0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BTT6030-2ERA

BTT6030-2ERA

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    TDSOIC14

  • 描述:

    BTT6030-2ERA

  • 数据手册
  • 价格&库存
BTT6030-2ERA 数据手册
PROFET™ +24 V BTT6030-2ERA Smart High-Side Power Switch Single Channel, 32 mΩ 1 Package PG-TDSO-14 Marking 6030-2ERA Overview Application • Suitable for resistive, inductive and capacitive loads • Replaces electromechanical relays, fuses and discrete circuits • Most suitable for loads with high inrush current, such as lamps • Suitable for 12 V and 24 V Trucks and Transportation System VBAT Voltage Regulator OUT CVDD T1 VS GND Z CVS ROL VS VDD GPIO RDEN DEN GPIO RDSEL DSEL OUT0 Microcontroller RIN IN0 GPIO RIN IN1 OUT4 COUT RPD GPIO Valve OUT1 IS RSENSE RPD ADC IN GND COUT Bulb GND RIS RGND CSENSE D Application Diagram with BTT6030-2ERA Datasheet www.infineon.com 1 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Overview Basic Features • Two channel device • Very low stand-by current • 3.3 V and 5 V compatible logic inputs • Electrostatic discharge protection (ESD) • Optimized electromagnetic compatibility • Logic ground independent from load ground • Very low power DMOS leakage current in OFF state • Green product (RoHS compliant) and AEC qualified Description The BTT6030-2ERA is a 32 mΩ dual channel Smart High-Side Power Switch, embedded in a PG-TDSO-14, Exposed Pad package, providing protective functions and diagnosis. The power transistor is built by an N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 technology. It is specially designed to drive lamps up to 3 x P21 W 24 V or 1 x 70 W 24 V, as well as LEDs in the harsh automotive environment. Table 1 Product Summary Parameter Symbol Value Operating voltage range VS(OP) 5 V ... 36 V Maximum supply voltage VS(LD) 65 V Maximum ON state resistance at TJ = 150°C per channel RDS(ON) 62 mΩ Nominal load current (one channel active) IL(NOM)1 6A Nominal load current (both channels active) IL(NOM)2 4A Typical current sense ratio kILIS 2240 Minimum current limitation IL5(SC) 56 A Maximum standby current with load at TJ = 25°C IS(OFF) 500 nA Diagnostic Functions • Proportional load current sense for both channels multiplexed • Open load in ON and OFF • Short circuit to battery and ground • Overtemperature • Stable diagnostic signal during short circuit • Enhanced kILIS dependency with temperature and load current Protection Functions • Stable behavior during undervoltage • Reverse polarity protection with external components • Secure load turn-off during logic ground disconnect with external components • Overtemperature protection with latch • Overvoltage protection with external components • Voltage dependent current limitation • Enhanced short circuit operation Datasheet 2 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Block Diagram 2 Block Diagram Channel 0 VS voltage sen sor int ern al power supply IN0 DEN over temper atu re dri ver logic ESD prot ec tion IS gat e cont rol & charge p ump T clamp for ind uctive load over cur rent switch limit OUT 0 load cu rrent sense and open load detection forwar d voltage drop detection VS Channel 1 T IN1 Cont rol and pro tec tion circuit equivalent to channel 0 DSEL OUT 1 GND Figure 1 Datasheet Block diagram D xS.vsd Block Diagram for the BTT6030-2ERA 3 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Pin Configuration 3 Pin Configuration 3.1 Pin Assignment GND 1 14 OUT0 IN0 2 13 OUT0 DEN 3 12 OUT0 IS 4 11 NC DSEL 5 10 OUT1 IN1 6 9 OUT1 NC 7 8 OUT1 Pinout dual SO14.vsd Figure 2 Pin Configuration 3.2 Pin Definitions and Functions Table 2 Pin Definitions and Functions Pin Symbol Function 1 GND GrouND; Ground connection 2 IN0 INput channel 0; Input signal for channel 0 activation 3 DEN Diagnostic ENable; Digital signal to enable/disable the diagnosis of the device 4 IS Sense; Sense current of the selected channel 5 DSEL Diagnostic SELection; Digital signal to select the channel to be diagnosed 6 IN1 INput channel 1; Input signal for channel 1 activation 7, 11 NC Not Connected; No internal connection to the chip 8, 9, 10 OUT1 OUTput 1; Protected high side power output channel 11) 12, 13, 14 OUT0 OUTput 0; Protected high side power output channel 01) Cooling Tab VS Voltage Supply; Battery voltage 1) All output pins of a given channel must be connected together on the PCB. All pins of an output are internally connected together. PCB traces have to be designed to withstand the maximum current which can flow. Datasheet 4 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Pin Configuration 3.3 Voltage and Current Definition Figure 3 shows all terms used in this data sheet, with associated convention for positive values. IVS VS VDS0 VS IIN0 IN0 VIN0 OUT0 IN1 VIN1 IDEN VDSEL VOUT0 VDS1 DEN VDEN OUT1 DSEL IIS IS VIS IOUT0 GND IOUT1 VOUT1 IGND voltage and current convention.vsd Figure 3 Datasheet Voltage and Current Definition 5 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings Table 3 Absolute Maximum Ratings1) TJ = -40°C to +150°C; (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Supply Voltages Supply voltage VS -0.3 – 48 V – P_4.1.1 Reverse polarity voltage -VS(REV) 0 – 28 V t < 2 min TA = 25°C RL ≥ 12 Ω RGND = 150 Ω P_4.1.2 Supply voltage for short circuit protection VBAT(SC) 0 – 36 V RECU = 20 mΩ P_4.1.3 RCable= 16 mΩ/m LCable= 1 µH/m, l = 0 or 5 m See Chapter 6 and Figure 53 Supply voltage for Load dump protection VS(LD) – – 65 V 2) RI = 2 Ω RL = 12 Ω P_4.1.12 nRSC1 – – 100 k cycles 3) P_4.1.4 Voltage at INPUT pins VIN -0.3 – – 6 7 V – t < 2 min P_4.1.13 Current through INPUT pins IIN -2 – 2 mA – P_4.1.14 Voltage at DEN pin VDEN -0.3 – – 6 7 V – t < 2 min P_4.1.15 Current through DEN pin IDEN -2 – 2 mA – P_4.1.16 Voltage at DSEL pin VDSEL -0.3 – – 6 7 V – t < 2 min P_4.1.17 Current through DSEL pin IDSEL -2 – 2 mA – P_4.1.18 Voltage at IS pin VIS -0.3 – VS V – P_4.1.19 Current through IS pin IIS -25 – 50 mA – P_4.1.20 | IL | – – IL(LIM) A – P_4.1.21 Short Circuit Capability Permanent short circuit IN pin toggles VSupply= 28 V Input Pins Sense Pin Power Stage Load current Datasheet 6 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA General Product Characteristics Table 3 Absolute Maximum Ratings1) TJ = -40°C to +150°C; (unless otherwise specified) Parameter Symbol Values Unit Note or Test Condition Number Min. Typ. Max. – – 2.0 W TA = 85°C TJ < 150°C P_4.1.22 Maximum energy dissipation EAS Single pulse (one channel) – – 85 mJ IL(0) = 4 A TJ(0) = 150°C VS = 28 V P_4.1.23 Voltage at power transistor VDS – – 65 V – P_4.1.26 I GND -20 -200 – 20 20 mA – t < 2 min P_4.1.27 Junction temperature TJ -40 – 150 °C – P_4.1.28 Storage temperature TSTG -55 – 150 °C – P_4.1.30 VESD -2 – 2 kV 4) HBM P_4.1.31 HBM P_4.1.32 Power dissipation (DC) PTOT Currents Current through ground pin Temperatures ESD Susceptibility ESD susceptibility (all pins) ESD susceptibility OUT Pin vs. VESD GND and VS connected -4 – 4 kV 4) ESD susceptibility VESD -500 – 500 V 5) CDM P_4.1.33 ESD susceptibility pin (corner pins) VESD -750 – 750 V 5) CDM P_4.1.34 1) Not subject to production test. Specified by design 2) VS(LD) is setup without the DUT connected to the generator per ISO 7637-1 3) Threshold limit for short circuit failures : 100 ppm. Please refer to the legal disclaimer for short circuit capability on the Back Cover of this document 4) ESD susceptibility, Human Body Model “HBM” according to AEC Q100-002 5) ESD susceptibility, Charged Device Model “CDM” according to AEC Q100-011 Notes 1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. Datasheet 7 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA General Product Characteristics 4.2 Functional Range Table 4 Functional Range TJ = -40°C to +150°C; (unless otherwise specified) Parameter Nominal operating voltage Symbol VNOM Values Unit Min. Typ. Max. 8 28 36 Note or Test Condition Number V – P_4.2.1 2) Extended operating voltage VS(OP) 5 – 48 V VIN = 4.5 V RL = 12 Ω VDS < 0.5 V See Figure 15 P_4.2.2 Minimum functional supply VS(OP)_MIN voltage 3.8 4.3 5 V 1) VIN = 4.5 V RL = 12 Ω From IOUT = 0 A to VDS < 0.5 V; See Figure 15 See Figure 29 P_4.2.3 Undervoltage shutdown VS(UV) 3 3.5 4.1 V 1) VIN = 4.5 V VDEN = 0 V RL = 12 Ω From VDS < 1 V; to IOUT = 0 A See Figure 15 See Figure 30 P_4.2.4 Undervoltage shutdown hysteresis VS(UV)_HYS – 850 – mV 2) P_4.2.13 Operating current One channel active IGND_1 – 5.5 9 mA VIN = 5.5 V VDEN = 5.5 V Device in RDS(ON) VS = 36 V See Figure 31 P_4.2.5 Operating current All channels active IGND_2 – 9 12 mA VIN = 5.5 V VDEN = 5.5 V Device in RDS(ON) VS = 36 V See Figure 32 P_4.2.6 Standby current for whole device with load (ambient) IS(OFF) – 0.1 0.5 µA 1) P_4.2.7 Datasheet 8 – VS = 36 V VOUT = 0 V VIN floating VDEN floating TJ ≤ 85°C See Figure 33 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA General Product Characteristics Table 4 Functional Range TJ = -40°C to +150°C; (unless otherwise specified) Parameter Symbol Values Unit Note or Test Condition Number Min. Typ. Max. IS(OFF)_150 – 6 15 µA VS = 36 V VOUT = 0 V VIN floating VDEN floating TJ = 150°C See Figure 33 P_4.2.10 Standby current for whole IS(OFF_DEN) device with load, diagnostic active – 0.6 – mA 2) P_4.2.8 Maximum standby current for whole device with load VS = 36 V VOUT = 0 V VIN floating VDEN = 5.5 V 1) Test at TJ = -40°C only 2) Not subject to production test. Specified by design. Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. 4.3 Thermal Resistance Table 5 Thermal Resistance Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Junction to case RthJC – 2 – K/W 1) P_4.3.1 Junction to ambient Both channels active RthJA – 25 – K/W 1) 2) P_4.3.2 1) Not subject to production test. Specified by design. 2) Specified RthJA value is according to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board with 1 W power dissipation equally dissipated for both channel at TA=105°C ; The product (chip + package) was simulated on a 76.4 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70 µm Cu, 2 x 35 µm Cu). Where applicable, a thermal via array under the exposed pad contacts the first inner copper layer. Please refer to Figure 4. Datasheet 9 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA General Product Characteristics 4.3.1 PCB Set-Up 70µm 1.5mm 35µm 0.3mm Figure 4 PCB 2 s2p .vsd 2s2p PCB Cross Section PCB bottom view PCB top view 1 14 2 13 3 4 12 COOLING TAB 11 VS 5 10 6 9 7 8 thermique SO14.vsd Figure 5 Datasheet PC Board Top and Bottom View for Thermal Simulation with 600 mm2 Cooling Area 10 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA General Product Characteristics 4.3.2 Thermal Impedance BTT6030-2ERx 100 ZthJA (K/W) TAMBIENT = 105°C 10 1 2s2p 1s0p - 600 mm² 1s0p - 300 mm² 1s0p - footprint 0,1 0,0001 Figure 6 0,001 0,01 0,1 1 Time (s) 10 100 1000 Typical Thermal Impedance. 2s2p set-up according Figure 4 BTT6030-2ERx 100 1s0p - Tambient = 105°C 90 RthJA (K/W) 80 70 60 50 40 30 0 Figure 7 Datasheet 100 200 300 Cooling area (mm²) 400 500 600 Typical Thermal Resistance. PCB set-up 1s0p 11 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Power Stage 5 Power Stage The power stages are built using an N-channel vertical power MOSFET (DMOS) with charge pump. 5.1 Output ON-State Resistance 60 57,5 55 52,5 50 47,5 45 42,5 40 37,5 35 32,5 30 27,5 25 22,5 , 20 17,5 15 12,5 10 7,5 5 2,5 0 70 60 RD DS(ON)[m:] RD DS(ON)[m:] The ON-state resistance RDS(ON) depends on the supply voltage as well as the junction temperature TJ. Figure 8 shows the dependencies in terms of temperature and supply voltage for the typical ON-state resistance. The behavior in reverse polarity is described in Chapter 6.4. 50 150°C 40 25°C 40°C 30 20 10 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 JunctionTemperature[°C] Figure 8 5 10 15 20 25 30 35 40 45 50 VS[V] Typical ON-State Resistance A high signal (see Chapter 8) at the input pin causes the power DMOS to switch ON with a dedicated slope, which is optimized in terms of EMC emission. 5.2 Turn ON/OFF Characteristics with Resistive Load Figure 9 shows the typical timing when switching a resistive load. IN V IN_H VIN_L t VOUT 90% VS dV/dt dV/dt ON OFF tON tOFF_DELAY 70% VS 30% VS tON_DELAY tOFF 10% VS t Switching times .vsd Figure 9 Datasheet Switching a Resistive Load Timing 12 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Power Stage 5.3 Inductive Load 5.3.1 Output Clamping When switching OFF inductive loads with high side switches, the voltage VOUT drops below ground potential, because the inductance intends to continue driving the current. To prevent the destruction of the device by avalanche due to high voltages, there is a voltage clamp mechanism ZDS(AZ) implemented that limits negative output voltage to a certain level (VS - VDS(AZ)). Please refer to Figure 10 and Figure 11 for details. Nevertheless, the maximum allowed load inductance is limited. VS ZDS(AZ) IN VDS LOGIC IL VBAT GND VIN OUT VOUT L, RL ZGND Output_clamp.vsd Figure 10 Output Clamp (OUT0 and OUT1) IN t VOUT VS t V S-VDS(AZ) IL t Switching an inductance.vsd Figure 11 Datasheet Switching an Inductive Load Timing 13 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Power Stage 5.3.2 Maximum Load Inductance During demagnetization of inductive loads, energy has to be dissipated in the BTT6030-2ERA. This energy can be calculated with following equation: RL ⋅ IL L V S – V DS ( AZ-) E = V DS ( AZ ) ⋅ ------ ⋅ -----------------------------⋅ ln ⎛ 1 – -------------------------------⎞ + I L ⎝ V S – V DS ( AZ )⎠ RL RL (5.1) Following equation simplifies under the assumption of RL = 0 Ω. VS 2 1 -⎞ E = --- ⋅ L ⋅ I ⋅ ⎛⎝ 1 – -----------------------------2 V S – V DS ( AZ )⎠ (5.2) The energy, which is converted into heat, is limited by the thermal design of the component. See Figure 12 for the maximum allowed energy dissipation as a function of the load current. IN t VOUT VS t VS-VDS(AZ) IL t Switching an inductance.vsd Figure 12 Datasheet Maximum Energy Dissipation Single Pulse, TJ(0) = 150°C; VS = 28 V 14 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Power Stage 5.4 Inverse Current Capability In case of inverse current, meaning a voltage VINV at the OUTput higher than the supply voltage VS, a current IINV will flow from output to VS pin via the body diode of the power transistor (please refer to Figure 13). The output stage follows the state of the IN pin, except if the IN pin goes from OFF to ON during inverse. In that particular case, the output stage is kept OFF until the inverse current disappears. Nevertheless, the current IINV should not be higher than IL(INV). Otherwise, the second channel can be corrupted and erratic behavior can be observed. If the affected channel is OFF, the diagnostic will detect an open load at OFF. If the affected channel is ON, the diagnostic will detect open load at ON (the overtemperature signal is inhibited). At the appearance of VINV, a parasitic diagnostic can be observed at the unaffected channel. After, the diagnosis is valid and reflects the output state. At VINV vanishing, the diagnosis is valid and reflects the output state. During inverse current, no protection function are available. VBAT VS Gate driver Device logic INV Comp. IL(INV) VINV OUT GND ZGND inverse current.vsd Figure 13 Datasheet Inverse Current Circuitry 15 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Power Stage 5.5 Electrical Characteristics Power Stage Table 6 Electrical Characteristics: Power Stage VS = 8 V to 36 V, TJ = -40°C to +150°C (unless otherwise specified). Typical values are given at VS = 28 V, TJ = 25°C Parameter Symbol Values Min. Typ. Max. Unit Note or Number Test Condition ON-state resistance per channel RDS(ON)_150 40 55 62 mΩ IL = IL4 = 7 A VIN = 4.5 V TJ = 150°C See Figure 8 P_5.5.1 ON-state resistance per channel RDS(ON)_25 – 32 – mΩ 1) P_5.5.21 Nominal load current One channel active IL(NOM)1 – 6 – A 1) Nominal load current All channels active IL(NOM)2 – 4 – A Output voltage drop limitation at VDS(NL) small load currents – 10 22 mV IL = IL0 = 50 mA See Figure 34 P_5.5.4 Drain to source clamping voltage VDS(AZ) VDS(AZ) = [VS - VOUT] 66 70 75 V IDS = 20 mA See Figure 11 See Figure 35 P_5.5.5 Output leakage current per channel; TJ ≤ 85°C IL(OFF) – 0.05 0.5 µA 2) VIN floating VOUT = 0 V TJ ≤ 85°C P_5.5.6 Output leakage current per channel; TJ = 150°C IL(OFF)_150 – 2 10 µA VIN floating VOUT = 0 V TJ = 150°C P_5.5.8 Slew rate 30% to 70% VS ΔV/dtON 0.3 0.8 1.4 V/µs P_5.5.11 Slew rate 70% to 30% VS -ΔV/dtOFF 0.3 0.8 1.4 V/µs Slew rate matching dV/dtON - dV/dtOFF ΔdV/dt -0.15 0 0.15 V/µs Turn-ON time to VOUT = 90% VS tON 20 50 150 µs RL = 12 Ω VS = 28 V See Figure 9 See Figure 36 See Figure 37 See Figure 38 See Figure 39 See Figure 40 Turn-OFF time to VOUT = 10% VS tOFF 20 55 150 µs P_5.5.15 Turn-ON / OFF matching tOFF - tON ΔtSW -50 0 50 µs P_5.5.16 Turn-ON time to VOUT = 10% VS tON_delay – 30 70 µs P_5.5.17 Turn-OFF time to VOUT = 90% VS tOFF_delay – 30 70 µs P_5.5.18 Datasheet 16 TJ = 25°C TA = 85°C TJ < 150°C P_5.5.2 P_5.5.3 P_5.5.12 P_5.5.13 P_5.5.14 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Power Stage Table 6 Electrical Characteristics: Power Stage (cont’d) VS = 8 V to 36 V, TJ = -40°C to +150°C (unless otherwise specified). Typical values are given at VS = 28 V, TJ = 25°C Parameter Symbol Values Min. Typ. Max. Unit Note or Number Test Condition Switch ON energy EON – 0.6 – mJ 1) RL = 12 Ω VOUT = 90% VS VS = 36 V See Figure 41 P_5.5.19 Switch OFF energy EOFF – 0.8 – mJ 1) P_5.5.20 RL = 12 Ω VOUT = 10% VS VS = 36 V See Figure 42 1) Not subject to production test, specified by design. 2) Test at TJ = -40°C only Datasheet 17 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Protection Functions 6 Protection Functions The device provides integrated protection functions. These functions are designed to prevent the destruction of the IC from fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are designed for neither continuous nor repetitive operation. 6.1 Loss of Ground Protection In case of loss of the module ground and the load remains connected to ground, the device protects itself by automatically turning OFF (when it was previously ON) or remains OFF, regardless of the voltage applied on IN pins. In case of loss of device ground, it’s recommended to use input resistors between the microcontroller and the BTT6030-2ERA to ensure switching OFF of the channels. In case of loss of module or device ground, a current (IOUT(GND)) can flow out of the DMOS. Figure 14 sketches the situation. ZGND is recommended to be a resistor in series to a diode. VS ZIS(AZ) ZD(AZ) IS RSENSE DSEL DEN IN0 RDSEL RDEN RIN VBAT ZDS(AZ) LOGIC IOUT(GND) IN1 RIN OUT GND ZDESD ZGND RIS L, RL RIS Loss of ground protection.vsd Figure 14 Loss of Ground Protection with External Components 6.2 Undervoltage Protection Between VS(UV) and VS(OP), the undervoltage mechanism is triggered. VS(OP) represents the minimum voltage where the switching ON and OFF can takes place. VS(UV) represents the minimum voltage the switch can hold ON. If the supply voltage is below the undervoltage mechanism VS(UV), the device is OFF (turns OFF). As soon as the supply voltage is above the undervoltage mechanism VS(OP), then the device can be switched ON. When the switch is ON, protection functions are operational. Nevertheless, the diagnosis is not guaranteed until VS is in the VNOM range. Figure 15 sketches the undervoltage mechanism. Datasheet 18 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Protection Functions S lo p e 1 VOU T undervoltage behavior . vsd VS(U V) Figure 15 Undervoltage Behavior 6.3 Overvoltage Protection VS VS(OP) There is an integrated clamp mechanism for overvoltage protection (ZD(AZ)). To guarantee this mechanism operates properly in the application, the current in the Zener diode has to be limited by a ground resistor. Figure 16 shows a typical application to withstand overvoltage issues. In case of supply voltage higher than VS(AZ), the power transistor switches ON and the voltage across the logic section is clamped. As a result, the internal ground potential rises to VS - VS(AZ). Due to the ESD Zener diodes, the potential at pin IN and DEN rises almost to that potential, depending on the impedance of the connected circuitry. In the case the device was ON, prior to overvoltage, the BTT6030-2ERA remains ON. In the case the BTT6030-2ERA was OFF, prior to overvoltage, the power transistor can be activated. In the case the supply voltage is in above VBAT(SC) and below VDS(AZ), the output transistor is still operational and follows the input. If at least one channel is in the ON state, parameters are no longer guaranteed and lifetime is reduced compared to the nominal supply voltage range. This especially impacts the short circuit robustness, as well as the maximum energy EAS capability. ISOV ZIS(AZ) VS IS RSENSE DSEL DEN RDSEL RDEN RIN IN0 ZD(AZ) VBAT ZDS(AZ) LOGIC IN1 RIN OUT ZDESD GND RIS L, RL ZGND Overvoltage protection.vsd Figure 16 Datasheet Overvoltage Protection with External Components 19 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Protection Functions 6.4 Reverse Polarity Protection In case of reverse polarity, the intrinsic body diodes of the power DMOS causes power dissipation. The current in this intrinsic body diode is limited by the load itself. Additionally, the current into the ground path and the logic pins has to be limited to the maximum current described in Chapter 4.1 with an external resistor. Figure 17 shows a typical application. RGND resistor is used to limit the current in the Zener protection of the device. Resistors RDSEL, RDEN, and RIN are used to limit the current in the logic of the device and in the ESD protection stage. RSENSE is used to limit the current in the sense transistor which behaves as a diode. The recommended value for RDEN = RDSEL = RIN = RSENSE = 10 kΩ. ZGND is recommended to be a resistor in series to a diode. During reverse polarity, no protection functions are available. Microcontroller protection diodes VS ZIS(AZ) IS RSENSE DSEL DEN RDSEL RDEN RIN IN0 ZD(AZ) ZDS(AZ) VDS(REV) LOGIC -VS(REV) IN1 RIN OUT ZDESD GND RIS ZGND L, RL Reverse Polarity.vsd Figure 17 Datasheet Reverse Polarity Protection with External Components 20 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Protection Functions 6.5 Overload Protection In case of overload, such as high inrush of cold lamp filament, or short circuit to ground, the BTT6030-2ERA offers several protection mechanisms. 6.5.1 Current Limitation At first step, the instantaneous power in the switch is maintained at a safe value by limiting the current to the maximum current allowed in the switch IL(SC). During this time, the DMOS temperature is increasing, which affects the current flowing in the DMOS. The current limitation value is VDS dependent. Figure 18 shows the behavior of the current limitation as a function of the drain to source voltage. 80 70 Current Limit IL(SC) (A) 60 50 40 30 20 10 0 3 8 13 18 23 28 33 38 43 48 Drain Source Voltage VDS (V) Figure 18 Datasheet Current Limitation (typical behavior) 21 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Protection Functions 6.5.2 Temperature Limitation in the Power DMOS Each channel incorporates both an absolute (TJ(SC)) and a dynamic (TJ(SW)) temperature sensor. Activation of either sensor will cause an overheated channel to switch OFF to prevent destruction. Any protective switch OFF latches the output until the temperature has reached an acceptable value. Figure 19 gives a sketch of the situation. No retry strategy is implemented such that when the DMOS temperature has cooled down enough, the switch is switched ON again. Only the IN pin signal toggling can re-activate the power strage. (latch behavior). IN t IL LOAD CURRENT LIMITATION PHASE IL(x)SC LOAD CURRENT BELOW LIMITATION PHASE IL(NOM) t TDMOS TJ(SC) Temperature protection phase ΔTJ(SW) TA tsIS(FAULT) t tsIS(OC_blank) IIS IIS(FAULT) IL(NOM) / kILIS 0A VDEN t tsIS(OF F) 0V t Hard start.vsd Figure 19 Overload Protection Note: For better understanding, the time scale is not linear. The real timing of this drawing is application dependant and cannot be described. Datasheet 22 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Protection Functions 6.6 Electrical Characteristics for the Protection Functions Table 7 Electrical Characteristics: Protection VS = 8 V to 36 V, TJ = -40°C to +150°C (unless otherwise specified). Typical values are given at VS = 28 V, TJ = 25°C Parameter Symbol Values Unit Note or Test Condition Number Min. Typ. Max. IOUT(GND) – 0.1 – mA 1) 2) VS = 48 V See Figure 14 P_6.6.1 VDS(REV) 200 610 700 mV IL = - 4 A TJ = 150°C See Figure 17 P_6.6.2 VS(AZ) 65 70 75 V ISOV = 5 mA See Figure 16 P_6.6.3 Load current limitation IL5(SC) 56 70 84 A 3) VDS = 5 V See Figure 43 P_6.6.4 Load current limitation IL28(SC) – 35 – A 2) VDS = 42 V See Figure 43 P_6.6.7 Dynamic temperature increase while switching ∆TJ(SW) – 80 – K 4) See Figure 19 P_6.6.8 150 170 4) 200 4) °C 5) See Figure 19 P_6.6.10 K 5) 4) Loss of Ground Output leakage current while GND disconnected Reverse Polarity Drain source diode voltage during reverse polarity Overvoltage Overvoltage protection Overload Condition Thermal shutdown temperature TJ(SC) Thermal shutdown hysteresis 1) 2) 3) 4) 5) ∆TJ(SC) – 30 – See Figure 19 P_6.6.11 All pins are disconnected except VS and OUT. Not Subject to production test, specified by design Test at TJ = -40°C only Functional test only Test at TJ = +150°C only Datasheet 23 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Diagnostic Functions 7 Diagnostic Functions For diagnosis purpose, the BTT6030-2ERA provides a combination of digital and analog signals at pin IS. These signals are called SENSE. In case the diagnostic is disabled via DEN, pin IS becomes high impedance. In case DEN is activated, the sense current of the channel X is enabled/disabled via associated pin DSEL. Table 8 gives the truth table. Table 8 Diagnostic Truth Table DEN DSEL IS 0 don’t care Z 1 0 Sense output 0 IIS(0) 1 1 Sense output 1 IIS(1) 7.1 IS Pin The BTT6030-2ERA provides a SENSE current written IIS at pin IS. As long as no “hard” failure mode occurs (short circuit to GND / current limitation / overtemperature / excessive dynamic temperature increase or open load at OFF) a proportional signal to the load current (ratio kILIS = IL / IIS) is provided. The complete IS pin and diagnostic mechanism is described on Figure 20. The accuracy of the SENSE depends on temperature and load current. The IS pin multiplexes the current IIS(0) and IIS(1), via the pin DSEL. Thanks to this multiplexing, the matching between kILISCHANNEL0 and kILISCHANNEL1 is optimized. Due to the ESD protection, in connection to VS, it is not recommended to share the IS pin with other devices if these devices are using another battery feed. The consequence is that the unsupplied device would be fed via the IS pin of the supplied device. VS IIS0 = IL0 / kILIS IIS1 = IL1 / kILIS IIS(FAULT) ZIS(AZ) 0 1 IS FAULT 0 1 DEN DSEL Figure 20 Datasheet Sense schematic.vsd Diagnostic Block Diagram 24 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Diagnostic Functions 7.2 SENSE Signal in Different Operating Modes Table 9 gives a quick reference for the state of the IS pin during device operation. Table 9 Sense Signal, Function of Operation Mode Operation Mode Input level Channel X DEN1) Output Level Diagnostic Output Normal operation OFF H Z Z Short circuit to GND ~ GND Z Overtemperature Z Z Short circuit to VS VS IIS(FAULT) Open Load < VOL(OFF) > VOL(OFF)2) Z IIS(FAULT) Inverse current ~ VINV IIS(FAULT) ~ VS IIS = IL / kILIS Current limitation < VS IIS(FAULT) Short circuit to GND ~ GND IIS(FAULT) Overtemperature TJ(SW) event Z IIS(FAULT) Short circuit to VS VS Normal operation ON IIS < IL / kILIS 3) Open Load ~ VS Inverse current ~ VINV IIS < IIS(OL)4) Underload ~ VS5) IIS(OL) < IIS < IL / kILIS Don’t care Z Don’t care 1) 2) 3) 4) 5) Don’t care L IIS < IIS(OL) The table doesn’t indicate but it is assumed that the appropriate channel is selected via the DSEL pin. With additional pull-up resistor. The output current has to be smaller than IL(OL). After maximum tINV. The output current has to be higher than IL(OL). Datasheet 25 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Diagnostic Functions 7.3 SENSE Signal in the Nominal Current Range Figure 21 show the current sense as a function of the load current in the power DMOS. Usually, a pull-down resistor RIS is connected to the IS pin. This resistor has to be higher than 560 Ω to limit the power losses in the sense circuitry. A typical value is 1.2 kΩ. The blue curve represents the ideal SENSE, assuming an ideal kILIS factor value. The red curves show the accuracy the device provides across full temperature range, at a defined current. 5 4.5 4 3.5 IIS [mA] 3 2.5 2 1.5 1 0.5 0 min/max Sense Current typical Sense Current 0 1 2 3 4 5 IL [A] 6 7 8 9 10 BTT6030-2EKA BTT6030-2ERA Figure 21 Current Sense for Nominal Load 7.3.1 SENSE Signal Variation as a Function of Temperature and Load Current In some applications a better accuracy is required around half the nominal current IL(NOM). To achieve this accuracy requirement, a calibration on the application is possible. To avoid multiple calibration points at different load and temperature conditions, the BTT6030-2ERA allows limited derating of the kILIS value, at nominal load current (IL3; TJ = +25°C). This derating is described by the parameter ΔkILIS. Figure 22 shows the behavior of the SENSE current, assuming one calibration point at nominal load at +25°C. The blue line indicates the ideal kILIS ratio. The green lines indicate the derating on the parameter across temperature and voltage, assuming one calibration point at nominal temperature and nominal battery voltage. The red lines indicate the kILIS accuracy without calibration. Datasheet 26 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Diagnostic Functions 4000 calibrated k ILIS min/max k ILIS typical k ILIS 3500 k ILIS 3000 2500 2000 1500 1000 0 1 2 3 4 5 IL [A] 6 7 8 9 10 BTT6030-2EKA BTT6030-2ERA Figure 22 Improved SENSE Accuracy with One Calibration Point 7.3.2 SENSE Signal Timing Figure 23 shows the timing during settling and disabling of the SENSE. VINx t IL t ONx t OFFx t ONx 90% of IL static t VDEN IIS tsIS(LC) t sIS(ON) t sIS(OFF) 90% of IIS static t tsIS(chC) t sIS(ON_DEN) t VDSEL t VINy t I Ly t ONy t current sense settling disabling time.vsd Figure 23 Datasheet SENSE Settling / Disabling Timing 27 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Diagnostic Functions 7.3.3 SENSE Signal in Open Load 7.3.3.1 Open Load in ON Diagnostic If the channel is ON, a leakage current can still flow through an open load, for example due to humidity. The parameter IL(OL) gives the threshold of recognition for this leakage current. If the current IL flowing out the power DMOS is below this value, the device recognizes a failure, if the DEN (and DSEL) is selected. In that case, the SENSE current is below IIS(OL). Otherwise, the minimum SENSE current is given above parameter IIS(OL). Figure 24 shows the SENSE current behavior in this area. The red curve shows a typical product curve. The blue curve shows the ideal kILIS ratio. I IS IIS(OL) IL IL(OL) Sense for OL .vsd Figure 24 Current Sense Ratio for Low Currents 7.3.3.2 Open Load in OFF Diagnostic For open load diagnosis in OFF-state, an external output pull-up resistor (ROL) is recommended. For the calculation of pull-up resistor value, the leakage currents and the open load threshold voltage VOL(OFF) have to be taken into account. Figure 25 gives a sketch of the situation. Ileakage defines the leakage current in the complete system, including IL(OFF) (see Chapter 5.5) and external leakages, e.g, due to humidity, corrosion, etc... in the application. To reduce the stand-by current of the system, an open load resistor switch SOL is recommended. If the channel x is OFF, the output is no longer pulled down by the load and VOUT voltage rises to nearly VS. This is recognized by the device as an open load. The voltage threshold is given by VOL(OFF). In that case, the SENSE signal is switched to the IIS(FAULT). An additional RPD resistor can be used to pull VOUT to 0 V. Otherwise, the OUT pin is floating. This resistor can be used as well for short circuit to battery detection, see Chapter 7.3.4. Datasheet 28 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Diagnostic Functions Vbat SOL VS IIS(FAULT) ROL OL comp. OUT IS ILOFF Ileakage GND RIS VOL(OFF) ZGND RPD Rleakage Open Load in OFF.vsd Figure 25 Open Load Detection in OFF Electrical Equivalent Circuit 7.3.3.3 Open Load Diagnostic Timing Figure 26 shows the timing during either Open Load in ON or OFF condition when the DEN pin is HIGH. Please note that a delay tsIS(FAULT_OL_OFF) has to be respected after the falling edge of the input, when applying an open load in OFF diagnosis request, otherwise the diagnosis can be wrong. Load is present Open load VIN VOUT t VS-VOL(OFF) RDS(ON) x IL shutdown with load t IOUT IIS tsIS(FAULT_OL_ON_OFF) tsIS(LC) Error Settling Disabling Time.vsd Figure 26 Datasheet t t SENSE Signal in Open Load Timing 29 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Diagnostic Functions 7.3.4 SENSE Signal with OUT in Short Circuit to VS In case of a short circuit between the OUTput-pin and the VS pin, all or portion (depending on the short circuit impedance) of the load current will flow through the short circuit. As a result, a lower current compared to the normal operation will flow through the DMOS of the BTT6030-2ERA, which can be recognized at the SENSE signal. The open load at OFF detection circuitry can also be used to distinguish a short circuit to VS. In that case, an external resistor to ground RSC_VS is required. Figure 27 gives a sketch of the situation. Vbat VS IIS(FAULT) VBAT OL Comp. IS OUT VOL(OFF) GND RIS RSC_VS ZGND Short circuit to Vs.vsd Figure 27 Short Circuit to Battery Detection in OFF Electrical Equivalent Circuit 7.3.5 SENSE Signal in Case of Overload An overload condition is defined by a current flowing out of the DMOS reaching the current limitation and / or the absolute dynamic temperature swing TJ(SW) is reached, and / or the junction temperature reaches the thermal shutdown temperature TJ(SC). Please refer to Chapter 6.5 for details. In that case, the SENSE signal given is by IIS(FAULT) when the diagnostic is selected. The device has a thermal latch behavior, such that when the overtemperature or the exceed dynamic temperature condition has disappeared, the DMOS is reactivated only when the IN is toggled LOW to HIGH. If the DEN pin is activated, and DSEL pin is selected to the correct channel, the SENSE follows the output stage. If no reset of the latch occurs, the device remains in the latching phase and IIS(FAULT) at the IS pin, even though the DMOS is OFF. 7.3.6 SENSE Signal in Case of Inverse Current In the case of inverse current, the sense signal of the affected channel will indicate open load in OFF state during OFF state and indicate open load in ON during ON state. The unaffected channel indicates normal behavior as long as the IINV current is not exceeding the maximum value specified in Chapter 5.4. Datasheet 30 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Diagnostic Functions 7.4 Electrical Characteristics Diagnostic Function Table 10 Electrical Characteristics: Diagnostics VS = 8 V to 36 V, TJ = -40°C to +150°C (unless otherwise specified). Typical values are given at VS = 28 V, TJ = 25°C Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Load Condition Threshold for Diagnostic Open load detection threshold in OFF state VS - VOL(OFF) 4 – 6 V 1) VIN = 0 V VDEN = 4.5 V See Figure 26 P_7.5.1 Open load detection threshold in ON state IL(OL) 4 – 25 mA VIN = VDEN = 4.5 V IIS(OL) = 5 μA See Figure 24 See Figure 46 P_7.5.2 IS pin leakage current when sense is disabled IIS_(DIS) – 0.02 1 µA 1) VIN = 4.5 V VDEN = 0 V IL = IL4 = 7 A P_7.5.4 Sense signal saturation voltage VS - VIS (RANGE) 1 – 3.5 V 2) VIN = 0 V VOUT = VS > 10 V VDEN = 4.5 V IIS = 6 mA See Figure 47 P_7.5.6 Sense signal maximum current in fault condition IIS(FAULT) 6 15 40 mA VIS = VIN = VDSEL = 0 V VOUT = VS > 10 V VDEN = 4.5 V See Figure 20 See Figure 48 P_7.5.7 65 70 75 V IIS = 5 mA See Figure 20 P_7.5.3 Sense Pin Sense pin maximum voltage VIS(AZ) Current Sense Ratio Signal in the Nominal Area, Stable Load Current Condition Current sense ratio IL0 = 50 mA kILIS0 -50% 2450 +50% Current sense ratio IL1 = 0.5 A kILIS1 -25% 2360 +25% Current sense ratio IL2 = 2 A kILIS2 -12% 2240 +12% P_7.5.10 Current sense ratio IL3 = 4 A kILIS3 -9% 2240 +9% P_7.5.11 Current sense ratio IL4 = 7 A kILIS4 -8% 2240 +8% P_7.5.12 kILIS derating with current and temperature ΔkILIS -5 0 +5 Datasheet 31 VIN = 4.5 V VDEN = 4.5 V See Figure 21 TJ = -40°C; 150°C % 2) kILIS3 versus kILIS2 See Figure 22 P_7.5.8 P_7.5.9 P_7.5.17 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Diagnostic Functions Table 10 Electrical Characteristics: Diagnostics (cont’d) VS = 8 V to 36 V, TJ = -40°C to +150°C (unless otherwise specified). Typical values are given at VS = 28 V, TJ = 25°C Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Current sense settling time to tsIS(ON) kILIS function stable after positive input slope on both INput and DEN – – 150 µs 2) VDEN = VIN = 0 to 4.5 V VS =28 V RIS = 1.2 kΩ CSENSE < 100 pF IL = IL3 = 4 A See Figure 23 P_7.5.18 Current sense settling time tsIS(ON_DEN) with load current stable and transition of the DEN – – 10 µs 1) VIN = 4.5 V VDEN = 0 to 4.5 V RIS = 1.2 kΩ CSENSE < 100 pF IL = IL3 = 4 A See Figure 23 P_7.5.19 Current sense settling time to tsIS(LC) IIS stable after positive input slope on current load – – 20 µs 1) VIN = 4.5 V VDEN = 4.5 V RIS = 1.2 kΩ CSENSE < 100 pF IL= IL2= 2 A to IL = IL3 = 4 A See Figure 23 P_7.5.20 Current sense settling time to tsIS(FAULT_OL_ – IIS stable for open load OFF) detection in OFF state – 100 µs 1) VIN = 0 V VDEN = 0 to 4.5 V RIS = 1.2 kΩ CSENSE < 100 pF VOUT = VS = 28 V See Figure 26 P_7.5.22 Current sense settling time for open load detection in ON-OFF transition 200 – µs 1) VIN = 4.5 to 0 V VDEN = 4.5 V RIS = 1.2 kΩ CSENSE < 100 pF VOUT = VS = 28 V See Figure 26 P_7.5.23 – 150 µs 2) P_7.5.24 Diagnostic Timing in Normal Condition Diagnostic Timing in Open Load Condition tsIS(FAULT_OL_ ON_OFF) Diagnostic Timing in Overload Condition Current sense settling time to tsIS(FAULT) IIS stable for overload detection Datasheet – 32 VIN = VDEN = 0 to 4.5 V RIS = 1.2 kΩ CSENSE < 100 pF VDS = 24 V See Figure 19 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Diagnostic Functions Table 10 Electrical Characteristics: Diagnostics (cont’d) VS = 8 V to 36 V, TJ = -40°C to +150°C (unless otherwise specified). Typical values are given at VS = 28 V, TJ = 25°C Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Current sense over current blanking time tsIS(OC_blank) – 350 – µs 2) VIN = VDEN = 4.5 V RIS = 1.2 kΩ CSENSE < 100 pF VDS = 5 V to 0 V See Figure 19 P_7.5.32 Diagnostic disable time DEN transition to IIS < 50% IL /kILIS tsIS(OFF) – – 20 µs 1) VIN = 4.5 V VDEN = 4.5 V to 0 V RIS = 1.2 kΩ CSENSE < 100 pF IL = IL3 = 4 A See Figure 23 P_7.5.25 Current sense settling time tsIS(ChC) from one channel to another – – 20 µs VIN0 = VIN1 = 4.5 V VDEN = 4.5 V VDSEL = 0 to 4.5 V RIS = 1.2 kΩ CSENSE < 100 pF IL(OUT0) = IL3 = 4 A IL(OUT1) = IL2 = 2 A See Figure 23 P_7.5.26 1) DSEL pin select channel 0 only. 2) Not subject to production test, specified by design Datasheet 33 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Input Pins 8 Input Pins 8.1 Input Circuitry The input circuitry is compatible with 3.3 and 5 V microcontrollers. The concept of the input pin is to react to voltage thresholds. An implemented Schmitt trigger avoids any undefined state if the voltage on the input pin is slowly increasing or decreasing. The output is either OFF or ON but cannot be in a linear or undefined state. The input circuitry is compatible with PWM applications. Figure 28 shows the electrical equivalent input circuitry. In case the pin is not needed, it must be left opened, or must be connected to device ground (and not module ground) via a 4.7 kΩ input resistor. IN GND Figure 28 Input Pin Circuitry 8.2 DEN / DSEL Pin Input circuitry.vsd The DEN / DSEL pins enable and disable the diagnostic functionality of the device. The pins have the same structure to INput pins, please refer to Figure 28. 8.3 Input Pin Voltage The IN, DSEL and DEN use a comparator with hysteresis. The switching ON / OFF takes place in a defined region, set by the thresholds VIN(L) Max. and VIN(H) Min. The exact value where the ON and OFF take place are unknown and depends on the process, as well as the temperature. To avoid cross talk and parasitic turn ON and OFF, a hysteresis is implemented. This ensures a certain immunity to noise. Datasheet 34 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Input Pins 8.4 Electrical Characteristics Table 11 Electrical Characteristics: Input Pins VS = 8 V to 36 V, TJ = -40°C to +150°C (unless otherwise specified). Typical values are given at VS = 28 V, TJ = 25°C Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number See Figure 49 P_8.4.1 INput Pins Characteristics Low level input voltage range VIN(L) -0.3 – 0.8 V High level input voltage range VIN(H) 2 – 6 V See Figure 50 P_8.4.2 P_8.4.3 Input voltage hysteresis VIN(HYS) – 250 – mV 1) Low level input current IIN(L) 1 10 25 µA VIN = 0.8 V P_8.4.4 High level input current IIN(H) 2 10 25 µA VIN = 5.5 V See Figure 52 P_8.4.5 Low level input voltage range VDEN(L) -0.3 – 0.8 V – P_8.4.6 High level input voltage range VDEN(H) 2 – 6 V – P_8.4.7 Input voltage hysteresis VDEN(HYS) – 250 – mV 1) P_8.4.8 Low level input current IDEN(L) 1 10 25 µA VDEN = 0.8 V P_8.4.9 High level input current IDEN(H) 2 10 25 µA VDEN = 5.5 V P_8.4.10 Low level input voltage range VDSEL(L) -0.3 – 0.8 V – P_8.4.11 High level input voltage range VDSEL(H) 2 – 6 V – P_8.4.12 P_8.4.13 See Figure 51 DEN Pin DSEL Pin Input voltage hysteresis VDSEL(HYS) – 250 – mV 1) Low level input current IDSEL(L) 1 10 25 µA VDSEL = 0.8 V P_8.4.14 High level input current IDSEL(H) 2 10 25 µA VDSEL = 5.5 V P_8.4.15 1) Not subject to production test, specified by design Datasheet 35 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Characterization Results 9 Characterization Results The characterization has been performed on 3 lots, with 3 devices each. Characterization has been performed at 8 V, 28 V and 36 V, from -40°C to 160°C. When no dependency to voltage is seen, only one curve (28 V) is sketched. 9.1 General Product Characteristics 9.1.1 Minimum Functional Supply Voltage P_4.2.3 5 4,9 4,8 VSS(OP)_MIN[V] 4,7 4,6 4,5 4,4 4,3 4,2 4,1 4 3,9 3,8 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 JunctionTemperature[°C] Figure 29 Minimum Functional Supply Voltage VS(OP)_MIN = f(TJ) 9.1.2 Undervoltage Shutdown P_4.2.4 4,1 4 3,9 VS(UV)[V] 3,8 3,7 3,6 3,5 34 3,4 3,3 3,2 3,1 3 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 JunctionTemperature[°C] Figure 30 Datasheet Undervoltage Threshold VS(UV) = f(TJ) 36 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Characterization Results 9.1.3 Current Consumption One Channel Active P_4.2.5 12 11 10 IG GND_1[mA] 9 8 7 36V 28V 8V 6 5 4 3 2 1 0 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100110120130140150 JunctionTemperature[°C] Figure 31 Current Consumption for Whole Device with Load. One Channel Active IGND_1 = f(TJ;VS) 9.1.4 Current Consumption Two Channels Active P_4.2.6 12 11 10 IG GND_1[mA] 9 8 7 36V 28V 8V 6 5 4 3 2 1 0 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100110120130140150 JunctionTemperature[°C] Figure 32 Datasheet Current Consumption for Whole Device with Load. Two Channels Active IGND_2 = f(TJ;VS) 37 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Characterization Results 9.1.5 Standby Current for Whole Device with Load P_4.2.7, P_4.2.10 0,5 0,45 0,4 I IS(OFF)[μA] 0,35 0,3 36V 28V 8V 0,25 0,2 0,15 0,1 0,05 0 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100110120130140150 JunctionTemperature[°C] Figure 33 Datasheet Standby Current for Whole Device with Load. IS(OFF) = f(TJ;VS) 38 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Characterization Results 9.2 Power Stage 9.2.1 Output Voltage Drop Limitation at Low Load Current P_5.5.4 25 22,5 V VDS(NL)[mV] 20 17,5 15 36V 28V 8V 12,5 10 7,5 5 2,5 0 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100110120130140150 JunctionTemperature[°C] Figure 34 Output Voltage Drop Limitation at Low Load Current VDS(NL) = f(TJ; VS) IL = IL(0) = 50 mA 9.2.2 Drain to Source Clamp Voltage P_5.5.5 75 74 73 V VDS(AZ)[V] 72 71 70 69 68 67 66 65 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 JunctionTemperature[°C] Figure 35 Datasheet Drain to Source Clamp Voltage VDS(AZ) = f(TJ) 39 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Characterization Results 9.2.3 Slew Rate at Turn ON P_5.5.11 1,4 1,3 dV V/dtON[v/μs] 1,2 1,1 1 0,9 36V 28V 8V 0,8 07 0,7 0,6 0,5 0,4 0,3 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100110120130140150 JunctionTemperature[°C] Figure 36 Slew Rate at Turn ON dV/dtON = f(TJ;VS), RL = 12 Ω 9.2.4 Slew Rate at Turn OFF P_5.5.12 1,4 1,3 dV//dtOFF[v/μs] 1,2 1,1 1 0,9 36V 28V 8V 0,8 07 0,7 0,6 0,5 0,4 0,3 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100110120130140150 JunctionTemperature[°C] Figure 37 Datasheet Slew Rate at Turn OFF - dV/dtOFF = f(TJ;VS), RL = 12 Ω 40 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Characterization Results 9.2.5 Turn ON P_5.5.14 150 140 130 120 tON[μs] 110 100 36V 28V 8V 90 80 70 60 50 40 30 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100110120130140150 JunctionTemperature[°C] Figure 38 Turn ON tON = f(TJ;VS), RL = 12 Ω 9.2.6 Turn OFF P_5.5.15 150 140 130 120 tOFF[μs] 110 100 36V 28V 8V 90 80 70 60 50 40 30 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100110120130140150 JunctionTemperature[°C] Figure 39 Datasheet Turn OFF tOFF = f(TJ;VS), RL = 12 Ω 41 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Characterization Results 9.2.7 Turn ON / OFF Matching tO ONtOFF[μs] P_5.5.16 20 17,5 15 12,5 10 7,5 5 2,5 0 2,5 5 7,5 10 12,5 15 17,5 20 36V 28V 8V 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100110120130140150 JunctionTemperature[°C] Figure 40 Turn ON / OFF matching ∆tSW = f(TJ;VS), RL = 12 Ω 9.2.8 Switch ON Energy P_5.5.19 1400 1200 1000 EON[uJ] 800 40 150 600 25 400 200 0 6 12 18 24 30 36 42 SupplyVoltage[V] Figure 41 Datasheet Switch ON Energy EON = f(TJ;VS), RL = 12 Ω 42 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Characterization Results 9.2.9 Switch OFF Energy P_5.5.20 1600 1400 1200 EOFF[uJ] 1000 40 800 150 25 600 400 200 0 6 12 18 24 30 36 42 SupplyVoltage[V] Figure 42 Datasheet Switch OFF Energy EOFF = f(TJ;VS), RL = 12 Ω 43 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Characterization Results 9.3 Protection Functions 9.3.1 Overload Condition in the Low Voltage Area P_6.6.4 90 85 80 IL5(SC) [A] 75 70 65 60 55 50 45 40 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 Junction Temperature [°C] Figure 43 Overload Condition in the Low Voltage Area IL5(SC) = f(TJ;VS) 9.3.2 Overload Condition in the High Voltage Area P_6.6.7 40 38 36 IL28(SC)[A] 34 32 30 28 26 24 22 20 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 JunctionTemperature[°C] Figure 44 Datasheet Overload Condition in the High Voltage Area IL28(SC) = f(TJ;VS) 44 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Characterization Results 9.4 Diagnostic Mechanism 9.4.1 Current Sense at no Load 2,5 IISaatnoload[μA] 2 1,5 8V 28V 36V 1 0,5 0 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100110120130140150 JunctionTemperature[°C] Figure 45 Current Sense at no Load IL(OL) = f(TJ; VS), IL = 0 A 9.4.2 Open Load Detection Threshold in ON State P_7.5.2 30 27 24 IL(OL)[mA] 21 18 36V 28V 8V 15 12 9 6 3 0 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100110120130140150 JunctionTemperature[°C] Figure 46 Datasheet Open Load Detection ON State Threshold IL(OL) = f(TJ;VS) 45 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Characterization Results 9.4.3 Sense Signal Maximum Voltage VSSVIS(RANGE) P_7.5.3 3 2,8 2,6 2,4 2,2 2 1,8 1,6 1,4 1,2 1 0,8 0,6 0,4 0,2 0 36V 28V 8V 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100110120130140150 JunctionTemperature[°C] Figure 47 Sense Signal Maximum Voltage VS - VIS (RANGE)= f(TJ; VS) 9.4.4 Sense Signal Maximum Current P_7.5.7 30 27 IISSFAULT[mA] 24 21 18 36V 28V 8V 15 12 9 6 3 0 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100110120130140150 JunctionTemperature[°C] Figure 48 Datasheet Sense Signal Maximum Current in Fault Condition IIS(FAULT) = f(TJ; VS) 46 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Characterization Results 9.5 Input Pins 9.5.1 Input Voltage Threshold ON to OFF P_8.4.1 2 1,9 1,8 1,7 VIN(L)[V] 1,6 1,5 36V 28V 8V 1,4 1,3 1,2 1,1 1 0,9 0,8 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100110120130140150 JunctionTemperature[°C] Figure 49 Input Voltage Threshold VIN(L) = f(TJ;VS) 9.5.2 Input Voltage Threshold OFF to ON P_8.4.2 2 1,9 1,8 1,7 VIN(H)[V] 1,6 1,5 36V 28V 8V 1,4 1,3 1,2 1,1 1 0,9 0,8 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100110120130140150 JunctionTemperature[°C] Figure 50 Datasheet Input Voltage Threshold VIN(H) = f(TJ;VS) 47 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Characterization Results 9.5.3 Input Voltage Hysteresis P_8.4.3 0,5 0,45 0,4 V VIN(HYS)[V] 0,35 0,3 36V 28V 8V 0,25 0,2 0,15 0,1 0,05 0 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100110120130140150 JunctionTemperature[°C] Figure 51 Input Voltage Hysteresis VIN(HYS) = f(TJ;VS) 9.5.4 Input Current High Level P_8.4.5 25 22,5 20 IIN(H)[μA] 17,5 15 36V 28V 8V 12,5 10 7,5 5 2,5 0 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100110120130140150 JunctionTemperature[°C] Figure 52 Datasheet Input Current High Level IIN(H) = f(TJ;VS) 48 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Application Information 10 Application Information Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. VBAT Voltage Regulator OUT CVDD T1 VS GND Z CVS ROL VS VDD GPIO RDEN DEN GPIO RDSEL DSEL OUT0 Microcontroller RIN IN0 GPIO RIN IN1 OUT4 COUT RPD GPIO Valve OUT1 IS RSENSE RPD ADC IN GND COUT Bulb GND RIS RGND CSENSE D Figure 53 Application Diagram with BTT6030-2ERA Note: This is a very simplified example of an application circuit. The function must be verified in the real application. Table 12 Bill of Material Reference Value Purpose RIN 10 kΩ Protection of the microcontroller during overvoltage, reverse polarity Guarantee BTT6030-2ERA channels OFF during loss of ground RDEN 10 kΩ Protection of the microcontroller during overvoltage, reverse polarity RDSEL 10 kΩ Protection of the microcontroller during overvoltage, reverse polarity RPD 47 kΩ Polarization of the output for short circuit to VS detection Improve BTT6030-2ERA immunity to electromagnetic noise Datasheet 49 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Application Information Table 12 Bill of Material (cont’d) Reference Value Purpose ROL 1.5 kΩ Ensures polarization of the BTT6030-2ERA output during open load in OFF diagnostic RIS 1.2 kΩ Sense resistor RSENSE 4.7 kΩ Overvoltage, reverse polarity, loss of ground. Value to be tuned with microcontroller specification. CSENSE 100 pF Sense signal filtering. COUT 10 nF Protection of the device during ESD and BCI T1 Dual NPN/PNP Switch the battery voltage for open load in OFF diagnostic RGND 27 Ω Protection of the BTT6030-2ERA during overvoltage D BAS21 Protection of the BTT6030-2ERA during reverse polarity Z 58 V Zener diode Protection of the device during overvoltage CVS 100 nF 10.1 Further Application Information Filtering of voltage spikes at the battery line • Please contact us to get the pin FMEA • Existing App. Notes • For further information you may visit www.infineon.com Datasheet 50 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Package Outlines Package Outlines 0.25 GAUGE PLANE 1.15 MAX. 1) 8.65±0.1 14x COPLANARITY 0° SEATING PLANE ... 8 ° 0.05±0.05 STANDOFF 1) 3.9±0.1 (0.2) (0.95) 11 0.67±0.25 6±0.2 2) 14x 14 INDEX MARKING 1 BOTTOM VIEW 8 7 8 14 7 1 2.65±0.1 0.4±0.05 6.4±0.1 1.27 All dimensions are in units mm The drawing is in compliance with ISO 128-30, Projection Method 1[ ] 1) Does not Include plastic or metal protrusion of 0.15 max. per side 2) Dambar protrusion shall be maximum 0.1mm total in excess of width lead width Figure 54 PG-TDSO-141) (Plastic Dual Small Outline Package) (RoHS-Compliant) Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). Legal Disclaimer for Short-Circuit Capability Infineon disclaims any warranties and liablilities, whether expressed or implied, for any short-circuit failures below the threshold limit. Further information on packages https://www.infineon.com/packages 1) Dimensions in mm Datasheet 51 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Revision History 12 Revision History Version Date Changes 1.00 2019-03-09 Creation of the datasheet Datasheet 52 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA Table of Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 3.1 3.2 3.3 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.1 4.2 4.3 4.3.1 4.3.2 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 PCB Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5 5.1 5.2 5.3 5.3.1 5.3.2 5.4 5.5 Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output ON-State Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Turn ON/OFF Characteristics with Resistive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inductive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 12 12 13 13 14 15 16 6 6.1 6.2 6.3 6.4 6.5 6.5.1 6.5.2 6.6 Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loss of Ground Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature Limitation in the Power DMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics for the Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 18 18 19 20 21 21 22 23 7 7.1 7.2 7.3 7.3.1 7.3.2 7.3.3 7.3.3.1 7.3.3.2 7.3.3.3 7.3.4 7.3.5 7.3.6 7.4 Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IS Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in Different Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in the Nominal Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal Variation as a Function of Temperature and Load Current . . . . . . . . . . . . . . . . . . SENSE Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in Open Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Open Load in ON Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Open Load in OFF Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Open Load Diagnostic Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal with OUT in Short Circuit to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in Case of Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in Case of Inverse Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Diagnostic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 24 25 26 26 27 28 28 28 29 30 30 30 31 8 8.1 8.2 8.3 8.4 Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DEN / DSEL Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 34 34 34 35 Datasheet 53 4 4 4 5 Rev.1.00 2019-03-09 PROFET™ +24 V BTT6030-2ERA 9 9.1 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.2 9.2.1 9.2.2 9.2.3 9.2.4 9.2.5 9.2.6 9.2.7 9.2.8 9.2.9 9.3 9.3.1 9.3.2 9.4 9.4.1 9.4.2 9.4.3 9.4.4 9.5 9.5.1 9.5.2 9.5.3 9.5.4 Characterization Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Minimum Functional Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Undervoltage Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current Consumption One Channel Active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current Consumption Two Channels Active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Standby Current for Whole Device with Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Voltage Drop Limitation at Low Load Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Drain to Source Clamp Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slew Rate at Turn ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slew Rate at Turn OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Turn ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Turn OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Turn ON / OFF Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switch ON Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switch OFF Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overload Condition in the Low Voltage Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overload Condition in the High Voltage Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnostic Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current Sense at no Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Open Load Detection Threshold in ON State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sense Signal Maximum Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sense Signal Maximum Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Voltage Threshold ON to OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Voltage Threshold OFF to ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Voltage Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Current High Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 36 36 36 37 37 38 39 39 39 40 40 41 41 42 42 43 44 44 44 45 45 45 46 46 47 47 47 48 48 10 10.1 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 11 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 12 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Datasheet 54 Rev.1.00 2019-03-09 Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2019-03-09 Published by Infineon Technologies AG 81726 Munich, Germany © 2019 Infineon Technologies AG. All Rights Reserved. Do you have a question about any aspect of this document? Email: erratum@infineon.com Document reference BTT6030-2ERA IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.
BTT6030-2ERA 价格&库存

很抱歉,暂时无法提供与“BTT6030-2ERA”相匹配的价格&库存,您可以联系我们找货

免费人工找货
BTT6030-2ERA
    •  国内价格
    • 10+28.58900

    库存:0

    BTT6030-2ERA
      •  国内价格 香港价格
      • 3000+23.243493000+2.79770

      库存:0