[image: 电子发烧友][image: 电子发烧友]	首页
	技术	可编程逻辑
	MEMS/传感技术
	嵌入式技术
	模拟技术
	控制/MCU
	处理器/DSP
	存储技术
	EMC/EMI设计

	电源/新能源
	测量仪表
	制造/封装
	RF/无线
	接口/总线/驱动
	EDA/IC设计
	光电显示
	连接器
	PCB设计

	LEDs
	汽车电子
	医疗电子
	人工智能
	可穿戴设备
	军用/航空电子
	工业控制
	触控感测
	智能电网

	音视频及家电
	通信网络
	机器人
	vr|ar|虚拟现实
	安全设备/系统
	移动通信
	便携设备
	物联网
	区块链

	HarmonyOS
	RISC-V MCU
	光伏
	ChatGPT
	IGBT
	充电桩
	氮化镓
	BLDC
	逆变器
	5G
	电机控制

	资源	技术文库
	新品速递
	电路图
	元器件知识
	电子百科
	最新技术文章

	下载	在线工具
	常用软件
	电子书
	datasheet

	专栏	电子说
	专栏

	社区	论坛
	问答
	小组
	社区之星
	试用中心
	HarmonyOS技术社区
	RT-Thread生态平台

	活动	设计大赛
	硬创大赛
	社区活动
	线下会议
	在线研讨会
	小测验

	学院	直播
	课程

	视频
	企业号
	华秋智造	[image:]
华秋PCB
高可靠多层板制造商

	[image:]
华秋SMT
高可靠一站式PCBA智造商

	[image:]
华秋商城
自营现货电子元器件商城

	[image:]
PCB Layout
高多层、高密度产品设计

	[image:]
钢网制造
专注高品质钢网制造

	[image:]
BOM配单
专业的一站式采购解决方案

	[image:]
华秋DFM
一键分析设计隐患

	[image:]
华秋认证
认证检测无可置疑

		工具
	PCB在线检查
	datasheet查询
	选型替代查询
	免费样品申请
	免费评测试用
	工程师专区

	技术子站

搜索

搜索历史
清空
	

搜索热词

	

0登录
[image:][image:]

	0
关注
	0
粉丝
	0
动态

	个人中心
	内容管理
	积分兑换当前积分：

	修改资料
	退出登录

登录后你可以
	下载海量资料
	学习在线课程
	观看技术视频
	写文章/发帖/加入社区

登录

创作中心发布
	发文章

	发资料

	发帖

	提问

	发视频

	创作活动

[image: 下载中心]	推荐
	分类
	资料
	软件
	工具
	排行榜
	DataSheet

搜索

[image: 电子元件查询网]

查Datasheet、查价格、查替代料
搜索
一键BOM配单
	热搜：

[image: 2000]
2000
	厂商：ADAFRUIT

	封装：-

	描述：EVAL BOARD FOR ATMEGA328P

数据手册：
下载2000.pdf
立即购买

	数据手册
	价格&库存

2000 数据手册

Atmel 8-bit Microcontroller with 4/8/16/32KBytes InSystem Programmable Flash
ATmega48A; ATmega48PA; ATmega88A; ATmega88PA;
ATmega168A; ATmega168PA; ATmega328; ATmega328P

Features
• High Performance, Low Power Atmel®AVR® 8-Bit Microcontroller Family
• Advanced RISC Architecture

•

•

•

•

•

– 131 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
– Up to 20 MIPS Throughput at 20MHz
– On-chip 2-cycle Multiplier
High Endurance Non-volatile Memory Segments
– 4/8/16/32KBytes of In-System Self-Programmable Flash program memory
– 256/512/512/1KBytes EEPROM
– 512/1K/1K/2KBytes Internal SRAM
– Write/Erase Cycles: 10,000 Flash/100,000 EEPROM
– Data retention: 20 years at 85C/100 years at 25C(1)
– Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation
– Programming Lock for Software Security
Atmel® QTouch® library support
– Capacitive touch buttons, sliders and wheels
– QTouch and QMatrix® acquisition
– Up to 64 sense channels
Peripheral Features
– Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
– One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
– Real Time Counter with Separate Oscillator
– Six PWM Channels
– 8-channel 10-bit ADC in TQFP and QFN/MLF package
Temperature Measurement
– 6-channel 10-bit ADC in PDIP Package
Temperature Measurement
– Programmable Serial USART
– Master/Slave SPI Serial Interface
– Byte-oriented 2-wire Serial Interface (Philips I2C compatible)
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-chip Analog Comparator
– Interrupt and Wake-up on Pin Change
Special Microcontroller Features
– Power-on Reset and Programmable Brown-out Detection
– Internal Calibrated Oscillator
– External and Internal Interrupt Sources
– Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and
Extended Standby
I/O and Packages
– 23 Programmable I/O Lines
– 28-pin PDIP, 32-lead TQFP, 28-pad QFN/MLF and 32-pad QFN/MLF

8271E–AVR–07/2012

• Operating Voltage:
– 1.8 - 5.5V

• Temperature Range:
– -40C to 85C
• Speed Grade:
– 0 - 4MHz@1.8 - 5.5V, 0 - 10MHz@2.7 - 5.5.V, 0 - 20MHz @ 4.5 - 5.5V

• Power Consumption at 1MHz, 1.8V, 25C
– Active Mode: 0.2mA
– Power-down Mode: 0.1µA
– Power-save Mode: 0.75µA (Including 32kHz RTC)

1. Pin Configurations
Pinout ATmega48A/PA/88A/PA/168A/PA/328/P
28 PDIP

32
31
30
29
28
27
26
25

PD2 (INT0/PCINT18)
PD1 (TXD/PCINT17)
PD0 (RXD/PCINT16)
PC6 (RESET/PCINT14)
PC5 (ADC5/SCL/PCINT13)
PC4 (ADC4/SDA/PCINT12)
PC3 (ADC3/PCINT11)
PC2 (ADC2/PCINT10)

32 TQFP Top View

24
23
22
21
20
19
18
17

1
2
3
4
5
6
7
8

PC1 (ADC1/PCINT9)
PC0 (ADC0/PCINT8)
ADC7
GND
AREF
ADC6
AVCC
PB5 (SCK/PCINT5)

(PCINT21/OC0B/T1) PD5
(PCINT22/OC0A/AIN0) PD6
(PCINT23/AIN1) PD7
(PCINT0/CLKO/ICP1) PB0
(PCINT1/OC1A) PB1
(PCINT2/SS/OC1B) PB2
(PCINT3/OC2A/MOSI) PB3
(PCINT4/MISO) PB4

9
10
11
12
13
14
15
16

(PCINT14/RESET) PC6
(PCINT16/RXD) PD0
(PCINT17/TXD) PD1
(PCINT18/INT0) PD2
(PCINT19/OC2B/INT1) PD3
(PCINT20/XCK/T0) PD4
VCC
GND
(PCINT6/XTAL1/TOSC1) PB6
(PCINT7/XTAL2/TOSC2) PB7
(PCINT21/OC0B/T1) PD5
(PCINT22/OC0A/AIN0) PD6
(PCINT23/AIN1) PD7
(PCINT0/CLKO/ICP1) PB0

PD2 (INT0/PCINT18)
PD1 (TXD/PCINT17)
PD0 (RXD/PCINT16)
PC6 (RESET/PCINT14)
PC5 (ADC5/SCL/PCINT13)
PC4 (ADC4/SDA/PCINT12)
PC3 (ADC3/PCINT11)
PC2 (ADC2/PCINT10)
PC2 (ADC2/PCINT10)
PC1 (ADC1/PCINT9)
PC0 (ADC0/PCINT8)
GND
AREF
AVCC
PB5 (SCK/PCINT5)

(PCINT19/OC2B/INT1) PD3
(PCINT20/XCK/T0) PD4
GND
VCC
GND
VCC
(PCINT6/XTAL1/TOSC1) PB6
(PCINT7/XTAL2/TOSC2) PB7

24
23
22
21
20
19
18
17

1
2
3
4
5
6
7
8

PC1 (ADC1/PCINT9)
PC0 (ADC0/PCINT8)
ADC7
GND
AREF
ADC6
AVCC
PB5 (SCK/PCINT5)

9
10
11
12
13
14
15
16

8
9
10
11
12
13
14
NOTE: Bottom pad should be soldered to ground.

PC5 (ADC5/SCL/PCINT13)
PC4 (ADC4/SDA/PCINT12)
PC3 (ADC3/PCINT11)
PC2 (ADC2/PCINT10)
PC1 (ADC1/PCINT9)
PC0 (ADC0/PCINT8)
GND
AREF
AVCC
PB5 (SCK/PCINT5)
PB4 (MISO/PCINT4)
PB3 (MOSI/OC2A/PCINT3)
PB2 (SS/OC1B/PCINT2)
PB1 (OC1A/PCINT1)

32
31
30
29
28
27
26
25

PD2 (INT0/PCINT18)
PD1 (TXD/PCINT17)
PD0 (RXD/PCINT16)
PC6 (RESET/PCINT14)
PC5 (ADC5/SCL/PCINT13)
PC4 (ADC4/SDA/PCINT12)
PC3 (ADC3/PCINT11)

28
27
26
25
24
23
22
21
20
19
18
17
16
15

1
2
3
4
5
6
7

28
27
26
25
24
23
22
21
20
19
18
17
16
15

32 MLF Top View

28 MLF Top View

(PCINT19/OC2B/INT1) PD3
(PCINT20/XCK/T0) PD4
VCC
GND
(PCINT6/XTAL1/TOSC1) PB6
(PCINT7/XTAL2/TOSC2) PB7
(PCINT21/OC0B/T1) PD5

1
2
3
4
5
6
7
8
9
10
11
12
13
14

NOTE: Bottom pad should be soldered to ground.

(PCINT21/OC0B/T1) PD5
(PCINT22/OC0A/AIN0) PD6
(PCINT23/AIN1) PD7
(PCINT0/CLKO/ICP1) PB0
(PCINT1/OC1A) PB1
(PCINT2/SS/OC1B) PB2
(PCINT3/OC2A/MOSI) PB3
(PCINT4/MISO) PB4

(PCINT19/OC2B/INT1) PD3
(PCINT20/XCK/T0) PD4
GND
VCC
GND
VCC
(PCINT6/XTAL1/TOSC1) PB6
(PCINT7/XTAL2/TOSC2) PB7

(PCINT22/OC0A/AIN0) PD6
(PCINT23/AIN1) PD7
(PCINT0/CLKO/ICP1) PB0
(PCINT1/OC1A) PB1
(PCINT2/SS/OC1B) PB2
(PCINT3/OC2A/MOSI) PB3
(PCINT4/MISO) PB4

Figure 1-1.

ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
8271E–AVR–07/2012

2

Table 1-1.

32UFBGA - Pinout ATmega48A/48PA/88A/88PA/168A/168PA
1

2

3

4

5

6

A

PD2

PD1

PC6

PC4

PC2

PC1

B

PD3

PD4

PD0

PC5

PC3

PC0

C

GND

GND

ADC7

GND

D

VDD

VDD

AREF

ADC6

E

PB6

PD6

PB0

PB2

AVDD

PB5

F

PB7

PD5

PD7

PB1

PB3

PB4

1.1

Pin Descriptions

1.1.1

VCC
Digital supply voltage.

1.1.2

GND
Ground.

1.1.3

Port B (PB7:0) XTAL1/XTAL2/TOSC1/TOSC2
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are
externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a
reset condition becomes active, even if the clock is not running.
Depending on the clock selection fuse settings, PB6 can be used as input to the inverting Oscillator amplifier and
input to the internal clock operating circuit.
Depending on the clock selection fuse settings, PB7 can be used as output from the inverting Oscillator amplifier.
If the Internal Calibrated RC Oscillator is used as chip clock source, PB7...6 is used as TOSC2...1 input for the
Asynchronous Timer/Counter2 if the AS2 bit in ASSR is set.
The various special features of Port B are elaborated in ”Alternate Functions of Port B” on page 83 and ”System
Clock and Clock Options” on page 26.

1.1.4

Port C (PC5:0)
Port C is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The PC5...0 output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are
externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a
reset condition becomes active, even if the clock is not running.

1.1.5

PC6/RESET
If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electrical characteristics of PC6 differ from those of the other pins of Port C.
If the RSTDISBL Fuse is unprogrammed, PC6 is used as a Reset input. A low level on this pin for longer than the
minimum pulse length will generate a Reset, even if the clock is not running. The minimum pulse length is given in
Table 29-12 on page 310. Shorter pulses are not guaranteed to generate a Reset.
The various special features of Port C are elaborated in ”Alternate Functions of Port C” on page 86.

ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
8271E–AVR–07/2012

3

1.1.6

Port D (PD7:0)
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are
externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a
reset condition becomes active, even if the clock is not running.
The various special features of Port D are elaborated in ”Alternate Functions of Port D” on page 89.

1.1.7

AVCC
AVCC is the supply voltage pin for the A/D Converter, PC3:0, and ADC7:6. It should be externally connected to VCC,
even if the ADC is not used. If the ADC is used, it should be connected to VCC through a low-pass filter. Note that
PC6...4 use digital supply voltage, VCC.

1.1.8

AREF
AREF is the analog reference pin for the A/D Converter.

1.1.9

ADC7:6 (TQFP and QFN/MLF Package Only)
In the TQFP and QFN/MLF package, ADC7:6 serve as analog inputs to the A/D converter. These pins are powered
from the analog supply and serve as 10-bit ADC channels.

ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
8271E–AVR–07/2012

4

2. Overview
The ATmega48A/PA/88A/PA/168A/PA/328/P is a low-power CMOS 8-bit microcontroller based on the AVR
enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the
ATmega48A/PA/88A/PA/168A/PA/328/P achieves throughputs approaching 1 MIPS per MHz allowing the system
designer to optimize power consumption versus processing speed.

Block Diagram
VCC

Block Diagram
GND

Figure 2-1.

Watchdog
Timer
Watchdog
Oscillator

Oscillator
Circuits /
Clock
Generation

Power
Supervision
POR / BOD &
RESET

debugWIRE

Flash

SRAM

PROGRAM
LOGIC

CPU
EEPROM
AVCC
AREF
GND

DATABUS

2.1

8bit T/C 0

16bit T/C 1

A/D Conv.

8bit T/C 2

Analog
Comp.

Internal
Bandgap

USART 0

SPI

TWI

PORT D (8)

PORT B (8)

PORT C (7)

2

6

RESET
XTAL[1..2]
PD[0..7]

PB[0..7]

PC[0..6]

ADC[6..7]

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are
directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one
single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving
throughputs up to ten times faster than conventional CISC microcontrollers.

ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
8271E–AVR–07/2012

5

The ATmega48A/PA/88A/PA/168A/PA/328/P provides the following features: 4K/8Kbytes of In-System Programmable Flash with Read-While-Write capabilities, 256/512/512/1Kbytes EEPROM, 512/1K/1K/2Kbytes SRAM,
23 general purpose I/O lines, 32 general purpose working registers, three flexible Timer/Counters with compare
modes, internal and external interrupts, a serial programmable USART, a byte-oriented 2-wire Serial Interface, an
SPI serial port, a 6-channel 10-bit ADC (8 channels in TQFP and QFN/MLF packages), a programmable Watchdog
Timer with internal Oscillator, and five software selectable power saving modes. The Idle mode stops the CPU
while allowing the SRAM, Timer/Counters, USART, 2-wire Serial Interface, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other
chip functions until the next interrupt or hardware reset. In Power-save mode, the asynchronous timer continues to
run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction
mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise during
ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption.
Atmel® offers the QTouch® library for embedding capacitive touch buttons, sliders and wheels functionality into
AVR® microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and includes fully
debounced reporting of touch keys and includes Adjacent Key Suppression® (AKS™) technology for unambiguous
detection of key events. The easy-to-use QTouch Suite toolchain allows you to explore, develop and debug your
own touch applications.
The device is manufactured using Atmel’s high density non-volatile memory technology. The On-chip ISP Flash
allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core. The Boot program can use
any interface to download the application program in the Application Flash memory. Software in the Boot Flash
section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel
ATmega48A/PA/88A/PA/168A/PA/328/P is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.
The ATmega48A/PA/88A/PA/168A/PA/328/P AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and
Evaluation kits.

2.2

Comparison Between Processors
The ATmega48A/PA/88A/PA/168A/PA/328/P differ only in memory sizes, boot loader support, and interrupt vector
sizes. Table 2-1 summarizes the different memory and interrupt vector sizes for the devices.
Table 2-1.

Memory Size Summary

Device

Flash

EEPROM

RAM

Interrupt Vector Size

ATmega48A

4KBytes

256Bytes

512Bytes

1 instruction word/vector

ATmega48PA

4KBytes

256Bytes

512Bytes

1 instruction word/vector

ATmega88A

8KBytes

512Bytes

1KBytes

1 instruction word/vector

ATmega88PA

8KBytes

512Bytes

1KBytes

1 instruction word/vector

ATmega168A

16KBytes

512Bytes

1KBytes

2 instruction words/vector

ATmega168PA

16KBytes

512Bytes

1KBytes

2 instruction words/vector

ATmega328

32KBytes

1KBytes

2KBytes

2 instruction words/vector

ATmega328P

32KBytes

1KBytes

2KBytes

2 instruction words/vector

ATmega48A/PA/88A/PA/168A/PA/328/P support a real Read-While-Write Self-Programming mechanism. There is
a separate Boot Loader Section, and the SPM instruction can only execute from there. In ATmega 48A/48PA there
ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
8271E–AVR–07/2012

6

is no Read-While-Write support and no separate Boot Loader Section. The SPM instruction can execute from the
entire Flash

3. Resources
A comprehensive set of development tools, application notes and datasheets are available for download on
http://www.atmel.com/avr.
Note:

1.

4. Data Retention
Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20
years at 85°C or 100 years at 25°C.

5. About Code Examples
This documentation contains simple code examples that briefly show how to use various parts of the device. These
code examples assume that the part specific header file is included before compilation. Be aware that not all C
compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent.
Please confirm with the C compiler documentation for more details.
For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must be
replaced with instructions that allow access to extended I/O. Typically “LDS” and “STS” combined with “SBRS”,
“SBRC”, “SBR”, and “CBR”.

6. Capacitive Touch Sensing
The Atmel® QTouch® Library provides a simple to use solution to realize touch sensitive interfaces on most Atmel
AVR® microcontrollers. The QTouch Library includes support for the Atmel QTouch and Atmel QMatrix® acquisition
methods.
Touch sensing can be added to any application by linking the appropriate Atmel QTouch Library for the AVR Microcontroller. This is done by using a simple set of APIs to define the touch channels and sensors, and then calling the
touch sensing API’s to retrieve the channel information and determine the touch sensor states.
The QTouch Library is FREE and downloadable from the Atmel website at the following location:
www.atmel.com/qtouchlibrary. For implementation details and other information, refer to the Atmel QTouch Library
User Guide - also available for download from Atmel website.

ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
8271E–AVR–07/2012

7

7. AVR CPU Core
Overview
This section discusses the AVR core architecture in general. The main function of the CPU core is to ensure correct program execution. The CPU must therefore be able to access memories, perform calculations, control
peripherals, and handle interrupts.
Figure 7-1.

Block Diagram of the AVR Architecture

Data Bus 8-bit

Flash
Program
Memory

Program
Counter

Status
and Control

32 x 8
General
Purpose
Registrers

Instruction
Decoder

Control Lines

Indirect Addressing

Instruction
Register

Direct Addressing

7.1

Interrupt
Unit
SPI
Unit
Watchdog
Timer

ALU

Analog
Comparator

I/O Module1

Data
SRAM

I/O Module 2

I/O Module n
EEPROM

I/O Lines

In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with separate memories
and buses for program and data. Instructions in the program memory are executed with a single level pipelining.
While one instruction is being executed, the next instruction is pre-fetched from the program memory. This concept
enables instructions to be executed in every clock cycle. The program memory is In-System Reprogrammable
Flash memory.
The fast-access Register File contains 32 x 8-bit general purpose working registers with a single clock cycle
access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU operation, two oper-

ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
8271E–AVR–07/2012

8

ands are output from the Register File, the operation is executed, and the result is stored back in the Register File
– in one clock cycle.
Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data Space addressing –
enabling efficient address calculations. One of the these address pointers can also be used as an address pointer
for look up tables in Flash program memory. These added function registers are the 16-bit X-, Y-, and Z-register,
described later in this section.
The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single
register operations can also be executed in the ALU. After an arithmetic operation, the Status Register is updated
to reflect information about the result of the operation.
Program flow is provided by conditional and unconditional jump and call instructions, able to directly address the
whole address space. Most AVR instructions have a single 16-bit word format. Every program memory address
contains a 16- or 32-bit instruction.
Program Flash memory space is divided in two sections, the Boot Program section and the Application Program
section. Both sections have dedicated Lock bits for write and read/write protection. The SPM instruction that writes
into the Application Flash memory section must reside in the Boot Program section.
During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the Stack. The Stack
is effectively allocated in the general data SRAM, and consequently the Stack size is only limited by the total
SRAM size and the usage of the SRAM. All user programs must initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack Pointer (SP) is read/write accessible in the I/O space. The data
SRAM can easily be accessed through the five different addressing modes supported in the AVR architecture.
The memory spaces in the AVR architecture are all linear and regular memory maps.
A flexible interrupt module has its control registers in the I/O space with an additional Global Interrupt Enable bit in
the Status Register. All interrupts have a separate Interrupt Vector in the Interrupt Vector table. The interrupts have
priority in accordance with their Interrupt Vector position. The lower the Interrupt Vector address, the higher the
priority.
The I/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, SPI, and other
I/O functions. The I/O Memory can be accessed directly, or as the Data Space locations following those of the Register File, 0x20 - 0x5F. In addition, the ATmega48A/PA/88A/PA/168A/PA/328/P has Extended I/O space from 0x60
- 0xFF in SRAM where only the ST/STS/STD and LD/LDS/LDD instructions can be used.

7.2

ALU – Arithmetic Logic Unit
The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers.
Within a single clock cycle, arithmetic operations between general purpose registers or between a register and an
immediate are executed. The ALU operations are divided into three main categories – arithmetic, logical, and bitfunctions. Some implementations of the architecture also provide a powerful multiplier supporting both
signed/unsigned multiplication and fractional format. See the “Instruction Set” section for a detailed description.

7.3

Status Register
The Status Register contains information about the result of the most recently executed arithmetic instruction. This
information can be used for altering program flow in order to perform conditional operations. Note that the Status
Register is updated after all ALU operations, as specified in the Instruction Set Reference. This will in many cases
remove the need for using the dedicated compare instructions, resulting in faster and more compact code.
The Status Register is not automatically stored when entering an interrupt routine and restored when returning
from an interrupt. This must be handled by software.

ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
8271E–AVR–07/2012

9

7.3.1

SREG – AVR Status Register
The AVR Status Register – SREG – is defined as:
Bit

7

6

5

4

3

2

1

0

0x3F (0x5F)

I

T

H

S

V

N

Z

C

Read/Write

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

Initial Value

0

0

0

0

0

0

0

0

SREG

• Bit 7 – I: Global Interrupt Enable
The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt enable control
is then performed in separate control registers. If the Global Interrupt Enable Register is cleared, none of the interrupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an
interrupt has occurred, and is set by the RETI instruction to enable subsequent interrupts. The I-bit can also be set
and cleared by the application with the SEI and CLI instructions, as described in the instruction set reference.
• Bit 6 – T: Bit Copy Storage
The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the operated bit. A bit from a register in the Register File can be copied into T by the BST instruction, and a bit in T can be
copied into a bit in a register in the Register File by the BLD instruction.
• Bit 5 – H: Half Carry Flag
The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful in BCD arithmetic.
See the “Instruction Set Description” for detailed information.
• Bit 4 – S: Sign Bit, S = N V
The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement Overflow Flag V. See
the “Instruction Set Description” for detailed information.
• Bit 3 – V: Two’s Complement Overflow Flag
The Two’s Complement Overflow Flag V supports two’s complement arithmetic. See the “Instruction Set Description” for detailed information.
• Bit 2 – N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.
• Bit 1 – Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction Set Description” for
detailed information.
• Bit 0 – C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set Description” for
detailed information.

7.4

General Purpose Register File
The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve the required performance and flexibility, the following input/output schemes are supported by the Register File:
• One 8-bit output operand and one 8-bit result input
• Two 8-bit output operands and one 8-bit result input
• Two 8-bit output operands and one 16-bit result input

ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
8271E–AVR–07/2012

10

• One 16-bit output operand and one 16-bit result input
Figure 7-2 shows the structure of the 32 general purpose working registers in the CPU.
Figure 7-2.

AVR CPU General Purpose Working Registers
7

0

Addr.

R0

0x00

R1

0x01

R2

0x02

…
R13

0x0D

General

R14

0x0E

Purpose

R15

0x0F

Working

R16

0x10

Registers

R17

0x11

…
R26

0x1A

X-register Low Byte

R27

0x1B

X-register High Byte

R28

0x1C

Y-register Low Byte

R29

0x1D

Y-register High Byte

R30

0x1E

Z-register Low Byte

R31

0x1F

Z-register High Byte

Most of the instructions operating on the Register File have direct access to all registers, and most of them are single cycle instructions.
As shown in Figure 7-2, each register is also assigned a data memory address, mapping them directly into the first
32 locations of the user Data Space. Although not being physically implemented as SRAM locations, this memory
organization provides great flexibility in access of the registers, as the X-, Y- and Z-pointer registers can be set to
index any register in the file.
7.4.1

The X-register, Y-register, and Z-register
The registers R26...R31 have some added functions to their general purpose usage. These registers are 16-bit
address pointers for indirect addressing of the data space. The three indirect address registers X, Y, and Z are
defined as described in Figure 7-3.
Figure 7-3.

The X-, Y-, and Z-registers
15

X-register

XH

7

XL
0

R27 (0x1B)

15
Y-register

YH

7

YL
0

0

7

0

R28 (0x1C)

15

ZH

7

0

R31 (0x1F)

0

R26 (0x1A)

R29 (0x1D)

Z-register

0

7

ZL
7

0
0

R30 (0x1E)

In the different addressing modes these address registers have functions as fixed displacement, automatic increment, and automatic decrement (see the instruction set reference for details).

ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
8271E–AVR–07/2012

11

7.5

Stack Pointer
The Stack is mainly used for storing temporary data, for storing local variables and for storing return addresses
after interrupts and subroutine calls. Note that the Stack is implemented as growing from higher to lower memory
locations. The Stack Pointer Register always points to the top of the Stack. The Stack Pointer points to the data
SRAM Stack area where the Subroutine and Interrupt Stacks are located. A Stack PUSH command will decrease
the Stack Pointer.
The Stack in the data SRAM must be defined by the program before any subroutine calls are executed or interrupts
are enabled. Initial Stack Pointer value equals the last address of the internal SRAM and the Stack Pointer must be
set to point above start of the SRAM, see Table 8-3 on page 18.
See Table 7-1 for Stack Pointer details.
Table 7-1.

Stack Pointer instructions

Instruction

Stack pointer

Description

PUSH

Decremented by 1

Data is pushed onto the stack

CALL
ICALL
RCALL

Decremented by 2

Return address is pushed onto the stack with a subroutine call or
interrupt

POP

Incremented by 1

Data is popped from the stack

RET
RETI

Incremented by 2

Return address is popped from the stack with return from
subroutine or return from interrupt

The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of bits actually used is
implementation dependent. Note that the data space in some implementations of the AVR architecture is so small
that only SPL is needed. In this case, the SPH Register will not be present.
7.5.1

SPH and SPL – Stack Pointer High and Stack Pointer Low Register
Bit

15

14

13

12

11

10

9

8

0x3E (0x5E)

SP15

SP14

SP13

SP12

SP11

SP10

SP9

SP8

SPH

0x3D (0x5D)

SP7

SP6

SP5

SP4

SP3

SP2

SP1

SP0

SPL

7

6

5

4

3

2

1

0

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

RAMEND

RAMEND

RAMEND

RAMEND

RAMEND

RAMEND

RAMEND

RAMEND

RAMEND

RAMEND

RAMEND

RAMEND

RAMEND

RAMEND

RAMEND

RAMEND

Read/Write

Initial Value

ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
8271E–AVR–07/2012

12

7.6

Instruction Execution Timing
This section describes the general access timing concepts for instruction execution. The AVR CPU is driven by the
CPU clock clkCPU, directly generated from the selected clock source for the chip. No internal clock division is used.
Figure 7-4 shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture
and the fast-access Register File concept. This is the basic pipelining concept to obtain up to 1 MIPS per MHz with
the corresponding unique results for functions per cost, functions per clocks, and functions per power-unit.
Figure 7-4.

The Parallel Instruction Fetches and Instruction Executions
T1

T2

T3

T4

clkCPU
1st Instruction Fetch
1st Instruction Execute
2nd Instruction Fetch
2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch

Figure 7-5 shows the internal timing concept for the Register File. In a single clock cycle an ALU operation using
two register operands is executed, and the result is stored back to the destination register.
Figure 7-5.

Single Cycle ALU Operation
T1

T2

T3

T4

clkCPU
Total Execution Time
Register Operands Fetch
ALU Operation Execute
Result Write Back

7.7

Reset and Interrupt Handling
The AVR provides several different interrupt sources. These interrupts and the separate Reset Vector each have a
separate program vector in the program memory space. All interrupts are assigned individual enable bits which
must be written logic one together with the Global Interrupt Enable bit in the Status Register in order to enable the
interrupt. Depending on the Program Counter value, interrupts may be automatically disabled when Boot Lock bits
BLB02 or BLB12 are programmed. This feature improves software security. See the section ”Memory Programming” on page 285 for details.
The lowest addresses in the program memory space are by default defined as the Reset and Interrupt Vectors.
The complete list of vectors is shown in ”Interrupts” on page 57. The list also determines the priority levels of the
different interrupts. The lower the address the higher is the priority level. RESET has the highest priority, and next
is INT0 – the External Interrupt Request 0. The Interrupt Vectors can be moved to the start of the Boot Flash section by setting the IVSEL bit in the MCU Control Register (MCUCR). Refer to ”Interrupts” on page 57 for more
information. The Reset Vector can also be moved to the start of the Boot Flash section by programming the
BOOTRST Fuse, see ”Boot Loader Support – Read-While-Write Self-Programming” on page 269.

ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
8271E–AVR–07/2012

13

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are disabled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then interrupt the current
interrupt routine. The I-bit is automatically set when a Return from Interrupt instruction – RETI – is executed.
There are basically two types of interrupts. The first type is triggered by an event that sets the Interrupt Flag. For
these interrupts, the Program Counter is vectored to the actual Interrupt Vector in order to execute the interrupt
handling routine, and hardware clears the corresponding Interrupt Flag. Interrupt Flags can also be cleared by writing a logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the corresponding
interrupt enable bit is cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the
flag is cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt Enable bit
is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the Global Interrupt Enable bit is
set, and will then be executed by order of priority.
The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before the interrupt is enabled, the interrupt will
not be triggered.
When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction
before any pending interrupt is served.
Note that the Status Register is not automatically stored when entering an interrupt routine, nor restored when
returning from an interrupt routine. This must be handled by software.
When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will be
executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction. The following example
shows how this can be used to avoid interrupts during the timed EEPROM write sequence.
Assembly Code Example
in r16, SREG
cli

; store SREG value

; disable interrupts during timed sequence

sbi EECR, EEMPE

; start EEPROM write

sbi EECR, EEPE
out SREG, r16

; restore SREG value (I-bit)

C Code Example
char cSREG;
cSREG = SREG; /* store SREG value */
/* disable interrupts during timed sequence */
_CLI();
EECR |= (1
下载 PDF

2000 价格&库存
-> 查询更多价格&库存

很抱歉，暂时无法提供与“2000”相匹配的价格&库存，您可以联系我们找货
免费人工找货

推荐型号
	2000(MAKE-PS)
	LME-2000V-T2000K(CUIDEVICES)
	LME-2000D-T2000K(CUIDEVICES)
	R2000F(SY)
	R2000(DACHANG)
	R2000(DIOTECH)
	R2000(SEMTECH_ELEC)
	R2000(UNIOHM)

相关技术文章
	!吉时利2000/吉时利2000/吉时利2000三用表 小兵
	cdma2000-1X/cdma2000-3X/的特点
	！二手 吉时利 2000 吉时利2000 三用表 谭艳飞1
	C2000入门：C2000的外置电路的控制介绍（6）
	C2000入门:C2000的基本知识介绍 (2)

	华秋（原“华强聚丰”）：
	电子发烧友
	华秋开发
	华秋电路(原"华强PCB")
	华秋商城(原"华强芯城")
	华秋智造

	My ElecFans
	 APP
	网站地图

	设计技术
	可编程逻辑
	电源/新能源
	MEMS/传感技术
	测量仪表
	嵌入式技术
	制造/封装
	模拟技术
	RF/无线
	接口/总线/驱动
	处理器/DSP
	EDA/IC设计
	存储技术
	光电显示
	EMC/EMI设计
	连接器

	行业应用
	LEDs
	汽车电子
	音视频及家电
	通信网络
	医疗电子
	人工智能
	虚拟现实
	可穿戴设备
	机器人
	安全设备/系统
	军用/航空电子
	移动通信
	工业控制
	便携设备
	触控感测
	物联网
	智能电网
	区块链
	新科技

	特色内容
	专栏推荐
	学院
	设计资源
	设计技术
	电子百科
	电子视频
	元器件知识
	工具箱
	VIP会员

	社区
	小组
	论坛
	问答
	评测试用
	企业服务
	产品
	资料
	文章
	方案
	企业

	供应链服务
	硬件开发
	华秋电路
	华秋商城
	华秋智造
	nextPCB
	BOM配单
	媒体服务
	网站广告
	在线研讨会
	活动策划
	新闻发布
	新品发布
	小测验
	设计大赛

	华秋
	关于我们
	投资关系
	新闻动态
	加入我们
	联系我们
	侵权投诉
	社交网络
	微博
	移动端
	发烧友APP
	硬声APP
	WAP

	联系我们
	广告合作
	王婉珠：wangwanzhu@elecfans.com
	内容合作
	黄晶晶：huangjingjing@elecfans.com
	内容合作（海外）
	张迎辉：mikezhang@elecfans.com
	供应链服务 PCB/IC/PCBA
	江良华：lanhu@huaqiu.com
	投资合作
	曾海银：zenghaiyin@huaqiu.com
	社区合作
	刘勇：liuyong@huaqiu.com

	关注我们的微信
[image: 关注我们的微信]
	下载发烧友APP
[image: 下载发烧友APP]
	电子发烧友观察
[image: 电子发烧友观察]

[image: 华秋电子][image: 华秋电子][image: 华秋发烧友]
电子工程师社区

[image: 华秋电路]
1-32层PCB打样·中小批量

[image: 华秋商城]
元器件现货·全球代购·SmartBOM

[image: 华秋智造]
SMT贴片·PCBA加工

[image: NextPCB]
PCB Manufacturer

	华秋简介
	企业动态
	联系我们
	企业文化
	企业宣传片
	加入我们

版权所有 © 湖南华秋数字科技有限公司
电子发烧友（电路图）湘公网安备 43011202000918 号电信与信息服务业务经营许可证：合字B2-20210191[image: 工商网监认证]工商网监
 湘ICP备2023018690号

