that they are placed directly under the TPS65982 in a manner where the pads of the components are not directly under the void on the top layer. Figure 12-6 and Figure 12-7 show the placement in 2-D. Figure 12-8 and Figure 12-9 show the placement in 3-D. 12.1.6 Designs Rules and Guidance When starting to route nets it is best to start with 4 mil clearance spacing. The designer may have to adjust the 4mil clearance to 3.5 mil when fanning out the top layer routes. With the routing of the top layer having a tight clearance, it is recommended to have the layout grid snapped to 1 mil. For certain routes on the layout done in this guide, the grid snap was set to 0.1 mil. For component spacing this design used 20 mil clearance between components. The silk screen around certain passive components may be deleted to allow for closer placement of components. 12.1.7 Routing PP_HV, PP_EXT, PP_5V0, and VBUS On the top layer, create pours for PP_HV, PP_5V0 and VBUS to extend area to place 8 mil hole and 16 mil diameter vias to connect to the bottom layer. A minimum of 4 vias is needed to connect between the top and bottom layer. For the bottom layer, place pours that will connect the PP_HV, PP_5V0, and VBUS capacitors to their respective vias. The external FETS must also be connected through pours and place vias for the external FET gates. For 5 A systems, special consideration must be taken for ensuring enough copper is used to handle the higher current. For 0.5 oz copper top or bottom pours with 0.5-oz plating will require approximately a 120-mil pour width for 5-A support. When routing the 5 A through a 0.5 oz internal layer, more than 200 mil will be required to carry the current. Figure 12-10 and Figure 12-11 show the pours used in this example. 94 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 12.1.8 Routing Top and Bottom Passive Components The next step is to route the connections to the passive components on the top and bottom layers. For the top layer only CC1 and CC2 capacitors will be placed on top. Routing the CC1 and CC2 lines with a 8 mil trace will facilitate the needed current for supporting powered Type C cables through VCONN. For more information on VCONN please refer to the Type C specification. Figure 12-12 shows how to route to the CC1 and CC2 to their respective capacitors. For capacitor GND pin use a 10 mil trace if possible. This particular system support Dead Battery, which has RPD_G1/2 connected to CC1/2. The top layer pads will have to be connected the bottom placed component through Vias (8 mil hole and 16 mil diameter recommended). For the VIN_3V3, VDDIO, LDO_3V3, LDO_1V8A, LDO1V8D, LDO_BMC, and VOUT_3V3 use 6mil traces to route. For PP_CABLE route using an 8 mil trace and for all other routes 4 mil traces may be used. To allow for additional space for routing, stagger the component vias to leave room for routing other signal nets. Figure 12-13 and Figure 12-14 show the top and bottom routing. Table 12-1 provides a summary of the trace widths. Table 12-1. Routing Trace Widths ROUTE WIDTH (mil) CC1, CC2, PP_CABLE 8 LDO_3V3, LDO_1V8A, LDO_1V8D, LDO_BMC, VIN_3V3, VOUT_3V3, VDDIO, HV_GATE1, HV_GATE2 6 Component GND 10 12.1.9 Void Via Placement The void under the TPS65982 is used to via out I/O and for thermal relief vias. A minimum of 6 vias must be used for thermal dissipation to the GND planes. The thermal relief vias must be placed on the right side of the device by the power path. Figure 12-15 shows the recommended placement of the vias. Note the areas under the void where vias are not placed. This is done to allow the external FET gate drive and sense pins to route under the TPS65982 through an inner layer. Figure 12-16 shows the top layer GND pour to connect the vias and GND balls together. 12.1.10 Top Layer Routing Once the components are routed, the rest of the area can be used to route all of the additional I/O. After all nets have been routed place a polygonal pour under to connect the TPS65982 GND pins to the GND vias. Refer to Figure 12-17 for the final top routing and GND pour. 12.1.11 Inner Signal Layer Routing The inner signal layer is used to route the I/O from the internal balls of the TPS65982 and the external FET control and sensing. Figure 12-18 shows how to route the internal layer. 12.1.12 Bottom Layer Routing The bottom layer has most of the components placed and routed already. Place a polygon pour to connect all of the GND nets and vias on the bottom layer, refer to Figure 12-19. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 95 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 12.2 Layout Example Figure 12-6. Example Layout (Top View in 2-D) 96 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Figure 12-7. Example Layout (Bottom View in 2-D) Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 97 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Figure 12-8. Example Layout (Top View in 3-D) 98 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Figure 12-9. Example Layout (Bottom View in 3-D) Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 99 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Figure 12-10. Top Polygonal Pours 100 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Figure 12-11. Bottom Polygonal Pours Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 101 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Figure 12-12. CC1 and CC2 Capacitor Routing 102 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Figure 12-13. Top Layer Component Routing Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 103 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Figure 12-14. Bottom Layer Component Routing 104 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Figure 12-15. Void Via Placement Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 105 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Figure 12-16. Top Layer GND Pour 106 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Figure 12-17. Final Routing and GND Pour (Top Layer) Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 107 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Figure 12-18. Final Routing (Inner Signal Layer) 108 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 Figure 12-19. Final Routing (Bottom Layer) Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 109 TPS65982 www.ti.com SLVSD02E – MARCH 2015 – REVISED AUGUST 2021 13 Device and Documentation Support 13.1 Device Support 13.1.1 Development Support For the IBIS Model, see TPS65982ZQZR IBIS Model (SLVMAY7) 13.2 Documentation Support 13.2.1 Related Documentation For related documentation, see the following: • USB Power Delivery Specification, Revision 2.0, Version 1.2 (March 25th, 2016) • USB Type-C Specification, Revision 1.2 (March 25th, 2016) • USB Battery Charging Specification, Revision 1.2 (December 7th, 2010) • TPS65981, TPS65982, and TPS65986 Firmware User’s Guide (SLVUAH7) • TPS65981, TPS65982, and TPS65986 Host Interface Technical Reference Manual (SLVUAN1) • W25Q80DV data sheet, 8M-Bit, 16M-Bit and 32M-Bit Serial Flash Memory With Dual and Quad SPI • NSR20F30NXT5G data sheet, Schottky Barrier Diode 13.3 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on Subscribe to updates to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. 13.4 Support Resources TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. 13.5 Trademarks TI E2E™ is a trademark of Texas Instruments. USB Type-C® is a registered trademark of USB Implementers Forum. All trademarks are the property of their respective owners. 13.6 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 13.7 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. 14 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 110 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TPS65982 PACKAGE OPTION ADDENDUM www.ti.com 7-Oct-2021 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TPS65982ABZBHR ACTIVE NFBGA ZBH 96 2500 RoHS & Green Call TI Level-3-260C-168 HR -10 to 85 TPS65982 AB (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TPS65982ABZQZR 价格&库存

很抱歉,暂时无法提供与“TPS65982ABZQZR”相匹配的价格&库存,您可以联系我们找货

免费人工找货