0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SKB02N60

SKB02N60

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    TO263-3

  • 描述:

    IGBT, 6A, 600V, N-CHANNEL

  • 数据手册
  • 价格&库存
SKB02N60 数据手册
SKB02N60 Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode C  75% lower Eoff compared to previous generation combined with low conduction losses  Short circuit withstand time – 10 s  Designed for frequency inverters for washing machines, fans, pumps and vacuum cleaners  NPT-Technology for 600V applications offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability  Very soft, fast recovery anti-parallel Emitter Controlled Diode  Pb-free lead plating; RoHS compliant 1  Qualified according to JEDEC for target applications  Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type SKB02N60 G E PG-TO-263-3-2 VCE IC VCE(sat) Tj Marking Package 600V 2A 2.2V 150C K06N60 PG-TO-263-3-2 Maximum Ratings Parameter Symbol Collector-emitter voltage VCE DC collector current IC Value 600 Unit V A TC = 25C 6.0 TC = 100C 2.9 Pulsed collector current, tp limited by Tjmax ICpul s 12 Turn off safe operating area - 12 VCE  600V, Tj  150C IF Diode forward current TC = 25C 6.0 TC = 100C 2.9 Diode pulsed current, tp limited by Tjmax IFpul s 12 Gate-emitter voltage VGE 20 V tSC 10 s Ptot 30 W -55...+150 C 260 °C 2 Short circuit withstand time VGE = 15V, VCC  600V, Tj  150C Power dissipation TC = 25C Operating junction and storage temperature Tj , Tstg Soldering temperature (reflow soldering, MSL1) Ts 1 2 J-STD-020 and JESD-022 Allowed number of short circuits: 1s. 1 Rev. 2.3 12.06.2013 SKB02N60 Thermal Resistance Parameter Symbol Conditions Max. Value Unit RthJC 4.2 K/W RthJCD 7 RthJA 40 Characteristic IGBT thermal resistance, junction – case Diode thermal resistance, junction – case 1) SMD version, device on PCB Electrical Characteristic, at Tj = 25 C, unless otherwise specified Parameter Symbol Conditions Value min. Typ. max. 600 - - 1.7 1.9 2.4 - 2.2 2.7 1.2 1.4 1.8 T j =1 5 0 C - 1.25 1.65 3 4 5 T j =2 5 C - - 20 T j =1 5 0 C - - 250 Unit Static Characteristic Collector-emitter breakdown voltage V ( B R ) C E S V G E = 0V , I C = 5 00 A Collector-emitter saturation voltage VCE(sat) V G E = 15 V , I C = 2 A T j =2 5 C T j =1 5 0 C VF Diode forward voltage V V G E = 0V , I F = 2 .9 A T j =2 5 C Gate-emitter threshold voltage VGE(th) I C = 15 0 A , V C E = V G E Zero gate voltage collector current ICES V C E = 60 0 V, V G E = 0 V A Gate-emitter leakage current IGES V C E = 0V , V G E =2 0 V - - 100 nA Transconductance gfs V C E = 20 V , I C = 2 A - 1.6 - S Ciss V C E = 25 V , - 142 170 pF Coss V G E = 0V , - 18 22 Reverse transfer capacitance Crss f= 1 MH z - 10 12 Gate charge QGate V C C = 48 0 V, I C =2 A - 14 18 nC - 7 - nH - 20 - A Dynamic Characteristic Input capacitance Output capacitance V G E = 15 V LE Internal emitter inductance measured 5mm (0.197 in.) from case Short circuit collector current 2) IC(SC) V G E = 15 V ,t S C  10 s V C C  6 0 0 V, T j  1 5 0 C 1) 2 Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm (one layer, 70m thick) copper area for collector connection. PCB is vertical without blown air. 2) Allowed number of short circuits: 1s. 2 Rev. 2.3 12.06.2013 SKB02N60 Switching Characteristic, Inductive Load, at Tj=25 C Parameter Symbol Conditions Value min. typ. max. - 20 24 - 13 16 - 259 311 - 52 62 - 0.036 0.041 - 0.028 0.036 - 0.064 0.078 130 - Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets T j =2 5 C , V C C = 40 0 V, I C = 2 A, V G E = 0/ 15 V , R G = 11 8 , 1) L  = 18 0 nH , 1) C  = 18 0 pF Energy losses include “tail” and diode reverse recovery. trr T j =2 5 C , - tS V R = 2 00 V , I F = 2. 9 A , - 12 - tF d i F / d t =2 0 0 A/ s - 118 - ns mJ Anti-Parallel Diode Characteristic Diode reverse recovery time ns Diode reverse recovery charge Qrr - 65 - nC Diode peak reverse recovery current Irrm - 1.9 - A Diode peak rate of fall of reverse recovery current during t b d i r r /d t - 180 - A/s Switching Characteristic, Inductive Load, at Tj=150 C Parameter Symbol Conditions Value min. typ. max. T j =1 5 0 C V C C = 40 0 V, I C = 2 A, V G E = 0/ 15 V , R G = 11 8 , 1) L  = 18 0 nH , 1) C  = 18 0 pF Energy losses include “tail” and diode reverse recovery. - 20 24 - 14 17 - 287 344 - 67 80 - 0.054 0.062 - 0.043 0.056 - 0.097 0.118 Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets ns mJ Anti-Parallel Diode Characteristic Diode reverse recovery time trr T j =1 5 0 C - 150 - tS V R = 2 00 V , I F = 2. 9 A , - 19 - tF d i F / d t =2 0 0 A/ s - 131 - ns Diode reverse recovery charge Qrr - 150 - nC Diode peak reverse recovery current Irrm - 3.8 - A Diode peak rate of fall of reverse recovery current during t b d i r r /d t - 200 - A/s 1) Leakage inductance L  a nd Stray capacity C  due to dynamic test circuit in Figure E. 3 Rev. 2.3 12.06.2013 SKB02N60 16A Ic t p =2  s 10A 14A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 12A 10A T C =80°C 8A 6A T C =110°C 4A 2A 0A 10Hz 15  s 1A 50  s 200  s 0.1A 1ms DC Ic 0.01A 100Hz 1kHz 10kHz 1V 100kHz 35W 7A 30W 6A 25W 5A 20W 15W 10W 5W 0W 25°C 100V 1000V VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25C, Tj  150C) IC, COLLECTOR CURRENT Ptot, POWER DISSIPATION f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj  150C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 118) 10V 4A 3A 2A 1A 50°C 75°C 100°C 0A 25°C 125°C TC, CASE TEMPERATURE Figure 3. Power dissipation (IGBT) as a function of case temperature (Tj  150C) 50°C 75°C 100°C 125°C TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE  15V, Tj  150C) 4 Rev. 2.3 12.06.2013 7A 7A 6A 6A 5A V G E =20V IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT SKB02N60 15V 4A 13V 11V 3A 9V 7V 2A 5V 1V 2V 3V 4V 13V 3A 11V 9V 2A 7V 5V 7A Tj=+25°C 6A -55°C +150°C 5A 4A 3A 2A 1A 2V 4V 6V 8V 10V 1V 2V 3V 4V 5V VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150C) VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE 8A IC, COLLECTOR CURRENT 15V 4A 0A 0V 5V VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25C) 0A 0V V G E =20V 1A 1A 0A 0V 5A VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 10V) 4.0V 3.5V IC = 4A 3.0V 2.5V IC = 2A 2.0V 1.5V 1.0V -50°C 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) 5 Rev. 2.3 12.06.2013 SKB02N60 t d(off) t, SWITCHING TIMES t, SWITCHING TIMES t d(off) tf 100ns td(on) tf 100ns t d(on) tr 10ns 0A 1A 2A 3A 4A tr 10ns 0 5A IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150C, VCE = 400V, VGE = 0/+15V, RG = 11 8, Dynamic test circuit in Figure E) 300  400  RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150C, VCE = 400V, VGE = 0/+15V, IC = 2A, Dynamic test circuit in Figure E) VGE(th), GATE-EMITTER THRESHOLD VOLTAGE t, SWITCHING TIMES 200  5.5V t d(off) 100ns tf t d(on) tr 10ns 0°C 100  50°C 100°C 5.0V 4.5V 4.0V max. 3.5V 3.0V typ. 2.5V min. 2.0V 150°C -50°C Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 2A, RG = 1 1 8, Dynamic test circuit in Figure E) 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.15mA) 6 Rev. 2.3 12.06.2013 SKB02N60 0.2mJ *) Eon and Ets include losses due to diode recovery. 0.2mJ E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES *) Eon and Ets include losses due to diode recovery. E ts * E on * 0.1mJ E off E ts * 0.1mJ E on * E off 0.0mJ 0A 1A 2A 3A 4A 0.0mJ 0 5A IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150C, VCE = 400V, VGE = 0/+15V, RG = 11 8, Dynamic test circuit in Figure E) 100  200  300  400  RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150C, VCE = 400V, VGE = 0/+15V, IC = 2A, Dynamic test circuit in Figure E) 0.2mJ D=0.5 E ts * E on * 0.1mJ E off 0.0mJ 0°C 50°C 100°C ZthJC, TRANSIENT THERMAL IMPEDANCE E, SWITCHING ENERGY LOSSES *) Eon and Ets include losses due to diode recovery. 150°C 0 10 K/W 0.2 0.1 0.05 0.02 R,(K/W) 1.026 1.3 1.69 0.183 -1 10 K/W 0.01 R1 , (s) 0.035 3.62*10-3 4.02*10-4 4.21*10-5 R2 -2 10 K/W 1µs single pulse 10µs 100µs C 1 =  1 / R 1 C 2 =  2 /R 2 1m s 10m s 100m s 1s tp, PULSE WIDTH Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 2A, RG = 1 1 8, Dynamic test circuit in Figure E) Figure 16. IGBT transient thermal impedance as a function of pulse width (D = tp / T) 7 Rev. 2.3 12.06.2013 SKB02N60 25V C iss 15V 120V C, CAPACITANCE VGE, GATE-EMITTER VOLTAGE 20V 480V 10V 100pF C oss 5V 10pF C rss 0V 0nC 5nC 10nC 15nC 0V QGE, GATE CHARGE Figure 17. Typical gate charge (IC = 2A) 30V 40A IC(sc), SHORT CIRCUIT COLLECTOR CURRENT tsc, SHORT CIRCUIT WITHSTAND TIME 20V VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz) 25  s 20  s 15  s 10  s 5 s 0 s 10V 10V 11V 12V 13V 14V 30A 20A 10A 0A 10V 15V VGE, GATE-EMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE = 600V, start at Tj = 25C) 12V 14V 16V 18V 20V VGE, GATE-EMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (VCE  600V,Tj = 150C) 8 Rev. 2.3 12.06.2013 SKB02N60 500ns 280nC trr, REVERSE RECOVERY TIME 300ns I F = 4A 200ns IF = 2A I F = 1A 100ns 0ns 20A/ s 60A/ s Qrr, REVERSE RECOVERY CHARGE 240nC 400ns 80nC 40nC IF = 2A IF = 1A 1A 0A 20A/s 60A/s 100A/s 140A/s OF REVERSE RECOVERY CURRENT 200A/s d i r r /d t, DIODE PEAK RATE OF FALL 4A 2A 60A/ s 100A/ s 140A/ s 180A/ s d i F / d t, DIODE CURRENT SLOPE Figure 22. Typical reverse recovery charge as a function of diode current slope (VR = 200V, Tj = 125C, Dynamic test circuit in Figure E) 250A/s IF = 4A I F = 1A 120nC 5A 3A I F = 2A 160nC 0nC 20A/ s 100A/ s 140A/ s 180A/ s d i F / d t, DIODE CURRENT SLOPE Figure 21. Typical reverse recovery time as a function of diode current slope (VR = 200V, Tj = 125C, Dynamic test circuit in Figure E) Irr, REVERSE RECOVERY CURRENT IF = 4A 200nC 150A/s 100A/s 50A/s 0A/s 20A/s 180A/s d i F / d t, DIODE CURRENT SLOPE Figure 23. Typical reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125C, Dynamic test circuit in Figure E) 60A/s 100A/s 140A/s 180A/s diF/dt, DIODE CURRENT SLOPE Figure 24. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125C, Dynamic test circuit in Figure E) 9 Rev. 2.3 12.06.2013 SKB02N60 4A 2.5V VF, FORWARD VOLTAGE IF, FORWARD CURRENT 3A 150°C 2A 100°C 25°C -55°C 1A 0A 0.0V 0.5V 1.0V 1.5V 2.0V I F = 4A I F = 2A 1.5V 1.0V 2.0V VF, FORWARD VOLTAGE Figure 25. Typical diode forward current as a function of forward voltage -40°C 0°C 40°C 80°C 120°C Tj, JUNCTION TEMPERATURE Figure 26. Typical diode forward voltage as a function of junction temperature 1 ZthJCD, TRANSIENT THERMAL IMPEDANCE 10 K/W D=0.5 0.2 0 10 K/W 0.1 0.05 R,(K/W) 0.830 2.240 3.930 0.02 -1 0.01 10 K/W R1 , (s) 6.40*10-3 8.79*10-4 1.19*10-4 R2 single pulse C 1 =  1 / R 1 C 2 =  2 /R 2 -2 10 K/W 1µs 10µs 100µs 1ms 10ms 100ms 1s tp, PULSE WIDTH Figure 27. Diode transient thermal impedance as a function of pulse width (D = tp / T) 10 Rev. 2.3 12.06.2013 SKB02N60 PG-TO263-3-2 11 Rev. 2.3 12.06.2013 SKB02N60 i,v tr r =tS +tF diF /dt Qr r =QS +QF tr r IF tS QS Ir r m tF QF 10% Ir r m dir r /dt 90% Ir r m t VR Figure C. Definition of diodes switching characteristics 1 2 r1 r2 n rn Tj (t) p(t) r1 r2 rn Figure A. Definition of switching times TC Figure D. Thermal equivalent circuit Figure E. Dynamic test circuit Leakage inductance L =180nH an d Stray capacity C  =180pF. Figure B. Definition of switching losses 12 Rev. 2.3 12.06.2013 SKB02N60 Published by Infineon Technologies AG 81726 Munich, Germany © 2013 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 13 Rev. 2.3 12.06.2013
SKB02N60 价格&库存

很抱歉,暂时无法提供与“SKB02N60”相匹配的价格&库存,您可以联系我们找货

免费人工找货